用PDS(Powertrain Dynamic Simulator)快速建立V6发动机Crank Train动力学模型,然后导入Virtual.Lab Motion进行仿真计算,并和理论计算结果进行对比。

结论:

  • 1、曲轴系统惯性不平衡力对发动机Z向产生6阶力冲击,X向和Y向无力冲击。
  • 2、曲轴系统惯性不平衡力对发动机X向产生3阶力矩冲击(Roll),Y向(Pitch)和Z向(Yaw)产生一致的1阶和2阶力矩冲击。
  • 3、仿真计算的结果和理论计算结果一致,但是理论计算一般只考虑2阶以内,而仿真计算可到几千HZ。

仿真计算过程:

1、PDS建模,设置发动机转速6000(1阶频率=100HZ),运行2个循环(曲轴转4圈)。

2、设置平衡块参数,将Reciprocating Mass Coefficient=0,这是为了后面和理论计算做比较。

The Reciprocating Mass Coefficient affects the magnitude of mass used in the counterweights that are attached to the crankshaft in the PDS model. The formulas used to define the counterweight (or "bob weight") mass are typically based on an idealization which breaks the conrod mass properties into a so-called "big end" & "little end", with the "big end" mass identified as a "rotating mass", and the "little end" identified as a "reciprocating mass". Nearly all hand-derived solutions will define the counterweight mass as a combination of these two masses. However many differ from each other regarding how much additional mass to lump into the reciprocating component in order to account for the additional mass of the piston, wrist pin, ring pack, etc.

It is possible to find analytically derived imbalance equations that are tabulated according to engine type in a wide variety of engine design and mechanical design reference texts. One such derivation can be found in Taylor1. Taylorís formulation operates under the assumption that the Counterweight masses have no contribution from the reciprocating mass.With respect to the equations below, the assumption is that q=0.

q = Reciprocating Mass Coefficient

Although it may be more typical to run models with q=1.0 or 0.5, we will reset the Reciprocating Mass Coefficient inside PDS to 0.0 for later correlation against theoretical results derived using Taylorís equation.

3、PDS生成建模文件.def,导入Motion

4、用后处理工具绘制发动机壳体(block)受力及FFT图,发动机受Z向(Vertical)6阶冲击力,X向(Fore-Aft)和Y向(Lateral)不受冲击力。

5、用后处理工具绘制发动机壳体(block)受力矩及FFT图,发动机受X向(Roll)3阶冲击力矩,Y向(Pitch)和Z向(Faw)受到一致的1阶和2阶冲击力矩。

6、与理论计算对比

Now let‘s compare our results against known theoretical solution found in Taylor, The Internal Combustion Engine in Theory and Practice, Vol. 2. The key parameters used for both PDS and the hand calculations are summarized in Table 1 below.

Parameter

Value

Description

m

5.1E-04

Big End ConRod Mass (Mg)

m1

1.0E-04

Little End ConRod Mass (Mg)

m2

4.56E-04

Piston Mass (Mg)

L

151.75

ConRod Length (mm)

R

43.0

Crank Throw (mm)

a

98.0

Bore Spacing (mm)

b

20.0

Bore Offset (mm)

Poff

0.0

Wrist Pin Offset (mm)

N

6000.0

Crank RPM (real)

Table 1: Key Input Parameters

60∞ V6

1st order Force

1st order Couple

2nd order Force

2nd order Couple

Taylor Analytical Formula

0

1.5 Q a Circular CW

0

1.5 R/L Q a Circular CCW

Analytical Reference Value

0

1,387,459 N-mm

0

393,151 N-mm

PDS Simulation

0

1,387,153 N-mm Pitch

1,387,153 N-mm Yaw

0

397,820 N-mm Pitch

397,820 N-mm Yaw

Table 2: Theory vs. PDS

Regarding Table 2, M = m1+m2, and Q = N^2MR, where N = 6000RPM = 628.3185 rad/sec. Furthermore, a "circular" moment simply implies the pitch and yaw couples are meant to be equal in magnitude (as they are in this case), whereas an "elliptical" moment would mean they are unequal.

Thus, it can be seen that PDS generates accurate imbalance loads. It can be noted that most theory tables such as those presented in Table 2 present results only for 1st and 2nd order, assuming that higher order effects are negligible. PDS models do not make such assumptions, as the Virtual.Lab Motion solver works in the time domain in such a way as to track frequencies well into the kilohertz range.

Furthermore, PDS can extend much further than most hand-derived formulas, because one can examine the influence of many other parameters such as variable bore spacing, different bank-angles producing ësplit piní crank arrangements, piston pin offsets, combustion loads with misfire events, and even the inclusion of a Valve Train subsystem to incorporate the effects of valve line imbalances.

7、References

Taylor, The Internal Combustion Engine in Theory and Practice, Vol. 2, the M.I.T. Press, 1985.

PDS+VL Motion对发动机曲轴系统不平衡载荷进行仿真分析相关推荐

  1. CA6110发动机曲轴的加工工艺及夹具设计-说明书+外文翻译+夹具体+毛配图+曲轴零件图+夹具装配图+垫块图+工艺卡片10张

    摘  要 曲轴是汽车发动机的关键零件之一,其性能好坏直接影响到汽车发动机的质量和寿命.曲轴在发动机中承担最大负荷和全部功率,承受着强大的方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要 ...

  2. 电池电堆及发动机的测试软件,燃料电池发动机测试系统的开发

    燃料电池发动机测试系统的开发 维普资讯 http://doc.docsou.com 第 5总第 1期)期( 4 7 20年 l 03 0月 车 用 发 动 机 N .( e a N .4 ) o 5 ...

  3. matlab中有解耦指令吗,powertrain-mounting_Opti 发动机悬置系统解耦率、固有频率以及参数优化程序 matlab 266万源代码下载- www.pudn.com...

    文件名称: powertrain-mounting_Opti下载  收藏√  [ 5  4  3  2  1 ] 开发工具: matlab 文件大小: 397 KB 上传时间: 2014-02-12 ...

  4. 机械专业夹具类毕业设计题目汇总/组合机床、车床拨叉、飞锤支架、连接座、倒挡拨叉、盖、法兰盘、铜衬轴套、心轴零件、曲轴箱零件、托板、发动机曲轴、方刀架、车床变速箱、柴油机机体、车床滤油器、方刀架……

    柴油机气缸体顶底面粗铣组合机床总体及夹具设计(生产率计算卡 说明书 任务书 CAD图纸 英文翻译--) CA6140车床拨叉831008工艺及铣断双体夹具设计[12张图纸] CA6140车床拨叉零件8 ...

  5. ZL15轮式装载机变速器设计 z型提升机图 400吨四柱式油压机图 火电厂堆料机CAD图 万能砂带机 移动皮带机 胶带机 电火花线切割机床封箱机 汽车发动机 曲轴零件图 …方案

    火电厂堆料机CAD图 2M5210WA型万能砂带机.exb 卷扬机dwg图纸一套 DSY500-6米移动皮带机(套图18张) 9-26-8D离心风机全套图 630钢丝胶带斗式提升机 4100柴油机曲轴 ...

  6. 发动机曲轴加工工艺与专用机床夹具设计(论文+CAD图纸+工序卡+过程卡+开题报告+任务书+翻译……)

    摘  要 本设计主要围绕发动机曲轴的工艺规程和专用夹具设计进行研究,其内容包括了解曲轴结构,确定曲轴的生产类型及相关的技术要求.在此基础上,选择毛坯,确定毛坯的尺寸公差和机械加工余量,绘制毛坯图.并在 ...

  7. 用于汽车发动机整车系统检漏及压力测试快速密封连接器 GripSeal格雷希尔快速密封接头有哪些解决方案?

    GripSeal快速连接器的各个系列产品,可为不同的管形,孔径,接口,螺纹提供方案.多达近千种标准型号,用户可直接根据选型手册,选择适合自己的标准品. GripSeal快速连接器用于发动机整车系统检漏 ...

  8. 中国液压发动机启动系统行业市场供需与战略研究报告

    本报告重点关注液压发动机启动系统市场. 液压发动机启动系统市场的企业竞争态势 该报告涉及的主要国际市场参与者有Voith.Aver Vera Pte Ltd.Kocsis Technologies, ...

  9. 直流无刷电机(BLDC)转速闭环调速系统及Matlab/Simulink仿真分析(二)

    文章目录 前言 一.转速闭环直流调速系统 二.Matlab/Simulink仿真 2.1.仿真电路分析 2.2.仿真结果分析 总结 前言 变压调速是直流调速系统的主要调速方法,因此系统的硬件至少包含: ...

最新文章

  1. python time datetime string 相互转换
  2. Android 10 中有关限制非 SDK 接口的更新
  3. 2020-11-25(《深入理解计算机系统》多级页表详解)
  4. P4859-已经没有什么好害怕的了【容斥,dp】
  5. eclipse juno_Eclipse Juno上带有GlassFish的JavaEE 7
  6. strcpy()函数一个简单那程序来了解一下它。。
  7. python或anaconda下安装opencv提示Error:No matching distribution found for opencv
  8. C/C++ queue队列的理解以及使用
  9. 【3】测试用例设计-因果图
  10. 【后台任务】在线程池线程上运行代码(6)
  11. Makefile.am:1: error: Libtool library used but 'LIBTOOL' is undefined
  12. 图解通信原理与案例分析-33:传感器种类以及传感器工作原理详解
  13. VMware14虚拟机安装Ubuntu
  14. Selenium:鼠标、键盘事件
  15. c语言程序图像抠图,Opencv使用鼠标任意形状的抠图
  16. python批量转换音频采样率
  17. 【音乐系列】吉他学习入门基本知识
  18. 大众点评数据分析报告
  19. mysql特殊符号无法储存_解决MYSQL数据库无法保存emoji表情及特殊符号问题
  20. 往数据库里面插入data数据

热门文章

  1. Mac OSX 下高效安装 homebrew 及完美避坑姿势
  2. DreamFactory入门指南 - 第2章安装和配置DreamFactory
  3. DataX离线数据同步工具/平台
  4. BGP ——路由过滤+路由聚合(讲解+配置)
  5. c语言两个线程交替打印奇数和偶数,经典面试题——两个线程交替打印奇数和偶数...
  6. http GET 和 POST 请求的优缺点和误区 --前端优化
  7. 使用heroku托管服务搭建网站
  8. 正则语言和正则表达式_探索正则表达式背后的语言学
  9. win10启动项_win10你的电脑遇到问题需要重新启动
  10. PyCharm 在Windows的有用快捷键