作者:dustinzhou,腾讯 IEG 运营开发工程师

epoll 是 linux 特有的一个 I/O 事件通知机制。很久以来对 epoll 如何能够高效处理数以百万记的文件描述符很有兴趣。近期学习、研究了 epoll 源码,在这个过程中关于 epoll 数据结构和作者的实现思路产生出不少疑惑,在此总结为了 10 个问题并逐个加以解答和分析。本文基于的内核源码版本是2.6.39 版本 。

Question 1:是否所有的文件类型都可以被 epoll 监视?

答案:不是。看下面这个实验代码:

#include <stdio.h>
#include <unistd.h>
#include <sys/epoll.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <errno.h>#define MAX_EVENTS 1int main (void)
{int epfd;epfd = epoll_create(100); /* 创建epoll实例,预计监听100个fd */if (epfd < 0) {perror ("epoll_create");}struct epoll_event *events;int nr_events, i;events = malloc (sizeof (struct epoll_event) * MAX_EVENTS);if (!events) {perror("malloc");return 1;}/* 打开一个普通文本文件 */int target_fd = open ("./11.txt", O_RDONLY);printf("target_fd %d\n", target_fd);int target_listen_type = EPOLLIN;for (i = 0; i < 1; i++) {int ret;events[i].data.fd = target_fd; /* epoll调用返回后,返回给应用进程的fd号 */events[i].events = target_listen_type; /* 需要监听的事件类型 */ret = epoll_ctl (epfd, EPOLL_CTL_ADD, target_fd, &events[i]); /* 注册fd到epoll实例上 */if (ret) {printf("ret %d, errno %d\n", ret, errno);perror ("epoll_ctl");}}/* 应用进程阻塞在epoll上,超时时长置为-1表示一直等到有目标事件才会返回 */nr_events = epoll_wait(epfd, events, MAX_EVENTS, -1);if (nr_events < 0) {perror ("epoll_wait");free(events);return 1;}for (i = 0; i < nr_events; i++) {/* 打印出处于就绪状态的fd及其事件 */printf("event=%d on fd=%d\n", events[i].events, events[i].data.fd);}free (events);close(epfd);return 0;
}

编译、运行上面的代码,会打印出下列信息:

gcc epoll_test.c -o epdemo
./epdemo
target_fd 4
ret -1, errno 1
epoll_ctl: Operation not permitted

正常打开了"txt"文件 fd=4, 但调用 epoll_ctl 监视这个 fd 时却 ret=-1 失败了, 并且错误码为 1,错误信息为"Operation not permitted"。错误码指明这个 fd 不能够被 epoll 监视。

那什么样的 fd 才可以被 epoll 监视呢?

只有底层驱动实现了 file_operations 中 poll 函数的文件类型才可以被 epoll 监视!socket 类型的文件驱动是实现了 poll 函数的,因此才可以被 epoll 监视。struct file_operations 声明位置是在 include/linux/fs.h 中。

Question 2:ep->wq 的作用是什么?

答案:wq 是一个等待队列,用来保存对某一个 epoll 实例调用 epoll_wait()的所有进程。

一个进程调用 epoll_wait()后,如果当前还没有任何事件发生,需要让当前进程挂起等待(放到 ep->wq 里);当 epoll 实例监视的文件上有事件发生后,需要唤醒 ep->wq 上的进程去继续执行用户态的业务逻辑。之所以要用一个等待队列来维护关注这个 epoll 的进程,是因为有时候调用 epoll_wait()的不只一个进程,当多个进程都在关注同一个 epoll 实例时,休眠的进程们通过这个等待队列就可以逐个被唤醒了。

多个进程关注同一个 epoll 实例,那么有事件发生后先唤醒谁?后唤醒谁?还是一起全唤醒?这涉及到一个称为“惊群效应”的问题。

Question 3:什么是 epoll 惊群?

答案:多个进程等待在 ep->wq 上,事件触发后所有进程都被唤醒,但只有其中 1 个进程能够成功继续执行的现象。其他被白白唤起的进程等于做了无用功,可能会造成系统负载过高的问题。下面这段代码能够直观感受什么是 epoll 惊群:

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/wait.h>
#define PROCESS_NUM 10
static int create_and_bind (char *port)
{int fd = socket(PF_INET, SOCK_STREAM, 0);struct sockaddr_in serveraddr;serveraddr.sin_family = AF_INET;serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);serveraddr.sin_port = htons(atoi(port));bind(fd, (struct sockaddr*)&serveraddr, sizeof(serveraddr));return fd;
}static int make_socket_non_blocking (int sfd)
{int flags, s;flags = fcntl (sfd, F_GETFL, 0);if (flags == -1){perror ("fcntl");return -1;}flags |= O_NONBLOCK;s = fcntl (sfd, F_SETFL, flags);if (s == -1){perror ("fcntl");return -1;}return 0;
}#define MAXEVENTS 64int main (int argc, char *argv[])
{int sfd, s;int efd;struct epoll_event event;struct epoll_event *events;sfd = create_and_bind("8001");if (sfd == -1)abort ();s = make_socket_non_blocking (sfd);if (s == -1)abort ();s = listen(sfd, SOMAXCONN);if (s == -1){perror ("listen");abort ();}efd = epoll_create(MAXEVENTS);if (efd == -1){perror("epoll_create");abort();}event.data.fd = sfd;//event.events = EPOLLIN | EPOLLET;event.events = EPOLLIN;s = epoll_ctl(efd, EPOLL_CTL_ADD, sfd, &event);if (s == -1){perror("epoll_ctl");abort();}/* Buffer where events are returned */events = calloc(MAXEVENTS, sizeof event);int k;for(k = 0; k < PROCESS_NUM; k++){int pid = fork();if(pid == 0){/* The event loop */while (1){int n, i;n = epoll_wait(efd, events, MAXEVENTS, -1);printf("process %d return from epoll_wait!\n", getpid());for (i = 0; i < n; i++){if ((events[i].events & EPOLLERR) || (events[i].events & EPOLLHUP) || (!(events[i].events & EPOLLIN))){/* An error has occured on this fd, or the socket is not ready for reading (why were we notified then?) */fprintf (stderr, "epoll error\n");close (events[i].data.fd);continue;}else if (sfd == events[i].data.fd){/* We have a notification on the listening socket, which means one or more incoming connections. */struct sockaddr in_addr;socklen_t in_len;int infd;char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];in_len = sizeof in_addr;infd = accept(sfd, &in_addr, &in_len);if (infd == -1){printf("process %d accept failed!\n", getpid());break;}printf("process %d accept successed!\n", getpid());/* Make the incoming socket non-blocking and add it to the list of fds to monitor. */close(infd);}}}}}int status;wait(&status);free (events);close (sfd);return EXIT_SUCCESS;
}

将服务端的监听 socket fd 加入到 epoll_wait 的监视集合中,这样当有客户端想要建立连接,就会事件触发 epoll_wait 返回。此时如果 10 个进程同时在 epoll_wait 同一个 epoll 实例就出现了惊群效应。所有 10 个进程都被唤起,但只有一个能成功 accept。

为了解决 epoll 惊群,内核后续的高版本又提供了 EPOLLEXCLUSIVE 选项和 SO_REUSEPORT 选项,我个人理解两种解决方案思路上的不同点在于:EPOLLEXCLUSIVE 是在唤起进程阶段起作用,只唤起排在队列最前面的 1 个进程;而 SO_REUSEPORT 是在分配连接时起作用,相当于每个进程自己都有一个独立的 epoll 实例,内核来决策把连接分配给哪个 epoll。

Question 4:ep->poll_wait 的作用是什么?

答案:ep->poll_wait 是 epoll 实例中另一个等待队列。当被监视的文件是一个 epoll 类型时,需要用这个等待队列来处理递归唤醒。

在阅读内核代码过程中,ep->wq 还算挺好理解,但我发现伴随着 ep->wq 唤醒, 还有一个 ep->poll_wait 的唤醒过程。比如下面这段代码,在 eventpoll.c 中出现了很多次:

/* If the file is already "ready" we drop it inside the ready list */if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {list_add_tail(&epi->rdllink, &ep->rdllist);/* Notify waiting tasks that events are available */if (waitqueue_active(&ep->wq))wake_up_locked(&ep->wq);if (waitqueue_active(&ep->poll_wait))pwake++;}spin_unlock_irqrestore(&ep->lock, flags);atomic_long_inc(&ep->user->epoll_watches);/* We have to call this outside the lock */if (pwake)ep_poll_safewake(&ep->poll_wait);

查阅很多资料后才搞明白其实 epoll 也是一种文件类型,其底层驱动也实现了 file_operations 中的 poll 函数,因此一个 epoll 类型的 fd 可以被其他 epoll 实例监视。而 epoll 类型的 fd 只会有“读就绪”的事件。当 epoll 所监视的非 epoll 类型文件有“读就绪”事件时,当前 epoll 也会进入“读就绪”状态。

因此如果一个 epoll 实例监视了另一个 epoll 就会出现递归。举个例子,如图所示:

  1. epollfd1 监视了 2 个“非 epoll”类型的 fd

  2. epollfd2 监视了 epollfd1 和 2 个“非 epoll”类型的 fd

如果 epollfd1 所监视的 2 个 fd 中有可读事件触发,fd 的 ep_poll_callback 回调函数会触发将 fd 放到 epollfd1 的 rdllist 中。此时 epollfd1 本身的可读事件也会触发,就需要从 epollfd1 的 poll_wait 等待队列中找到 epollfd2,调用 epollfd1 的 ep_poll_callback(将 epollfd1 放到 epollfd2 的 rdllist 中)。因此 ep->poll_wait 是用来处理 epoll 间嵌套监视的情况的。

Question 5:ep->rdllist 的作用是什么?

答案:epoll 实例中包含就绪事件的 fd 组成的链表。

通过扫描 ep->rdllist 链表,内核可以轻松获取当前有事件触发的 fd。而不是像 select()/poll() 那样全量扫描所有被监视的 fd,再从中找出有事件就绪的。因此可以说这一点决定了 epoll 的性能是远高于 select/poll 的。

看到这里你可能又产生了一个小小的疑问:为什么 epoll 中事件就绪的 fd 会“主动”跑到 rdllist 中去,而不用全量扫描就能找到它们呢? 这是因为每当调用 epoll_ctl 新增一个被监视的 fd 时,都会注册一下这个 fd 的回调函数 ep_poll_callback, 当网卡收到数据包会触发一个中断,中断处理函数再回调 ep_poll_callback 将这个 fd 所属的“epitem”添加至 epoll 实例中的 rdllist 中。

Question 6:ep->ovflist 的作用是什么?

答案:在 rdllist 被占用时,用来在不持有 ep->lock 的情况下收集有就绪事件的 fd。

当 epoll 上已经有了一些就绪事件的时候,内核需要扫描 rdllist 将就绪的 fd 返回给用户态。这一步通过 ep_scan_ready_list 函数来实现。其中 sproc 是一个回调函数(也就是 ep_send_events_proc 函数),来处理数据从内核态到用户态的复制。

/*** ep_scan_ready_list - Scans the ready list in a way that makes possible for the scan code, to call f_op->poll(). Also allows for O(NumReady) performance.* @ep: Pointer to the epoll private data structure.* @sproc: Pointer to the scan callback.* @priv: Private opaque data passed to the @sproc callback.* Returns: The same integer error code returned by the @sproc callback.*/
static int ep_scan_ready_list(struct eventpoll *ep,int (*sproc)(struct eventpoll *,struct list_head *, void *),void *priv)

由于 rdllist 链表业务非常繁忙(epoll 增加监视文件、修改监视文件、有事件触发...等情况都需要操作 rdllist),所以在复制数据到用户空间时,加了一个 ep->mtx 互斥锁来保护 epoll 自身数据结构线程安全,此时其他执行流程里有争抢 ep->mtx 的操作都会因命中 ep->mtx 进入休眠。

但加锁期间很可能有新事件源源不断地产生,进而调用 ep_poll_callback(ep_poll_callback 不用争抢 ep->mtx 所以不会休眠),新触发的事件需要一个地方来收集,不然就丢事件了。这个用来临时收集新事件的链表就是 ovflist。我的理解是:引入 ovflist 后新产生的事件就不用因为想向 rdllist 里写而去和 ep_send_events_proc 争抢自旋锁(ep->lock), 同时 ep_send_events_proc 也可以放心大胆地在无锁(不持有 ep->lock)的情况下修改 rdllist。

看代码时会发现,还有一个 txlist 链表,这个链表用来最后向用户态复制数据,rdllist 要先把自己的数据全部转移到 txlist,然后 rdllist 自己被清空。ep_send_events_proc 遍历 txlist 处理向用户空间复制,复制成功后如果是水平触发(LT)还要把这个事件还回 rdllist,等待下一次 epoll_wait 来获取它。

ovflist 上的 fd 会合入 rdllist 上等待下一次扫描;如果 txlist 上的 fd 没有处理完,最后也会合入 rdllist。这 3 个链表的关系是这样:

Question 7:epitem->pwqlist 队列的作用是什么?

答案:用来保存这个 epitem 的 poll 等待队列。

首先介绍下什么是 epitem。epitem 是 epoll 中很重要的一种数据结构, 是红黑树和 rdllist 的基本组成元素。需要监听的文件和事件信息,都被包装在 epitem 结构里。

struct epitem {struct rb_node rbn;  // 用于加入红黑树struct list_head rdllink; // 用于加入rdlliststruct epoll_filefd ffd; // 包含被监视文件的文件指针和fd信息struct list_head pwqlist; // poll等待队列struct eventpoll *ep; // 所属的epoll实例struct epoll_event event;  // 关注的事件/* 其他成员省略 */
};

回忆一下上文说到,每当用户调用 epoll_ctl()新增一个监视文件,都要给这个文件注册一个回调函数 ep_poll_callback, 当网卡收到数据后软中断会调用这个 ep_poll_callback 把这个 epitem 加入到 ep->rdllist 中。

pwdlist 就是跟 ep_poll_callback 注册相关的

当调用 epoll_ctl()新增一个监视文件后,内核会为这个 epitem 创建一个 eppoll_entry 对象,通过 eppoll_entry->wait_queue_t->wait_queue_func_t 来设置 ep_poll_callback。pwdlist 为什么要做成一个队列呢,直接设置成 eppoll_entry 对象不就行了吗?实际上不同文件类型实现 file_operations->poll 用到等待队列数量可能不同。虽然大多数都是 1 个,但也有例外。比如“scullpipe”类型的文件就用到了 2 个等待队列。

pwqlist、epitem、fd、epoll_entry、ep_poll_callback 间的关系是这样:

Question 8:epmutex、ep->mtx、ep->lock 3 把锁的区别是?

答案:锁的粒度和使用目的不同。

  1. epmutex 是一个全局互斥锁,epoll 中一共只有 3 个地方用到这把锁。分别是 ep_free() 销毁一个 epoll 实例时、eventpoll_release_file() 清理从 epoll 中已经关闭的文件时、epoll_ctl() 时避免 epoll 间嵌套调用时形成死锁。我的理解是 epmutex 的锁粒度最大,用来处理跨 epoll 实例级别的同步操作。

  2. ep->mtx 是一个 epoll 内部的互斥锁,在 ep_scan_ready_list() 扫描就绪列表、eventpoll_release_file() 中执行 ep_remove()删除一个被监视文件、ep_loop_check_proc()检查 epoll 是否有循环嵌套或过深嵌套、还有 epoll_ctl() 操作被监视文件增删改等处有使用。可以看出上述的函数里都会涉及对 epoll 实例中 rdllist 或红黑树的访问,因此我的理解是 ep->mtx 是一个 epoll 实例内的互斥锁,用来保护 epoll 实例内部的数据结构的线程安全。

  3. ep->lock 是一个 epoll 实例内部的自旋锁,用来保护 ep->rdllist 的线程安全。自旋锁的特点是得不到锁时不会引起进程休眠,所以在 ep_poll_callback 中只能使用 ep->lock,否则就会丢事件。

Question 9:epoll 使用红黑树的目的是什么?

答案:用来维护一个 epoll 实例中所有的 epitem。

用户态调用 epoll_ctl()来操作 epoll 的监视文件时,需要增、删、改、查等动作有着比较高的效率。尤其是当 epoll 监视的文件数量达到百万级的时候,选用不同的数据结构带来的效率差异可能非常大。

从时间(增、删、改、查、按序遍历)、空间(存储空间大小、扩展性)等方面考量,红黑树都是非常优秀的数据结构(当然这以红黑树比较高的实现复杂度作为代价)。epoll 红黑树中的 epitem 是按什么顺序组织的。阅读代码可以发现是先比较 2 个文件指针的地址大小,如果相同再比较文件 fd 的大小。

/* Compare RB tree keys */
static inline int ep_cmp_ffd(struct epoll_filefd *p1, struct epoll_filefd *p2)
{return (p1->file > p2->file ? +1 : (p1->file < p2->file ? -1 : p1->fd - p2->fd));
}

epoll、epitem、和红黑树间的组织关系是这样:

Question 10:什么是水平触发、边缘触发?

答案:水平触发(LT)和边缘触发(ET)是 epoll_wait 的 2 种工作模式。水平触发:关注点是数据(读操作缓冲区不为空,写操作缓冲区不为满),epoll_wait 总会返回就绪。LT 是 epoll 的默认工作模式。

边缘触发:关注点是变化,只有监视的文件上有数据变化发生(读操作关注有数据写进缓冲区,写操作关注数据从缓冲区取走),epoll_wait 才会返回。

看一个实验 ,直观感受下 2 种模式的区别, 客户端都是输入“abcdefgh” 8 个字符,服务端每次接收 2 个字符。

水平触发时,客户端输入 8 个字符触发了一次读就绪事件,由于被监视文件上还有数据可读故一直返回读就绪,服务端 4 次循环每次都能取到 2 个字符,直到 8 个字符全部读完。

边缘触发时,客户端同样输入 8 个字符但服务端一次循环读到 2 个字符后这个读就绪事件就没有了。等客户端再输入一个字符串后,服务端关注到了数据的“变化”继续从缓冲区读接下来的 2 个字符“c”和”d”。

小结

本文通过 10 个问题,其实也是从 10 个不同的视角去观察 epoll 这间宏伟的殿堂。至此也基本介绍完了 epoll 从监视事件,到内部数据结构组织、事件处理,最后到 epoll_wait 返回的整体工作过程。最后附上一张 epoll 相关数据结构间的关系图,在学习 epoll 过程中它曾解答了我心中不少的疑惑,我愿称之为灯塔~

参考资料

  1. Implementation of Epoll

  2. Red-black Trees (rbtree) in Linux

  3. What is the purpose of epoll's edge triggered option?

  4. epoll 源码分析(基于 linux-5.1.4)

  5. epoll 实现原理

  6. epoll (2) source code analysis

  7. epoll 的内核实现

  8. Linux Kernel Notes: epoll Implementation Principle

  9. accept 与 epoll 惊群

最近好文:

GPU虚拟化,算力隔离,和qGPU

一文入门 Kafka

腾讯代码安全指南开源,涉及 C/C++、Go 等六门编程语言

“码上有趣” 视频挑战活动来了!

上传视频赢HHKB键盘和罗技鼠标!

了解活动可加微信:teg_helper(备注码上有趣)

视频号最新视频

十个问题理解Linux epoll工作原理相关推荐

  1. 十个问题理解Linux epoll工作原理:惊群,

    目录 Question 1:是否所有的文件类型都可以被 epoll 监视?不是 Question 2:ep->wq 的作用是什么? Question 3:什么是 epoll 惊群? Questi ...

  2. [diango]理解django视图工作原理

    前言:正确理解django视图view,模型model,模板的概念及其之间的关联关系,才能快速学习并上手使用django制作网页 本文主要讲解自己在学习django后对视图view的理解 在进入正文之 ...

  3. eja智能压力变送器工作原理_如何理解智能压力变送器工作原理及功能介绍

    如何理解智能压力变送器工作原理及功能介绍 智能压力变送器一般是由传感器.微处理器.存储器及模数.数模转换器组成.传感器用来检测被测量的信号,其所用材料因厂家而异.横河EJA为硅谐振式,把被测参数转换为 ...

  4. 通过自制CPU来彻底理解CPU的工作原理

    每天摸着CPU,摸了20多年,却总是无法彻底理解CPU的工作原理,还有比这更郁闷的事吗?所以我决定攻克这一世界(我个人的世界)难题,自己做一个CPU来理解CPU的工作原理. " 造一个什么样 ...

  5. 理解 HTTPS 的工作原理

    转自 https://linux.cn/article-6804-1.html 目标读者:理解HTTP协议,对称和非对称加密,想要了解HTTPS协议的工作原理. 读完本文,你能明白 什么是HTTPS, ...

  6. Linux epoll 实现原理

    文章目录 1.epoll 的用法 2.epoll 的创建 3.epoll 对象结构 4.向 epoll 添加文件描述符 5.阻塞和唤醒进程 6.小结 参考文献 epoll 是 Linux 平台下的一种 ...

  7. 用一个实际例子理解Docker volume工作原理

    要了解Docker Volume,首先我们需要理解Docker文件系统的工作原理.Docker镜像是由多个文件系统的只读层叠加而成.当一个容器通过命令docker run启动时,Docker会加载只读 ...

  8. 理解ABR及其工作原理

    点击上方"LiveVideoStack"关注我们 翻译 | Alex 技术审校 | 赵军 本文来自OTTVerse,作者为Krishna Rao Vijayanagar. ABR ...

  9. 用一个实际例子理解Docker volume工作原理 1

    要了解Docker Volume,首先我们需要理解Docker文件系统的工作原理.Docker镜像是由多个文件系统的只读层叠加而成.当一个容器通过命令docker run启动时,Docker会加载只读 ...

最新文章

  1. 【AI】吴恩达斯坦福机器学习中文笔记汇总
  2. 动态规划之 0-1背包问题及改进
  3. Dataset:数据集集合(NLP方向数据集)——常见的自然语言处理数据集大集合(建议收藏,持续更新)
  4. mysql 硬盘写入速度_MySQL存储写入速度慢分析
  5. java打星星_java实现星星图形的输出
  6. c# datagridview 相关操作。
  7. Dynamics CRM 开启图表的3D效果展示
  8. azure机器学习_我如何打造一款赢得2016 Azure机器学习奖的游戏
  9. 华为ac控制器web配置手册_AC+AP组建无线网络,解决路由器没地方放,不美观
  10. R 大数值型数据转换
  11. 怎么用计算机同步文件夹,DSynchronize同步电脑本地文件夹教程
  12. Axure RP9快捷键
  13. 树莓派python编程自学-基于树莓派的python GPIO编程-常用函数综合整理
  14. 详解统计套利交易系统模型
  15. window10 20H2安卓模拟器VT检测不到问题解决方法
  16. 使用office2007打开excel报错:不是有效的win32文件
  17. 【老姐学PHP】PHP框架lavarel之Artisan命令
  18. 生育登记服务制度啥意思?生育服务证和准生证一回事吗?生育那些事
  19. C#软件开发实例.私人订制自己的屏幕截图工具——放大镜的功能代码优化
  20. librosa | 系统实战(一 ~ 四)

热门文章

  1. 单多晶之争:光伏技术要靠市场检验
  2. 双机/RAC/Dataguard的区别【转】
  3. bash shell基础之三字符串测试及for循环
  4. 兰州大学第一届『飞马杯』程序设计竞赛 - ★★平形四边行★★(鸽巢原理+暴力)
  5. 牛客多校10 - Tournament(找规律)
  6. 牛客多校 - 1 or 2(一般图最大匹配)
  7. HDU - 6601 Keen On Everything But Triangle(主席树)
  8. CodeForces - 1332B Composite Coloring(数论+构造)
  9. 20000字节的包算大吗_20000的包和200的包区别,戳中了万千女人的内心!
  10. Web开发-Django视图层