共享模型之无锁

  • 1 问题提出
    • 为什么不安全
    • 解决思路-锁
    • 解决思路-无锁
  • 2 CAS 与 volatile
    • volatile
    • 为什么无锁效率高
    • CAS 的特点
  • 3 原子整数
  • 4 原子引用
    • 安全实现-使用 CAS
    • ABA 问题及解决
      • ABA 问题
        • AtomicStampedReference
      • AtomicMarkableReference
  • 5 原子数组
    • 不安全的数组
    • 安全的数组
  • 6 字段更新器
  • 7 原子累加器
    • 累加器性能比较
    • * 源码之 LongAdder
    • cas 锁
    • * 原理之伪共享
  • 8 Unsafe
    • 概述
    • Unsafe CAS 操作
  • 本章小结

1 问题提出

  有如下需求,保证 account.withdraw 取款方法的线程安全

Tips接口中是可以定义 static 方法或 default 方法的,静态方法必须要有实现。且这个静态方法只能用public修饰或不写。1.8 新特性

interface Account {// 获取余额Integer getBalance();// 取款void withdraw(Integer amount);/*** 方法内会启动 1000 个线程,每个线程做 -10 元 的操作* 如果初始余额为 10000 那么正确的结果应当是 0*/// 接口中是可以定义静态方法的,静态方法必须要有实现。且这个静态方法只能用public修饰或不写。1.8 新特性static void demo(Account account) {List<Thread> ts = new ArrayList<>();long start = System.nanoTime();for (int i = 0; i < 1000; i++) {ts.add(new Thread(() -> {account.withdraw(10);}));}ts.forEach(Thread::start);ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});long end = System.nanoTime();System.out.println(account.getBalance()+ " cost: " + (end-start)/1000_000 + " ms");}
}

原有实现并不是线程安全的

class AccountUnsafe implements Account {private Integer balance;public AccountUnsafe(Integer balance) {this.balance = balance;}@Overridepublic Integer getBalance() {return balance;}@Overridepublic void withdraw(Integer amount) {balance -= amount;}
}

执行测试代码

public static void main(String[] args) {Account.demo(new AccountUnsafe(10000));
}

某次的执行结果

330 cost: 306 ms

为什么不安全

withdraw 方法

public void withdraw(Integer amount) {balance -= amount;
}

对应的字节码

ALOAD 0 // <- this
ALOAD 0
GETFIELD cn/itcast/AccountUnsafe.balance : Ljava/lang/Integer; // <- this.balance
INVOKEVIRTUAL java/lang/Integer.intValue ()I // 拆箱
ALOAD 1 // <- amount
INVOKEVIRTUAL java/lang/Integer.intValue ()I // 拆箱
ISUB // 减法
INVOKESTATIC java/lang/Integer.valueOf (I)Ljava/lang/Integer; // 结果装箱
PUTFIELD cn/itcast/AccountUnsafe.balance : Ljava/lang/Integer; // -> this.balance

多线程执行流程

ALOAD 0 // thread-0 <- this
ALOAD 0
GETFIELD cn/itcast/AccountUnsafe.balance // thread-0 <- this.balance
INVOKEVIRTUAL java/lang/Integer.intValue // thread-0 拆箱
ALOAD 1 // thread-0 <- amount
INVOKEVIRTUAL java/lang/Integer.intValue // thread-0 拆箱
ISUB // thread-0 减法
INVOKESTATIC java/lang/Integer.valueOf // thread-0 结果装箱
PUTFIELD cn/itcast/AccountUnsafe.balance // thread-0 -> this.balanceALOAD 0 // thread-1 <- this
ALOAD 0
GETFIELD cn/itcast/AccountUnsafe.balance // thread-1 <- this.balance
INVOKEVIRTUAL java/lang/Integer.intValue // thread-1 拆箱
ALOAD 1 // thread-1 <- amount
INVOKEVIRTUAL java/lang/Integer.intValue // thread-1 拆箱
ISUB // thread-1 减法
INVOKESTATIC java/lang/Integer.valueOf // thread-1 结果装箱
PUTFIELD cn/itcast/AccountUnsafe.balance // thread-1 -> this.balance
  • 单核的指令交错
  • 多核的指令交错

解决思路-锁

  首先想到的是给 Account 对象加锁

class AccountUnsafe implements Account {private Integer balance;public AccountUnsafe(Integer balance) {this.balance = balance;}@Overridepublic synchronized Integer getBalance() {return balance;}@Overridepublic synchronized void withdraw(Integer amount) {balance -= amount;}
}

结果为

0 cost: 399 ms

解决思路-无锁

class AccountSafe implements Account {private AtomicInteger balance;public AccountSafe(Integer balance) {this.balance = new AtomicInteger(balance);}@Overridepublic Integer getBalance() {return balance.get();}@Overridepublic void withdraw(Integer amount) {while (true) {int prev = balance.get();int next = prev - amount;if (balance.compareAndSet(prev, next)) {break;}}// 可以简化为下面的方法// balance.addAndGet(-1 * amount);}
}

执行测试代码

public static void main(String[] args) {Account.demo(new AccountSafe(10000));
}

某次的执行结果

0 cost: 302 ms

2 CAS 与 volatile

  前面看到的 AtomicInteger 的解决方法,内部并没有用锁来保护共享变量的线程安全。那么它是如何实现的呢?

public void withdraw(Integer amount) {while(true) {// 需要不断尝试,直到成功为止while (true) {// 比如拿到了旧值 1000int prev = balance.get();// 在这个基础上 1000-10 = 990int next = prev - amount;/*compareAndSet 正是做这个检查,在 set 前,先比较 prev 与当前值- 不一致了,next 作废,返回 false 表示失败比如,别的线程已经做了减法,当前值已经被减成了 990那么本线程的这次 990 就作废了,进入 while 下次循环重试- 一致,以 next 设置为新值,返回 true 表示成功*/if (balance.compareAndSet(prev, next)) {break;}}}
}

  其中的关键是 compareAndSet,它的简称就是 CAS (也有 Compare And Swap 的说法),它必须是原子操作。

注意
  其实 CAS 的底层是 lock cmpxchg 指令(X86 架构),在单核 CPU 和多核 CPU 下都能够保证【比较-交换】的原子性。

  • 在多核状态下,某个核执行到带 lock 的指令时,CPU 会让总线锁住,当这个核把此指令执行完毕,再开启总线。这个过程中不会被线程的调度机制所打断,保证了多个线程对内存操作的准确性,是原子的。

volatile

  获取共享变量时,为了保证该变量的可见性,需要使用 volatile 修饰。

  它可以用来修饰成员变量和静态成员变量,他可以避免线程从自己的工作缓存中查找变量的值,必须到主存中获取它的值,线程操作 volatile 变量都是直接操作主存。即一个线程对 volatile 变量的修改,对另一个线程可见。

注意
volatile 仅仅保证了共享变量的可见性,让其它线程能够看到最新值,但不能解决指令交错问题(不能保证原子性)

  CAS 必须借助 volatile 才能读取到共享变量的最新值来实现【比较并交换】的效果

为什么无锁效率高

  • 无锁情况下,即使重试失败,线程始终在高速运行,没有停歇,而 synchronized 会让线程在没有获得锁的时候,发生上下文切换,进入阻塞。打个比喻
  • 线程就好像高速跑道上的赛车,高速运行时,速度超快,一旦发生上下文切换,就好比赛车要减速、熄火,等被唤醒又得重新打火、启动、加速… 恢复到高速运行,代价比较大
  • 但无锁情况下,因为线程要保持运行,需要额外 CPU 的支持,CPU 在这里就好比高速跑道,没有额外的跑道,线程想高速运行也无从谈起,虽然不会进入阻塞,但由于没有分到时间片,仍然会进入可运行状态,还是会导致上下文切换。

CAS 的特点

  结合 CAS 和 volatile 可以实现无锁并发,适用于线程数少、多核 CPU 的场景下。

  • CAS 是基于乐观锁的思想:最乐观的估计,不怕别的线程来修改共享变量,就算改了也没关系,我吃亏点再重试呗。
  • synchronized 是基于悲观锁的思想:最悲观的估计,得防着其它线程来修改共享变量,我上了锁你们都别想改,我改完了解开锁,你们才有机会。
  • CAS 体现的是无锁并发无阻塞并发,请仔细体会这两句话的意思
    • 因为没有使用 synchronized,所以线程不会陷入阻塞,这是效率提升的因素之一
    • 如果竞争激烈,可以想到重试必然频繁发生,反而效率会受影响

3 原子整数

J.U.C 并发包提供了:

  • AtomicBoolean
  • AtomicInteger
  • AtomicLong
    以 AtomicInteger 为例
AtomicInteger i = new AtomicInteger(0);// 获取并自增(i = 0, 结果 i = 1, 返回 0),类似于 i++
System.out.println(i.getAndIncrement());// 自增并获取(i = 1, 结果 i = 2, 返回 2),类似于 ++i
System.out.println(i.incrementAndGet());// 自减并获取(i = 2, 结果 i = 1, 返回 1),类似于 --i
System.out.println(i.decrementAndGet());// 获取并自减(i = 1, 结果 i = 0, 返回 1),类似于 i--
System.out.println(i.getAndDecrement());// 获取并加值(i = 0, 结果 i = 5, 返回 0)
System.out.println(i.getAndAdd(5));// 加值并获取(i = 5, 结果 i = 0, 返回 0)
System.out.println(i.addAndGet(-5));// 获取并更新(i = 0, p 为 i 的当前值, 结果 i = -2, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.getAndUpdate(p -> p - 2));// 更新并获取(i = -2, p 为 i 的当前值, 结果 i = 0, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.updateAndGet(p -> p + 2));// 获取并计算(i = 0, p 为 i 的当前值, x 为参数1, 结果 i = 10, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
// getAndUpdate 如果在 lambda 中引用了外部的局部变量,要保证该局部变量是 final 的
// getAndAccumulate 可以通过 参数1 来引用外部的局部变量,但因为其不在 lambda 中因此不必是 final
System.out.println(i.getAndAccumulate(10, (p, x) -> p + x));// 计算并获取(i = 10, p 为 i 的当前值, x 为参数1, 结果 i = 0, 返回 0)
// 其中函数中的操作能保证原子,但函数需要无副作用
System.out.println(i.accumulateAndGet(-10, (p, x) -> p + x));

4 原子引用

为什么需要原子引用类型?

  • AtomicReference
  • AtomicMarkableReference
  • AtomicStampedReference

有如下方法

public interface DecimalAccount {// 获取余额BigDecimal getBalance();// 取款void withdraw(BigDecimal amount);/*** 方法内会启动 1000 个线程,每个线程做 -10 元 的操作* 如果初始余额为 10000 那么正确的结果应当是 0*/static void demo(DecimalAccount account) {List<Thread> ts = new ArrayList<>();for (int i = 0; i < 1000; i++) {ts.add(new Thread(() -> {account.withdraw(BigDecimal.TEN);}));}ts.forEach(Thread::start);ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});System.out.println(account.getBalance());}
}

  试着提供不同的 DecimalAccount 实现,实现安全的取款操作

安全实现-使用 CAS

class DecimalAccountSafeCas implements DecimalAccount {AtomicReference<BigDecimal> ref;public DecimalAccountSafeCas(BigDecimal balance) {ref = new AtomicReference<>(balance);}@Overridepublic BigDecimal getBalance() {return ref.get();}@Overridepublic void withdraw(BigDecimal amount) {while (true) {BigDecimal prev = ref.get();BigDecimal next = prev.subtract(amount);if (ref.compareAndSet(prev, next)) {break;}}}
}

测试代码

DecimalAccount.demo(new DecimalAccountUnsafe(new BigDecimal("10000")));
DecimalAccount.demo(new DecimalAccountSafeLock(new BigDecimal("10000")));
DecimalAccount.demo(new DecimalAccountSafeCas(new BigDecimal("10000")));

运行结果

4310 cost: 425 ms
0 cost: 285 ms
0 cost: 274 ms

ABA 问题及解决

ABA 问题

static AtomicReference<String> ref = new AtomicReference<>("A");
public static void main(String[] args) throws InterruptedException {log.debug("main start...");// 获取值 A// 这个共享变量被它线程修改过?String prev = ref.get();other();sleep(1);// 尝试改为 Clog.debug("change A->C {}", ref.compareAndSet(prev, "C"));
}
private static void other() {new Thread(() -> {log.debug("change A->B {}", ref.compareAndSet(ref.get(), "B"));}, "t1").start();sleep(0.5);new Thread(() -> {log.debug("change B->A {}", ref.compareAndSet(ref.get(), "A"));}, "t2").start();
}

输出

11:29:52.325 c.Test36 [main] - main start...
11:29:52.379 c.Test36 [t1] - change A->B true
11:29:52.879 c.Test36 [t2] - change B->A true
11:29:53.880 c.Test36 [main] - change A->C true

  主线程仅能判断出共享变量的值与最初值 A 是否相同,不能感知到这种从 A 改为 B 又 改回 A 的情况,如果主线程希望:

  只要有其它线程【动过了】共享变量,那么自己的 cas 就算失败,这时,仅比较值是不够的,需要再加一个版本号

AtomicStampedReference
static AtomicStampedReference<String> ref = new AtomicStampedReference<>("A", 0);
public static void main(String[] args) throws InterruptedException {log.debug("main start...");// 获取值 AString prev = ref.getReference();// 获取版本号int stamp = ref.getStamp();log.debug("版本 {}", stamp);// 如果中间有其它线程干扰,发生了 ABA 现象other();sleep(1);// 尝试改为 Clog.debug("change A->C {}", ref.compareAndSet(prev, "C", stamp, stamp + 1));
}
private static void other() {new Thread(() -> {log.debug("change A->B {}", ref.compareAndSet(ref.getReference(), "B",ref.getStamp(), ref.getStamp() + 1));log.debug("更新版本为 {}", ref.getStamp());}, "t1").start();sleep(0.5);new Thread(() -> {log.debug("change B->A {}", ref.compareAndSet(ref.getReference(), "A",ref.getStamp(), ref.getStamp() + 1));log.debug("更新版本为 {}", ref.getStamp());}, "t2").start();
}

输出为

15:41:34.891 c.Test36 [main] - main start...
15:41:34.894 c.Test36 [main] - 版本 0
15:41:34.956 c.Test36 [t1] - change A->B true
15:41:34.956 c.Test36 [t1] - 更新版本为 1
15:41:35.457 c.Test36 [t2] - change B->A true
15:41:35.457 c.Test36 [t2] - 更新版本为 2
15:41:36.457 c.Test36 [main] - change A->C false

  AtomicStampedReference 可以给原子引用加上版本号,追踪原子引用整个的变化过程,如: A -> B -> A -> C ,通过AtomicStampedReference,我们可以知道,引用变量中途被更改了几次。

  但是有时候,并不关心引用变量更改了几次,只是单纯的关心是否更改过,所以就有了 AtomicMarkableReference

AtomicMarkableReference

class GarbageBag {String desc;public GarbageBag(String desc) {this.desc = desc;}public void setDesc(String desc) {this.desc = desc;}@Overridepublic String toString() {return super.toString() + " " + desc;}
}
@Slf4j
public class TestABAAtomicMarkableReference {public static void main(String[] args) throws InterruptedException {GarbageBag bag = new GarbageBag("装满了垃圾");// 参数2 mark 可以看作一个标记,表示垃圾袋满了AtomicMarkableReference<GarbageBag> ref = new AtomicMarkableReference<>(bag, true);log.debug("主线程 start...");GarbageBag prev = ref.getReference();log.debug(prev.toString());new Thread(() -> {log.debug("打扫卫生的线程 start...");bag.setDesc("空垃圾袋");while (!ref.compareAndSet(bag, bag, true, false)) {}log.debug(bag.toString());}).start();Thread.sleep(1000);log.debug("主线程想换一只新垃圾袋?");boolean success = ref.compareAndSet(prev, new GarbageBag("空垃圾袋"), true, false);log.debug("换了么?" + success);log.debug(ref.getReference().toString());}
}

输出

15:30:09.264 [main] 主线程 start...
15:30:09.270 [main] cn.itcast.GarbageBag@5f0fd5a0 装满了垃圾
15:30:09.293 [Thread-1] 打扫卫生的线程 start...
15:30:09.294 [Thread-1] cn.itcast.GarbageBag@5f0fd5a0 空垃圾袋
15:30:10.294 [main] 主线程想换一只新垃圾袋?
15:30:10.294 [main] 换了么?false
15:30:10.294 [main] cn.itcast.GarbageBag@5f0fd5a0 空垃圾袋

可以注释掉打扫卫生线程代码,再观察输出

5 原子数组

  • AtomicIntegerArray
  • AtomicLongArray
  • AtomicReferenceArray
    有如下方法
/**
参数1,提供数组、可以是线程不安全数组或线程安全数组
参数2,获取数组长度的方法
参数3,自增方法,回传 array, index
参数4,打印数组的方法
*/
// Supplier 提供者 无中生有 ()->结果
// Function 函数 一个参数一个结果 (参数)->结果 , 两个参数一个结果BiFunction (参数1,参数2)->结果
// Consumer 消费者 一个参数没结果 (参数)->void, BiConsumer (参数1,参数2)->
private static <T> void demo( Supplier<T> arraySupplier,Function<T, Integer> lengthFun,BiConsumer<T, Integer> putConsumer,Consumer<T> printConsumer ) {List<Thread> ts = new ArrayList<>();T array = arraySupplier.get();int length = lengthFun.apply(array);for (int i = 0; i < length; i++) {// 每个线程对数组作 10000 次操作ts.add(new Thread(() -> {for (int j = 0; j < 10000; j++) {putConsumer.accept(array, j%length);//防止越界}}));}ts.forEach(t -> t.start()); // 启动所有线程ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}}); // 等所有线程结束printConsumer.accept(array);
}

不安全的数组

demo(()->new int[10],(array)->array.length,(array, index) -> array[index]++,array-> System.out.println(Arrays.toString(array))
);

结果

[9870, 9862, 9774, 9697, 9683, 9678, 9679, 9668, 9680, 9698]

安全的数组

demo(()-> new AtomicIntegerArray(10),(array) -> array.length(),(array, index) -> array.getAndIncrement(index),array -> System.out.println(array)
);

结果

[10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000]

6 字段更新器

  • AtomicReferenceFieldUpdater // 域 字段
  • AtomicIntegerFieldUpdater
  • AtomicLongFieldUpdater

  利用字段更新器,可以针对对象的某个域(Field)进行原子操作,只能配合 volatile 修饰的字段使用,否则会出现异常并且 Field 不能使用 private 修饰

Exception in thread "main" java.lang.IllegalArgumentException: Must be volatile type
public class NewThread {public static void main(String[] args) {Message msg = new Message("Hello");AtomicReferenceFieldUpdater updater =AtomicReferenceFieldUpdater.newUpdater(cn.zyj.capture4.Message.class,java.lang.String.class,"info");updater.compareAndSet(msg,"Hello","World");System.out.println(msg);}
}class Message {volatile String info;public Message(String info) {this.info = info;}@Overridepublic String toString() {return "Student{" +"info='" + info + '\'' +'}';}
}

输出

Student{info='World'}

7 原子累加器

累加器性能比较

private static <T> void demo(Supplier<T> adderSupplier, Consumer<T> action) {T adder = adderSupplier.get();long start = System.nanoTime();List<Thread> ts = new ArrayList<>();// 4 个线程,每人累加 50 万for (int i = 0; i < 40; i++) {ts.add(new Thread(() -> {for (int j = 0; j < 500000; j++) {action.accept(adder);}}));}ts.forEach(t -> t.start());ts.forEach(t -> {try {t.join();} catch (InterruptedException e) {e.printStackTrace();}});long end = System.nanoTime();System.out.println(adder + " cost:" + (end - start)/1000_000);
}

比较 AtomicLong 与 LongAdder

for (int i = 0; i < 5; i++) {demo(() -> new LongAdder(), adder -> adder.increment());
}
for (int i = 0; i < 5; i++) {demo(() -> new AtomicLong(), adder -> adder.getAndIncrement());
}

输出

1000000 cost:43
1000000 cost:9
1000000 cost:7
1000000 cost:7
1000000 cost:71000000 cost:31
1000000 cost:27
1000000 cost:28
1000000 cost:24
1000000 cost:22

  性能提升的原因很简单,就是在有竞争时,设置多个累加单元,Therad-0 累加 Cell[0],而 Thread-1 累加 Cell[1]… 最后将结果汇总。这样它们在累加时操作的不同的 Cell 变量,因此减少了 CAS 重试失败,从而提高性能

* 源码之 LongAdder

  LongAdder 是并发大师 @author Doug Lea (大哥李)的作品,设计的非常精巧
  LongAdder 类有几个关键域

// 累加单元数组, 懒惰初始化
transient volatile Cell[] cells;// 基础值, 如果没有竞争, 则用 cas 累加这个域
transient volatile long base;// 在 cells 创建或扩容时, 置为 1, 表示加锁
transient volatile int cellsBusy;

cas 锁

// 不要用于实践!!!
public class LockCas {private AtomicInteger state = new AtomicInteger(0);public void lock() {while (true) {if (state.compareAndSet(0, 1)) {break;}}}public void unlock() {log.debug("unlock...");state.set(0);}
}

测试

LockCas lock = new LockCas();
new Thread(() -> {log.debug("begin...");lock.lock();try {log.debug("lock...");sleep(1);} finally {lock.unlock();}
}).start();
new Thread(() -> {log.debug("begin...");lock.lock();try {log.debug("lock...");} finally {lock.unlock();}
}).start();

输出

18:27:07.198 c.Test42 [Thread-0] - begin...
18:27:07.202 c.Test42 [Thread-0] - lock...
18:27:07.198 c.Test42 [Thread-1] - begin...
18:27:08.204 c.Test42 [Thread-0] - unlock...
18:27:08.204 c.Test42 [Thread-1] - lock...
18:27:08.204 c.Test42 [Thread-1] - unlock...

* 原理之伪共享

其中 Cell 即为累加单元

// 防止缓存行伪共享
@sun.misc.Contended//Contended 竞争
static final class Cell {volatile long value;Cell(long x) { value = x; }// 最重要的方法, 用来 cas 方式进行累加, prev 表示旧值, next 表示新值final boolean cas(long prev, long next) {return UNSAFE.compareAndSwapLong(this, valueOffset, prev, next);}// 省略不重要代码
}

得从缓存说起
缓存与内存的速度比较

从 cpu 到 大约需要的时钟周期
寄存器 1 cycle (4GHz 的 CPU 约为 0.25 ns)
L1 3~4 cycle
L2 10~20 cycle
L3 40~45 cycle
内存 120~240 cycle

  因为 CPU 与 内存的速度差异很大,需要靠预读数据至缓存来提升效率。

  而缓存以缓存行为单位,每个缓存行对应着一块内存,一般是 64 byte(8 个 long)

  缓存的加入会造成数据副本的产生,即同一份数据会缓存在不同核心的缓存行中

  CPU 要保证数据的一致性,如果某个 CPU 核心更改了数据,其它 CPU 核心对应的整个缓存行必须失效

  因为 Cell 是数组形式,在内存中是连续存储的,一个 Cell 为 24 字节(16 字节的对象头和 8 字节的 value),因
此缓存行可以存下 2 个的 Cell 对象。这样问题来了:

  • Core-0 要修改 Cell[0]
  • Core-1 要修改 Cell[1]

  无论谁修改成功,都会导致对方 Core 的缓存行失效,比如 Core-0 中 Cell[0]=6000, Cell[1]=8000 要累加 Cell[0]=6001, Cell[1]=8000 ,这时会让 Core-1 的缓存行失效

  @sun.misc.Contended 用来解决这个问题,它的原理是在使用此注解的对象或字段的前后各增加 128 字节大小的 padding,从而让 CPU 将对象预读至缓存时占用不同的缓存行,这样,不会造成对方缓存行的失效

累加主要调用下面的方法

add 流程图

final void longAccumulate(long x, LongBinaryOperator fn,boolean wasUncontended) {int h;// 当前线程还没有对应的 cell, 需要随机生成一个 h 值用来将当前线程绑定到 cellif ((h = getProbe()) == 0) {// 初始化 probeThreadLocalRandom.current();// h 对应新的 probe 值, 用来对应 cellh = getProbe();wasUncontended = true;}// collide 为 true 表示需要扩容boolean collide = false;for (;;) {Cell[] as; Cell a; int n; long v;// 已经有了 cellsif ((as = cells) != null && (n = as.length) > 0) {// 还没有 cellif ((a = as[(n - 1) & h]) == null) {// 为 cellsBusy 加锁, 创建 cell, cell 的初始累加值为 x// 成功则 break, 否则继续 continue 循环}// 有竞争, 改变线程对应的 cell 来重试 caselse if (!wasUncontended)wasUncontended = true;// cas 尝试累加, fn 配合 LongAccumulator 不为 null, 配合 LongAdder 为 nullelse if (a.cas(v = a.value, ((fn == null) ? v + x : fn.applyAsLong(v, x))))break;// 如果 cells 长度已经超过了最大长度, 或者已经扩容, 改变线程对应的 cell 来重试 caselse if (n >= NCPU || cells != as)collide = false;// 确保 collide 为 false 进入此分支, 就不会进入下面的 else if 进行扩容了else if (!collide)collide = true;// 加锁else if (cellsBusy == 0 && casCellsBusy()) {// 加锁成功, 扩容continue;}// 改变线程对应的 cellh = advanceProbe(h);}// 还没有 cells, 尝试给 cellsBusy 加锁else if (cellsBusy == 0 && cells == as && casCellsBusy()) {// 加锁成功, 初始化 cells, 最开始长度为 2, 并填充一个 cell// 成功则 break;}// 上两种情况失败, 尝试给 base 累加else if (casBase(v = base, ((fn == null) ? v + x : fn.applyAsLong(v, x))))break;}
}

longAccumulate 流程图


  每个线程刚进入 longAccumulate 时,会尝试对应一个 cell 对象(找到一个坑位)

获取最终结果通过 sum 方法

public long sum() {Cell[] as = cells; Cell a;long sum = base;if (as != null) {for (int i = 0; i < as.length; ++i) {if ((a = as[i]) != null)sum += a.value;}}return sum;
}

8 Unsafe

概述

  Unsafe 对象提供了非常底层的,操作内存、线程的方法,Unsafe 对象不能直接调用,只能通过反射获得

public class UnsafeAccessor {static Unsafe unsafe;static {try {Field theUnsafe = Unsafe.class.getDeclaredField("theUnsafe");theUnsafe.setAccessible(true);unsafe = (Unsafe) theUnsafe.get(null);} catch (NoSuchFieldException | IllegalAccessException e) {throw new Error(e);}}static Unsafe getUnsafe() {return unsafe;}
}

Unsafe CAS 操作

@Data
class Student {volatile int id;volatile String name;
}
nsafe unsafe = UnsafeAccessor.getUnsafe();
Field id = Student.class.getDeclaredField("id");
Field name = Student.class.getDeclaredField("name");
// 获得成员变量的偏移量
long idOffset = UnsafeAccessor.unsafe.objectFieldOffset(id);
long nameOffset = UnsafeAccessor.unsafe.objectFieldOffset(name);Student student = new Student();
// 使用 cas 方法替换成员变量的值
UnsafeAccessor.unsafe.compareAndSwapInt(student, idOffset, 0, 20); // 返回 true
UnsafeAccessor.unsafe.compareAndSwapObject(student, nameOffset, null, "张三"); // 返回 trueSystem.out.println(student);

输出

Student(id=20, name=张三)

  使用自定义的 AtomicData 实现之前线程安全的原子整数 Account 实现

class AtomicData {private volatile int data;static final Unsafe unsafe;static final long DATA_OFFSET;static {unsafe = UnsafeAccessor.getUnsafe();try {// data 属性在 DataContainer 对象中的偏移量,用于 Unsafe 直接访问该属性DATA_OFFSET = unsafe.objectFieldOffset(AtomicData.class.getDeclaredField("data"));} catch (NoSuchFieldException e) {throw new Error(e);}}public AtomicData(int data) {this.data = data;}public void decrease(int amount) {int oldValue;while(true) {// 获取共享变量旧值,可以在这一行加入断点,修改 data 调试来加深理解oldValue = data;// cas 尝试修改 data 为 旧值 + amount,如果期间旧值被别的线程改了,返回 falseif (unsafe.compareAndSwapInt(this, DATA_OFFSET, oldValue, oldValue - amount)) {return;}}}public int getData() {return data;}
}

Account 实现

Account.demo(new Account() {AtomicData atomicData = new AtomicData(10000);@Overridepublic Integer getBalance() {return atomicData.getData();}@Overridepublic void withdraw(Integer amount) {atomicData.decrease(amount);}
});

本章小结

  • CAS 与 volatile
  • API
    • 原子整数
    • 原子引用
    • 原子数组
    • 字段更新器
    • 原子累加器
  • Unsafe
  • * 原理方面
    • LongAdder 源码
    • 伪共享

4.JUC-共享模型之无锁相关推荐

  1. JUC并发编程共享模型之无锁(五)

    5.1 问题引出 public interface Account {// 获取余额Integer getBalance();void withdraw(Integer amount);/*** 方法 ...

  2. 【共享内存】基于共享内存的无锁消息队列设计

    上交所技术服务 2018-09-05 https://mp.weixin.qq.com/s/RqHsX3NIZ4_BS8O30KWYhQ 目录 一.背景 二.消息队列的应用需求 (一)  通信架构的升 ...

  3. JUC共享模型之管程阶段四

    4.6 wait和notify 建议先看看wait和notify方法的javadoc文档 API 介绍 obj.wait() 让进入 object 监视器的线程到 waitSet 等待 obj.not ...

  4. 学习笔记:Java 并发编程④_无锁

    若文章内容或图片失效,请留言反馈. 部分素材来自网络,若不小心影响到您的利益,请联系博主删除. 视频链接:https://www.bilibili.com/video/av81461839 配套资料: ...

  5. 【C++】多线程与原子操作和无锁编程【五】

    [C++]多线程与原子操作和无锁编程[五] 1.何为原子操作 前面介绍了多线程间是通过互斥锁与条件变量来保证共享数据的同步的,互斥锁主要是针对过程加锁来实现对共享资源的排他性访问.很多时候,对共享资源 ...

  6. DPDK无锁队列rte_ring相关代码及示例程序(rte_ring.h,rte_ring.c,main.c,makefile)

    目录 rte_ring.h rte_ring.c main.c makefile 推荐阅读: [共享内存]基于共享内存的无锁消息队列设计:https://rtoax.blog.csdn.net/art ...

  7. JUC笔记-共享模型之管程 (Monitor)

    JUC-共享模型之管程( Monitor) 一.线程安全问题(重点) 1.1 同步 1.2 线程出现问题的根本原因分析 1.3 synchronized 解决方案 1.3.1 同步代码块 1.3.2 ...

  8. 并发编程JUC深度学习(七)无锁(乐观锁)

    前言 乐观锁总是假设最好的情况,每次去拿数据的时候都认为数据不会被修改,所以不会上锁,只是在更新的时候会判断一下在这期间别人有没有去更新这个数据,主要是由版本号机制和CAS算法实现,这里我们主要介绍C ...

  9. 完善博文 共享内存一写多读无锁实现的代码逻辑部分

    使用共享内存(内存映射)实现发布订阅模式 多进程实现PubSub发布订阅模式,从而实现进程间的通信. 通信方式可以是TCP/UDP,管道Pipe/消息队列,共享内存shared memory等等.其中 ...

  10. 【重难点】【JUC 04】synchronized 原理、ReentrantLock 原理、synchronized 和 Lock 的对比、CAS 无锁原理

    [重难点][JUC 04]synchronized 原理.ReentrantLock 原理.synchronized 和 Lock 的对比.CAS 无锁原理 文章目录 [重难点][JUC 04]syn ...

最新文章

  1. iOS 导航色差问题解决方案
  2. nodejs模块加载分析(1).md
  3. ST-Link VCP Ctrl驱动安装失败解决(win7 64bits)
  4. Flink从入门到精通100篇(二十二)-Apache Flink OLAP引擎性能优化及应用
  5. intel i218v千兆网卡 linux驱动,适用于英特尔® 千兆位以太网网络连接的 Linux* 基础驱动程序...
  6. javascript 小结
  7. Oracle/PLSQL FOR Loop
  8. TokenInsight:BTC波动率处于近3年高位,人气小幅回落
  9. Linux后台进程(和jobs、bg、fg)
  10. 图像处理中的直方图与均衡化
  11. G002-186-17
  12. 中国省份名称的映射字典
  13. led背光源工作的条件及结构
  14. java 数独算法_Java:递归数独解法计数算法
  15. conda 配置R虚拟环境并安装 monocle 包
  16. Nginx反向代理后无法获取header带下划线的头信息
  17. 大数据时代最全的医学公共数据库合集整理
  18. 读书心得-《OKR工作法:谷歌、领英等顶级公司的高绩效秘籍》
  19. 这样Review代码牛逼啦!
  20. ubuntu16.04安装ros kinetic及遇到的问题

热门文章

  1. Unity3D最全性能优化参考手册(渲染、代码、UI)
  2. 常用正交表(可直接复制)以及混合正交表的使用
  3. RTSP视频流直播实现(海康)
  4. 【python路上小记】匹配11位电话正则表达式
  5. 如何下载网页中的flash SWF文件
  6. 微计算机原理与接口电子科技大学,西安电子科技大学考研复试微机原理与接口技术...
  7. 最大功率点跟踪测试软件,最大功率点跟踪(MPPT)
  8. 软件开发文档编写规范
  9. wincc中c语言做变量自增,在WinCC中如何利用C动作实现变量自动加1-工业支持中心-西门子中国...
  10. php 清理脚本病毒,Autorun 病毒清除工具bat代码