公开的主题一般涉及电信,更特别地涉及下一代移动无线通信系统中的srs资源的高效指示。

背景技术:

下一代移动无线通信系统(5g或nr)将支持各种用例集合和各种部署场景集合。后者包括在低频(数百mhz)(与如今的lte类似)和甚高频(数十ghz的毫米波)两者处的部署。在高频处,传播特性使得实现良好的覆盖具有挑战性。对于覆盖问题的一个解决方案是通常以模拟方式采用高增益波束成形,以便实现满意的链路预算。波束成形也将在较低频率处使用(通常是数字波束成形),并且预期在本质上类似于已经标准化的3gpplte系统(4g)。

此外,预期大部分的未来nr网络将被部署用于tdd。tdd(与fdd相比)的一个益处在于,tdd实现基于互易性的波束成形,其可在trp(即,对于dl)和ue(即,对于ul)两者处应用。对于基于互易性的dl传输,预期ue将传送探测参考信号(srs),trp将使用srs来估计trp和ue之间的信道。然后,将在trp处使用信道估计来例如通过使用本征波束成形(eigenbeamforming)来为即将到来的dl传输找到最佳的预编码权重。以类似的方式,预期将使用csi-rs作为基于互易性的ul传输的探测信号。已经在nr中同意了trp可在确定ul预编码时对ue可使用的先前传送的dl参考信号(例如,csi-rs)指示准共置(qcl)假设。

基于码本的预编码

多天线技术可显著增加无线通信系统的数据速率和可靠性。如果传送器和接收器两者配备有多个天线,由此得到多输入多输出(mimo)通信信道,则特别改进性能。此类系统和/或相关技术通常称为mimo。

目前正在规定nr标准。nr中的核心组成是支持mimo天线部署和mimo相关技术。预期nr将支持下述上行链路mimo:其利用信道相关预编码,具有使用至少4个天线端口的至少4层空间复用。空间复用模式针对有利信道状况中的高数据速率。图4中提供对于在上行链路上使用cp-ofdm的情况的空间复用操作的图示。

可见,将携带符号向量s的信息乘以nt×r预编码矩阵w,由此用来将发射能量分布在nt(对应于nt个天线端口)维向量空间的子空间中。预编码器矩阵通常选自可能的预编码器矩阵的码本,并且通常借助于预编码器矩阵指示符(pmi)来指示,pmi为给定数量的符号流在码本中指定唯一的预编码器矩阵。s中的r个符号各自对应于一层,并且r称为传输秩。以此方式,实现了实现空间复用,因为可在相同时间/频率资源元素(tfre)上同时传送多个符号。符号r的数量通常适合于与当前的信道特性相称。

lte和nr在下行链路中使用ofdm,并且因此通过下式,从而针对子载波n(或备选地为数据tfre编号n)上的某个tfre的所接收的nr×1向量yn进行建模:

yn=hnwsn+en

其中en是作为随机过程的实现获得的噪声/干扰向量。由预编码器矩阵w实现的预编码器可以是宽带预编码器,其在频率上恒定或具有频率选择性。

通常选择预编码器矩阵以便与nr×ntmimo信道矩阵hn的特性匹配,从而得出所谓的信道相关预编码。这通常又称为闭环预编码,并且实质上力求将发射能量集中到在将大部分发射能量传达给ue的意义上较强的子空间中。另外,还可选择预编码器矩阵以力求使信道正交化,这意味着在ue处进行适当的线性均衡之后,减少层间干扰。

ue选择预编码器矩阵w的一个示例方法可以是选择使假设的等效信道的frobenius范数最大化的wk:

其中:

是信道估计,其可能从csi-rs中导出,如下面进一步描述的那样,

wk是具有索引k的假设的预编码器矩阵,并且

是假设的等效信道。

在nr上行链路的闭环预编码中,trp基于反向链路(上行链路)中的信道测量,将tpmi传送到ue,ue应当在它的上行链路天线上使用该tpmi。gnodeb将ue配置成根据希望ue对上行链路传输使用的ue天线的数量来传送srs,以实现信道测量。可发信号通知应该覆盖大带宽(宽带预编码)的单个预编码器。也可能有益的是与信道的频率变化匹配,并且改为反馈频率选择性预编码报告,例如若干预编码器和/或若干tpmi,每个子带一个。

一般使用tpmi以外的其它信息来确定ulmimo传输状态,其他信息诸如srs资源指示符(sri)以及传输秩指示符(tri)。这些参数以及调制和编码状态(mcs)和要传送pusch的上行链路资源也由从来自ue的srs传输导出的信道测量确定。在预编码器w的列数中反映传输秩以及因此空间复用层的数量。为了获得高效的性能,重要的是选择与信道特性匹配的传输秩。

基于非码本的ul传输

除了基于码本的ul传输之外,已经同意了nr将支持基于非码本的传输模式,其在tx/rx互易性在ue处成立时适用。如前所述,在基于码本的模式中,ue通常传送非预编码的srs来探测上行链路信道,并且gnb基于srs信道估计从码本中确定优选的预编码器,并指引ue借助于ul准予中包括的tpmi在pusch传输上应用所述预编码器。

然而,对于基于非码本的ul传输,ue自己确定一个或多个预编码器候选,并使用所述预编码器候选对一个或多个srs资源中的一个或多个srs预编码。gnb对应地确定一个或多个优选的srs资源,并指引ue使用(一个或多个)预编码器,其应用于对所述一个或多个优选的srs资源预编码,还应用于pusch传输。可以采取包括在携带ul准予的dci中的一个或多个sri的形式发信号通知该指引,但是备选地或另外地,该指引可包括tri信令。

为了使ue确定ul预编码器候选,它需要测量诸如csi-rs之类的dl参考信号,以便获得dl信道估计。基于该dl信道估计,并且假设tx/rx互易性成立,ue可将dl信道估计转换为ul信道估计,并使用ul信道估计例如通过执行ul信道估计的奇异值分解(svd)或通过其它既定的预编码器确定方法来确定ul预编码器候选的集合。通常,gnb会隐式或显式地为ue配置哪个csi-rs资源它可用于帮助预编码器候选确定。在针对nr的一些提议中,这通过指示某个csi-rs资源与ue调度用于ul探测的(一个或多个)srs资源互易地空间准共置(例如,作为rrc配置的一部分)来进行。

srs传输设置

需要从trp向ue发信号通知应当如何进行srs传输,例如使用哪个srs资源、每个srs资源的端口的数量等。(以低开销方式)解决这个问题的一种方式是使用较高层信令(例如,rrc)来预先定义“srs传输设置”的集合,然后在dci中指示ue应当应用哪个“srs传输设置”。例如,“srs传输设置”可包含关于在即将到来的srs传输中ue应当使用哪些srs资源和哪些srs端口的信息。

对于nr究竟如何配置和触发srs传输仍在讨论中,图24中给出了对定义srs相关参数的3gpp技术规范38.331的文本提议。

如图24所示,使用srs-configie来配置探测参考信号传输。该配置定义了srs-资源的列表和srs-资源集的列表。每个资源集定义srs-资源集合。网络使用配置的非周期性srs-资源触发(其在物理层下行链路控制信息‘l1dci’中携带)来触发该srs-资源集合的传输。

因此,利用iesrs-config来进行“srs传输设置”的rrc配置,iesrs-config包含srs-资源的列表(该列表构成资源“池”),其中每个srs资源包含参考信号在时间-频率网格上的物理映射的信息、时域信息、序列id等。srs-config还包含srs资源集的列表,该列表包含srs资源的列表和相关联的dci触发状态。因此,当触发某个dci状态时,它指示ue应当传送相关联的集合中的srs资源。

ul波束管理

ul波束管理(即,基于ul参考信号的波束管理)的概念目前正在开发中,以便使nr控制相应ue面板的波束(或更准确地说是有效天线模式)。预期通过让ue在不同的ue面板波束中传送不同的srs资源来执行ul波束管理,trp对这些srs资源执行rsrp测量,并发回信号通知与具有(一个或多个)最高rsrp值的(一个或多个)srs资源对应的(一个或多个)sri。如果多面板ue被调度进行来自多个面板中的每个面板的多个波束的srs传输,则trp和ue需要对可从不同的面板同时传送srs资源的哪些组合具有相互协定。否则,trp可能选择不能同时传送的srs资源,诸如当srs资源对应于相同面板中的不同的切换模拟波束时的srs资源。以下对来自ran1#90的用于发信号通知多个sri的协定的注释(如下)解决了这个问题,但是没有对它应如何进行做出结论。注释:gnb应当仅发信号通知(一个或多个)sri,使得ue可同时进行从发信号通知的(一个或多个)sri中推断的ul预编码传输。

技术实现要素:

为了解决现有方法的上述问题,公开了一种标识要在无线装置进行的传输中使用的参考信号资源的方法。该方法包括:无线装置或ue接收为无线装置配置多个参考信号资源组的信令,每个组包括多个参考信号资源。无线装置随后在控制信道(例如,pdcch)中接收要使用的参考信号资源的选择的指示。要使用的所述多个参考信号资源中的每个选自所述多个参考信号资源组中的不同参考信号资源组参考信号资源使得属于同一参考信号资源组的参考信号资源不被选择用于同时使用。然后,使用参考信号资源的所指示的选择将参考信号传送到网络中的网络节点。

在某些实施例中,参考信号资源是探测参考信号(srs)资源,并且传送的参考信号是srs。此外,在某些实施例中,出于波束管理的目的传送参考信号。无线装置可包括多个天线面板,其中所述多个参考信号资源组中的每个对应于天线面板中的不同天线面板。

在某些实施例中,要使用的多个参考信号资源的指示包括位字段,位字段的长度取决于无线装置配置成传送的mimo层的最大数量以及参考信号资源组中的对应参考信号资源组中的参考信号资源的数量。例如,位字段的长度可足以指示srs资源的s个组合,其中以及其中lmax是无线装置配置成传送的mimo层的最大数量,并且n是第一参考信号资源组中的资源的数量。

在另一个实施例中,用于标识要在由无线装置进行的传输中使用的多个srs资源的方法包括:接收为无线装置配置多个srs资源的信令;在物理层下行链路控制信道中接收要使用的srs资源的指示;以及根据该指示从所述多个srs资源中确定应当在传输中使用的至少第一和第二srs资源。在该实施例中,允许第一和第二srs资源是所述多个srs资源中的任何srs资源,但是第一和第二srs资源相同的情况除外。然后,无线装置可传送以下中的至少一个:由第一和第二srs资源标识的srs,以及分别映射到第一和第二srs资源的第一和第二mimo层。

在某些实施例中,确定至少第一和第二srs资源包括分别通过第一和第二索引从所述多个srs资源中标识第一和第二srs资源。此外,第一和第二索引进一步指示要将第一和第二srs资源映射到第一和第二mimo层的顺序。例如,第一和第二mimo层可按质量进行排序使得第一mimo层具有比第二mimo层更高的质量,并且通过第一和第二索引中的较低索引使第一mimo层被映射到(或者备选地,将第一mimo层映射到第一和第二索引中的较高索引)。

在某些实施例中,无线装置使用表来确定第一和第二srs资源。该表对于srs资源的组合的每个可能的排序仅包括一个条目,从而限制可选择的srs资源组合的总数。

还公开了一种用于配置和指示无线装置中的参考信号传输设置的使用的方法,所述无线装置在无线通信网络中可操作。该方法可由诸如基站的网络节点实现。该方法包括传送为无线装置配置多个参考信号资源组的信令,每个组包括多个参考信号资源(例如,srs资源)。该方法进一步包括在控制信道中传送要使用的参考信号资源的选择的指示,其中网络节点要使用的所述多个参考信号资源中的每个选自所述多个参考信号资源组中的不同参考信号资源组使得属于同一参考信号资源组的参考信号资源不被选择用于同时使用。该方法进一步包括从使用参考信号资源的所指示的选择的无线装置接收参考信号(例如,srs)。

还公开了一种包括处理电路的无线装置,所述处理电路配置成执行上述实施例中的任一个实施例的步骤。

根据另一个实施例,网络节点(例如,基站)实现下述方法:该方法包括传送为无线装置配置多个srs资源的信令。该方法进一步包括在物理层下行链路控制信道中传送要在传输中使用的srs资源的指示,srs资源包括所述多个srs资源中的至少第一和第二srs资源。允许第一和第二srs资源是所述多个srs资源中的任何srs资源,但是第一和第二srs资源相同的情况除外。该方法进一步包括接收以下中的至少一个:由第一和第二srs资源标识的srs,以及分别映射到第一和第二srs资源的第一和第二mimo层。

还公开一种包括处理电路的无线装置,所述处理电路配置成执行上述实施例中的任一个实施例的步骤。

还公开一种包括处理电路的网络节点,所述处理电路配置成执行网络节点中实现的上述方法中的任何一个方法的步骤。

上述实施例的技术优势包括减少了可能的参考信号资源指示符状态的数量,并且因此基于传输点(例如,网络节点或基站)不能同时选择属于同一参考信号资源组的参考信号资源的事实,减少了信令开销。

可在例如执行ul波束管理的多面板ue中和/或在使用基于非码本的ulmimo传输时实现参考信号资源指示符信令的减少的下行链路控制信道开销。一些实施例进一步允许将srs资源灵活地映射到mimo层,以便控制这些层的质量。其它实施例减少了将srs资源映射到mimo层的灵活性,同时使用较少的下行链路控制通道开销。

附图说明

附图说明公开的主题的所选实施例。在附图中,类似的参考标记表示类似的特征。

图1是示出无线通信网络的图。

图2是示出无线通信装置的图。

图3是示出无线电接入节点的图。

图4是空间复用操作的功能框图。

图5是具有两个面板和对应的srs资源组的示例无线装置的图形图示。

图6是用于如图5所示的无线装置的表,该表具有不同sri状态和对应的sri信令位之间的示例映射。

图7是具有不同sri组索引的示例集合以及sri组索引的对应二进制和十进制表示的表。

图8是指示四个对应的srs资源组中的四个srs资源的sri指示位的示例集合。

图9是示出操作无线装置的方法的流程图。

图10是示出虚拟无线装置实施例的图。

图11是示出操作网络节点的方法的流程图。

图12是虚拟网络节点设备实施例的图形图示。

图13是示出操作无线装置的另一种方法的流程图。

图14是另一个虚拟无线装置设备实施例的图形图示。

图15是示出操作网络节点的另一种方法的流程图。

图16是另一个虚拟网络节点设备实施例的图形图示。

图17是示出操作网络节点的另一种方法的流程图。

图18是另一个虚拟网络节点设备实施例的图形图示。

图19是其中本发明的实施例可操作的示例虚拟化环境的图形图示。

图20是根据一些实施例经由中间网络连接到主机计算机的电信网络的图形图示。

图21是根据一些实施例主机计算机通过部分无线连接经由基站与用户设备通信的图形图示。

图22是示出根据一些实施例在包括主机计算机、基站和用户设备的通信系统中实现的方法的流程图。

图23是示出根据一些实施例在包括主机计算机、基站和用户设备的通信系统中实现的另一种方法的流程图。

图24示出用于在无线装置中配置srs资源的探测参考信号(srs)配置信息元素。

图25示出无线装置中的数字预编码器矩阵的示例操作。

具体实施方式

以下描述呈现公开的主题的各种实施例。这些实施例呈现为教导示例,并且不应解释为限制公开的主题的范围。例如,在不背离描述的主题的范围的情况下,可修改、省略或扩充描述的实施例的某些细节。

无线电节点:如本文中所使用,“无线电节点”是无线电接入节点或无线装置。

控制节点:如本文中所使用,“控制节点”是用于管理、控制或配置另一个节点的无线电接入节点或无线装置。

无线电接入节点:如本文中所使用,“无线电接入节点”是蜂窝通信网络的无线电接入网中的任何节点,其可操作以无线地传送和/或接收信号。无线电接入节点的一些示例包括但不限于:基站(例如,第三代合作伙伴计划(3gpp)长期演进(lte)网络中的增强或演进的节点b(enb)或3gppnr网络中的gnb)、分布式基站中的trp,高功率或宏基站、低功率基站(例如,微基站、微微基站、归属enb等)和中继节点。

核心网络节点:如本文中所使用,“核心网络节点”是核心网络(cn)中的任何类型的节点。核心网络节点的一些示例包括例如移动性管理实体(mme)、演进服务移动定位中心(e-smlc)、分组数据网络(pdn)网关(p-gw)、服务能力开放功能(scef)等。

无线装置:如本文中所使用,“无线装置”是能够在蜂窝通信网络中向/从另一个无线装置或者向/从网络节点无线地传送和/或接收信号以获得对蜂窝通信网络的访问权(haveaccessto)(即,由蜂窝通信网络服务)的任何类型的装置。无线装置的一些示例包括但不限于3gpp网络中的用户设备(ue)、机器型通信(mtc)装置、nb-iot装置、femtc装置等。

网络节点:如本文中所使用,“网络节点”是作为蜂窝通信网络/系统的无线电接入网或cn的一部分或测试设备节点的任何节点。

信令:如本文中所使用,“信令”包括以下中的任何一个:高层信令(例如,经由无线电资源控制(rrc)等),低层信令(例如,经由物理控制信道或广播信道),或其组合。信令可以是隐式或显式的。信令可进一步是单播、多播或广播的。信令也可直接到另一个节点或经由第三节点。

如背景部分中所论述,如果多面板ue被调度进行来自多个面板中的每个面板的多个波束的srs传输,则trp和ue需要对可从不同面板同时传送srs资源的哪些组合具有相互协定。本发明的实施例促进高效地发信号通知要使用的srs资源的指示。

根据一个实施例,标识srs资源组,其中一次只能传送srs资源群组中的一个资源。来自每个srs资源组的这一个资源可与选自其它组的其它srs资源中的每个资源同时传送。假定知道srs资源组的数量以及组中有哪些srs资源,trp可在发信号通知多个sri时确定它可指引ue传送哪些srs资源。下文将给出一个示例:

假设ue有两个面板(面板a和面板b),其中每个面板具有四个模拟波束(a1-a4和b1-b4),如图5所示。ue将从在ue能力中向trp发信号通知它具有两个srs资源组开始,其中每个srs资源组由四个srs资源组成。然后,trp将(使用rrc信令)为ue配置不同的srs资源集(如上所述)。例如,一个srs资源集可由八个srs资源组成,其中srs资源1-4属于第一srs资源组,并且srs资源5-8属于第二srs资源组。在uetx波束扫描过程期间,trp可(通过非周期性srs传输请求中的指示)触发这个srs资源集,并且ue将知道应当在相同面板上传送哪些srs资源以及应当在不同面板上传送哪个srs资源。然后,trp可对这八个传送的srs资源执行测量,确定每个srs资源组的最佳srs资源,并将对应的sri发回信号通知给ue。注意,每个srs资源可由一个或若干srs端口组成,因此该过程可适用于基于非码本的ul传输(每个srs资源单个srs端口)和基于码本的ul传输(每个srs资源一个或若干srs端口)两者。然而,注意,对于允许在多个天线端口上预编码每个srs资源的基于非码本的ul传输,在这种情况下(即,当存在ul波束管理时),不应在属于不同面板的天线端口上应用srs预编码(因为那样就打破了某个srs资源仅属于某个面板的相互协定)。

在一些实施例中,基于trp不能同时选择属于同一srs资源组的srs资源的事实,减少可能的sri状态的数量以及因此减少sri信令开销。这可通过rrc为包含多个srs资源组的srs资源集配置sri信令位和可能的sri状态之间的映射来进行。在此类实施例中,可从给ue配置的srs组的总集合中选择srs组,并且可从选择的srs组中选择srs资源。

在其它实施例中,从给ue配置的srs资源中的所有剩余的可能srs资源中选择lmax个srs资源中的每个,从而允许按期望的顺序将srs资源映射到mimo层。

在其它实施例中,根据单个固定排序方法来选择srs资源的组合,从而使用更少的sri信令位,但是不允许srs资源到mimo层映射的任意排序。

可在例如执行ul波束管理的多面板ue中和/或在使用基于非码本的ulmimo传输时实现sri信令的减少的下行链路控制信道开销。一些实施例进一步允许将srs资源灵活地映射到mimo层,以便控制这些层的质量。其它实施例减少了将srs资源映射到mimo层的灵活性,同时使用较少的下行链路控制信道开销。

在“正常”srs传输(例如,不具有ul波束管理的基于非码本/基于码本的ul传输的srs传输)的一个示例中,来自trp的sri信令可向ue指示它应当使用哪些srs资源来进行pusch传输以及它们应当按什么顺序映射到空间复用(‘μιμο’)的pusch层。该信令选择要在第一mimopusch层上传送的srs资源中的任何一个,诸如gnb认为具有最佳质量(例如,sinr、sinr等)的srs资源,然后选择要传送到第二mimopusch层的剩余资源中它认为具有次佳质量的任何srs资源,依此类推,直到它按质量递减的顺序选择了lmax个srs资源为止。注意,在一些实施例中,可使用质量以外的度量来选择srs资源。在该实施例中,需要向ue发信号通知的sri状态的总数于是为:其中sl=n·(n-1)·...·(n-(l-1))或者等效地是针对给定层数l的sri状态的数量,n是触发的srs资源集中的srs资源的数量,l是可通过sri触发的srs资源的数量,并且lmax是ue可在其上同时传送的srs资源的最大数量(即,对于单个srs端口,srs资源l和lmax分别等于可发信号通知ue同时传送的层数和最大层数)。大量可能的sri状态将导致大量的sri开销信令。例如,假设srs资源集中的srs资源的数量等于8,并且pusch传输层的最大数量等于1或2(即n=8;l=1或2),则sri状态的可能总数为st=8+8·7=64。这意味着,在该实施例中,需要6个位来向ue指示选定的sri状态。

例如,当跨越mimo层映射单个信道编码的传输块并且使用单个调制和编码状态(又称为‘单码字’mimo传输)时,srs资源相对于对应的puschmimo层的顺序可能并不重要。因此,在实施例中,从trp给ue的sri信令由个可能的sri状态组成,其中是一次从n个值中取k个值的组合数,并且n、l和lmax与上文的定义相同。在该实施例中,n=8并且l=1或2,于是sri状态的可能的总数为这意味着,仍然需要6个位来向ue指示选定的sri状态。类似地,如果选择仅限于l=2个srs资源,则sri状态的可能数量为这意味着,在这种情况下,需要5个位来向ue指示选定的sri状态。

通过考虑对srs和/或puschmimo层传输的约束,有可能进一步减少sri开销。举例来说,假设ue具有2个面板并且每个面板具有四个模拟波束,如图5所示。在这种情况下,将不允许许多可能的sri状态,因为只可从每个srs资源组中选择一个srs资源。(注意,我们在这里使用术语‘srs资源组’而不是‘srs资源集’来强调对srs选择的约束;两者都是给ue配置的srs资源的列表,并且以此方式约束的srs资源集等同于srs资源组)因此,在这种情况下,优选的是,在可能的sri状态和sri信令位之间进行映射,以便减少开销。在该示例中,选择l=2个srs资源:面板a中的a1-a4波束中的仅一个,并且面板b中的b1-b4波束中的仅一个。因此,sri状态的总数将是4x4=16,这将需要4个sri信令位(与对于l=2个选择的srs资源曾需要5个位的上述示例相比,这减少了20%)。图6示出具有不同sri状态和sri信令位之间的映射的表。

更一般地,对于实施例,可将sri状态的数量的公式写为其中个状态用于按单个固定的顺序选择g个srs资源组中的任何资源组,并且个状态(每个状态与srs资源组选择状态相关联)用于从每个所选择的srs资源组中选择一个srs资源(对应于波束),其中mi是具有索引i(对应于第i个面板)的选择的srs资源组的srs资源(波束)的数量,gk是选择的srs资源组的索引的第k个集合(即,gk是具有g个元素的{1,2,...,ng}的第k个子集),并且ng是srs组(面板)的总数。

为了在信令中简化,可指派状态,使得在计算sri时总是假设给ue配置的任何srs资源组中的每资源组的资源的最大数量mmax,并且于是可将sri状态的数量写为

单个固定的顺序可使得由sri选择的srs资源索引的组合是单调递增的,使得第一mimo层具有最低srs索引,第二mimo层具有次低srs索引,以此类推。备选地,由sri选择的srs资源索引的组合是单调递减的,使得第一mimo层具有最高srs索引,第二mimo层具有次高srs索引,以此类推。

在该实施例中,在有ng=2个资源组、在每个srs资源组中有mi=4个资源并且lmax=2的情况下,需要st=24个sri状态,并且因此在该实施例中可使用5个位来向ue发信号通知sri。

在一些实施例中,sri可被编码如下:

其中,0≤xl<ml是从具有索引l的srs资源组选择的srs资源的标识符,并且所选srs资源组的数量l和y()的值可对应于表的给定行中的所选择的srs资源组索引其中l是选择的srs资源的数量。在针对以下示例实施例的图7中的表中,配置了lmax=4个srs资源组。给出了的可能值以及l和的对应值。一般来说,通过以下方法来构造lmax的给定值的表:首先选择lmax个srs资源组中的每个可能的资源组,接着选择lmax个srs资源组中的每一对可能的资源组,然后选择lmax个srs资源组的3个资源组的每个可能的组合,以此类推。选择对和组合,使得选择的资源组的索引遵循固定顺序,例如单调递增的顺序,并使得每个对或组合在表中仅出现一次。

在一些实施例中,层数l可能严格小于给ue配置的srs资源组的数量lmax。在这种情况下,如上所述构造并且在以下示例表中示出的函数可产生可以利用相比针对时需要的位数更少的位数来编码的值。这在下表中通过以下观察可见:对于l=1,的值为3或更小,因此采取2个位来编码,而在l≤4的情况下,需要4个位。因此,在实施例中,根据ue配置成传送的mimo层的最大数量、可从中选择srs资源的srs资源组的数量以及在一个或多个srs组中的srs资源的数量来确定用于发信号通知sri的字段的大小。

在备选实施例中,直接将sri编码成位流,而不是首先编码成十进制数然后再映射到dci中的一定数量的位。如果每个srs资源组的srs资源的数量是2的幂,即,则该实施例在功能上等效于之前论述的实施例。例如,可将的二进制表示映射到最高有效位,接着将x1的二进制表示映射到后续位,然后再映射x2的二进制表示,以此类推,直到将xl映射到最低有效位为止。如果l<lmax,则用0来填充位流以便填满字段大小。图8中给出这种位映射的示例,其中假设有4个srs资源组,每个srs资源组包括4个srs资源。

描述的实施例可在支持任何合适的通信标准的任何合适类型的通信系统中并且使用任何合适的组件来实现。作为一个示例,某些实施例可在lte网络(诸如图1所示的lte网络)中实现。

参考图1,无线电接入通信网络100包括多个无线通信装置105(例如,常规ue、机器型通信[mtc]/机器到机器[m2m]ue)和多个无线电接入节点110(例如,enodeb或其它基站)。通信网络100组织成多个小区115,这些小区115经由对应的无线电接入节点110连接到核心网络120。无线电接入节点110能够与无线通信装置105连同适合于支持无线通信装置之间或无线通信装置和另一个通信装置(如固定电话)之间的通信的任何附加元件通信。

虽然无线通信装置105可表示包括硬件和/或软件的任何合适组合的通信装置,但是在某些实施例中,这些无线通信装置可表示诸如通过图2更详细地示出的示例无线通信装置之类的装置。类似地,虽然所示的无线电接入节点可表示包括硬件和/或软件的任何合适组合的网络节点,但是在特定实施例中,这些节点可表示诸如通过图3更详细地示出的示例无线电接入节点之类的装置。

参考图2,无线通信装置200包括处理器205、存储器、收发器215和天线220。在某些实施例中,描述为由ue、mtc或m2m装置和/或任何其它类型的无线通信装置提供的功能性中的一些或全部可通过装置处理器执行存储在诸如图2所示的存储器之类的计算机可读介质上的指令来提供。备选实施例可包括图2中示出的组件之外的附加组件,这些组件可负责提供装置的功能性的某些方面,包括本文中描述的任何功能性。

参考图3,无线电接入节点300包括节点处理器305、存储器310、网络接口315、收发器320和天线325。在某些实施例中,描述为由基站、gnodeb、enodeb和/或任何其它类型的网络节点提供的功能性中的一些或全部可通过节点处理器305执行存储在诸如图3所示的存储器310之类的计算机可读介质上的指令来提供。无线电接入节点300的备选实施例可包括提供附加功能性(诸如本文中描述的功能性和/相关支持功能性)的附加组件。

图9是示出用于操作无线装置(例如,无线通信装置105)的方法900的流程图。方法900包括步骤s905,在步骤s905中,从无线通信网络中的网络节点接收信令,该信令将无线装置配置成使用多个参考信号资源组,每个组包括多个参考信号资源。该信令可将无线装置配置成使用临时意义上的多个参考信号资源组,即,要按照在随后接收的控制信道中的消息所指示的那样使用的多个参考信号资源组。

该方法进一步包括步骤s910,在步骤s910中,在控制信道(例如,物理层下行链路控制信道)中从网络节点接收指示,该指示包括要使用的参考信号资源的指示。要使用的参考信号资源中的每个可能局限于选自所述多个参考信号资源组中的不同组,使得属于同一参考信号资源组的参考信号资源不被选择用于同时使用。例如,要使用的参考信号资源包括仅选自所述多个参考信号资源组中的相应第一和第二参考信号资源组的第一和第二参考信号资源。方法900进一步包括使用第一和第二参考信号资源将参考信号传送到网络节点的步骤s915。

在备选实施例中,方法900可进一步包括介于s910和s915中间的步骤s911、s912和s913,其中ue基于在步骤s910中接收的指示来做出各种确定。例如,在可选步骤s911中,无线装置根据指示确定第一和第二参考信号资源组,其中这些参考信号资源组是参考信号资源组。在可选步骤s912中,无线装置根据指示确定仅选自第一参考信号资源组的第一参考信号资源,并且在可选步骤s913中,无线装置根据指示确定仅选自第二参考信号资源组的第二参考信号资源。此外,在备选实施例中,步骤s915可包括传送由第一和第二参考信号资源标识的参考信号以及分别映射到第一和第二参考信号资源的第一和第二mimo层中的至少一个。

在一个实施例中,参考信号资源是探测参考信号(srs)资源。在一个实施例中,要使用的多个参考信号资源的指示包括位字段,其中位字段的长度取决于无线装置能够传送的mimo层的最大数量以及参考信号资源组中的对应参考信号资源组中的参考信号资源的数量。(当为无线装置配置上行链路mimo操作时,无线装置也可配置成传送无线装置能够传送的最大数量的mimo层。)位字段的长度足以指示srs资源的s个组合,其中:

以及

其中lmax是无线装置配置成传送的mimo层的最大数量,并且n是第一参考信号资源组中的资源的数量。在另一个实施例中,可基于无线装置配置成传送的mimo层的最大数量、可从中选择srs资源的srs资源组的数量以及所述多个srs资源组中的srs资源的数量来确定位字段大小。

在一个实施例中,出于波束管理的目的传送参考信号。此外,在一个实施例中,无线装置可包括多个天线面板,所述多个参考信号资源组中的每个参考信号资源组对应于天线面板中的不同天线面板。

图10是无线网络(例如,图1所示的无线网络)中的设备1000的示意性框图。该设备可在无线装置(例如,图1所示的无线装置105)中实现。设备1000可操作以实现参考图9描述的示例方法和可能的在本文中公开的任何其它过程或方法。例如,模块s1005可实现步骤s905的功能性;模块s1010可实现步骤s910的功能性;可选模块s1011可实现可选步骤s911的功能性;可选模块s1012可实现可选步骤s912的功能性;可选模块s1013可实现可选步骤s913的功能性;并且模块s1015可实现步骤s915的功能性。还要理解,图9的方法不一定仅仅由设备1000实现。该方法的至少一些操作可由一个或多个其它实体执行。

图11是示出操作网络节点的方法1100的流程图。方法1100包括步骤s1105,在步骤s1105中,确定可能的参考信号状态的总数,该确定基于将参考信号资源编组(grouping)为参考信号资源组,该编组配置成使得仅可从每个参考信号资源组中选择一个参考信号资源以便在传输中使用。该方法进一步包括步骤s1110,在步骤s1110中,确定参考信号指示位的不同组合到可能的参考信号状态中的相应参考信号状态的映射。然后,在步骤s1115,将映射发信号通知给无线装置,并在步骤s1120,确定用于来自无线装置的ul传输的一个或多个优选参考信号资源。该方法进一步包括步骤s1125,在步骤s1125中,将通过到对应于这一个或多个优选参考信号资源的sri状态的映射来映射的参考信号指示位发信号通知给无线装置。

图12示出无线网络(例如,图1所示的无线网络)中的虚拟设备1200的示意性框图。该设备可在网络节点(例如,图1所示的网络节点110)中实现。设备1200可操作以参考图11描述的示例方法以及可能的在本文中公开的任何其它过程或方法。例如,模块s1205可实现步骤s1105的功能性;模块s1210可实现步骤s1110的功能性;模块s1215可实现步骤s1115的功能性;模块s1210可实现步骤s1110的功能性;模块s1215可实现步骤s1115的功能性;模块s1220可实现步骤s1120的功能性;并且模块s1225可实现步骤s1125的功能性。还要理解,图11的方法不一定仅仅由设备1200实现。该方法的至少一些操作可由一个或多个其它实体执行。

图13是示出操作无线装置(例如,无线通信装置105)的另一种方法1300的流程图。方法1300包括步骤s1305,在步骤s1305中,无线装置接收为无线装置配置多个srs资源的信令。为无线装置配置多个srs资源的信令也可指示将所述多个srs资源编组为多个srs资源组,每个组包括多个srs资源,并且其中从同一srs资源组选择第一和第二srs资源。该方法进一步包括步骤s1310,在步骤s1310中,无线装置在物理层下行链路控制信道中接收要使用的srs资源的指示。该方法进一步包括步骤s1315,在步骤s1315中,无线装置根据该指示确定在所述多个srs资源中应当在传输中使用的至少第一和第二srs资源。例如,根据预先确定的srs资源选择规则,允许指示和确定的第一和第二srs资源是所述多个srs资源中的任何srs资源,但是第一和第二srs资源相同的情况除外。例如,无线装置可使用预先确定的表来确定第一和第二srs资源,其中该表对于srs资源的组合的每个可能的排序仅包括一个条目,从而限制可选择的srs资源组合的总数。

方法1300进一步包括步骤s1320,在步骤s1320中,无线装置传送由第一和第二srs资源标识的srs和/或分别映射到第一和第二srs资源的第一和第二mimo层。在步骤s1315中确定第一和第二srs资源可包括分别通过第一和第二索引从所述多个srs资源中标识第一和第二srs资源,第一和第二索引进一步指示要将第一和第二srs资源映射到第一和第二mimo层的顺序。例如,按照质量对第一和第二mimo层进行排序使得第一mimo层具有比第二mimo层更高的质量,以及通过第一和第二索引中的较低索引使第一mimo层被映射到。备选地,可通过第一和第二索引中的较高索引使第一mimo层被映射到。

图14示出无线网络(例如,图1所示的无线网络)中的虚拟设备1200的示意性框图。该设备可在无线装置(例如,图1所示的无线装置105)中实现。设备1400可操作以实现参考图13描述的示例方法和可能的在本文中公开的任何其它过程或方法。例如,模块s1405可实现步骤s1305的功能性;模块s1410可实现步骤s1310的功能性;模块s1415可实现步骤s1315的功能性;并且模块s1420可实现步骤s1320的功能性。还要理解,图13的方法不一定仅仅由设备1400实现。该方法的至少一些操作可由一个或多个其它实体执行。

图15是示出操作网络节点的方法1500的流程图。方法1500包括步骤s1505,在步骤s1505中,网络节点传送为无线装置配置多个参考信号资源组的信令,每个组包括多个参考信号资源,例如探测参考信号(srs)资源。在一个实施例中,无线装置包括多个天线面板,并且所述多个参考信号资源组中的每个对应于天线面板中的不同天线面板。网络节点可例如通过在控制信道中从无线装置传送的能力消息获悉多个天线面板的数量和每个面板上的天线的数量。

方法1500进一步包括步骤s1510,在步骤s1510中,网络节点在控制信道中传送要使用的参考信号资源的选择的指示。根据预先确定的规则,网络节点将要使用的所述多个参考信号资源中的每个选自所述多个参考信号资源组中的不同参考信号资源组,使得属于同一参考信号资源组的参考信号资源不被选择用于同时使用。要使用的多个参考信号资源的指示可包括位字段,位字段的长度取决于无线装置配置成传送的mimo层的最大数量和参考信号资源组中的对应参考信号资源组中的参考信号资源的数量。此外,位字段可具有足够的长度以指示srs资源的s个组合,其中:

以及

其中lmax是无线装置配置成传送的mimo层的最大数量,并且n是第一参考信号资源组中的资源的数量。

方法1500进一步包括步骤s1515,在步骤s1515中,网络节点从使用参考信号资源的所指示的选择的无线装置接收参考信号(例如,srs)。在一个实施例中,接收参考信号作为由网络节点或无线装置发起的波束管理过程的一部分。

图16示出无线网络(例如,如图1所示的无线网络)中的虚拟设备1600的示意性框图。该设备可在网络节点(例如,如图1所示的网络节点110)中实现。设备1600可操作以实现参考图15描述的方法以及可能的在本文中公开的任何其它过程或方法。例如,模块s1605可实现步骤s1505的功能性;模块s1610可实现步骤s1510的功能性;并且模块s1615可实现步骤s1515的功能性。还要理解,图15的方法不一定仅仅由设备1600实现。该方法的至少一些操作可由一个或多个其它实体执行。

图17是示出操作网络节点的方法1700的流程图。方法1700包括步骤s1705,在步骤s1705中,网络节点传送为无线装置配置多个srs资源的信令。为无线装置配置多个srs资源的信令也可指示将所述多个srs资源编组为多个srs资源组,每个组包括多个srs资源,并且其中从同一srs资源组中选择第一和第二srs资源。该方法进一步包括步骤s1710,在步骤s1710中,网络节点在物理层下行链路控制信道中传送要使用的srs资源的指示。无线装置可根据该指示从所述多个srs资源确定应当在传输中使用的至少第一和第二srs资源。例如,根据预先确定的srs资源选择规则,允许指示和确定的第一和第二srs资源是所述多个srs资源中的任何srs资源,但是第一和第二srs资源相同的情况除外。例如,无线装置可使用预先确定的表来确定第一和第二srs资源,其中该表对于srs资源的组合的每个可能的排序仅包括一个条目,从而限制可选择的srs资源组合的总数。

方法1700进一步包括步骤s1715,在步骤s1715中,网络节点接收由第一和第二srs资源标识的srs和/或分别映射到第一和第二srs资源的第一和第二mimo层。在步骤s1710中,第一和第二srs资源的指示可分别通过第一和第二索引从所述多个srs资源中标识第一和第二srs资源,第一和第二索引进一步指示要将第一和第二srs资源映射到第一和第二mimo层的顺序。例如,按照质量对第一和第二mimo层进行排序使得第一mimo层具有比第二mimo层更高的质量,并且通过第一和第二索引中的较低索引使第一mimo层被映射到。备选地,可通过第一和第二索引中的较高索引使第一mimo层被映射到。

图18示出无线网络(例如,如图1所示的无线网络)中的虚拟设备1800的示意性框图。该设备可在网络节点(例如,如图1所示的网络节点110)中实现。设备1800可操作以实现参考图17描述的示例方法和可能的在本文中公开的任何其它过程或方法。例如,模块s1805可实现步骤s1705的功能性;模块s1810可实现步骤s1710的功能性;并且模块s1815可实现步骤s1715的功能性。还要理解,图18的方法不一定仅仅由设备1800实现。该方法的至少一些操作可由一个或多个其它实体执行。

每个虚拟设备1000、1200、1400、1600和1800可包括:处理电路,其可包括一个或多个微处理器或微控制器;以及其它数字硬件,其可包括数字信号处理器(dsp)、专用数字逻辑等。处理电路可配置成执行存储在存储器中的程序代码,存储器可包括一种或若干种类型的存储器,诸如只读存储器(rom)、随机存取存储器、高速缓冲存储器、闪速存储器装置、光存储装置等。在若干实施例中,存储在存储器中的程序代码包括用于执行一个或多个电信和/或数据通信协议的程序指令以及用于实现本文中描述的一个或多个技术的指令。在一些实现中,处理电路可用于执行设备1000或1200的任何合适单元的功能性,以执行根据本公开的一个或多个实施例的对应功能。

术语“单元”可具有电子领域、电气装置和/或电子装置中的常规含义,并且可包括例如用于实现诸如本文中描述的那些相应任务、过程、计算、输出和/或显示功能等的电气和/或电子电路、装置、模块、处理器、存储器、逻辑固态和/或分立装置、计算机程序或指令。

虚拟化环境中的操作

图19是示出其中可将由一些实施例实现的功能虚拟化的虚拟化环境1900的示意性框图。在本上下文中,虚拟化意味着创建设备或装置的虚拟版本,其可包括虚拟化硬件平台、存储装置和联网资源。如本文中所使用,虚拟化可应用于节点(例如,虚拟化基站或虚拟化无线电接入节点)或装置(例如,ue、无线装置或任何其它类型的通信装置)或其组件,并且涉及(例如,经由在一个或多个网络中的一个或多个物理处理节点上执行的一个或多个应用、组件、功能、虚拟机或容器)将该功能性的至少一部分实现为一个或多个虚拟组件的实现。

在一些实施例中,本文中描述的一些或所有功能可实现为通过在由一个或多个硬件节点1930托管的一个或多个虚拟环境1900中实现的一个或多个虚拟机执行的虚拟组件。此外,在虚拟节点不是无线电接入节点或不需要无线电连接性(例如,核心网络节点)的实施例中,则网络节点可完全虚拟化。

这些功能可由可操作以实现本文中公开的一些实施例的一些特征、功能和/或益处的一个或多个应用1920(应用1920可备选地称为软件实例、虚拟设备、网络功能、虚拟节点、虚拟网络功能等)实现。在提供包括处理电路1960和存储器1990的硬件1930的虚拟化环境1900中运行应用1920。存储器1990包含由处理电路1960可执行的指令1995,由此应用1920可操作以便提供本文中公开的一个或多个特征、益处和/或功能。

虚拟化环境1900包括通用或专用网络硬件装置1930,硬件装置1930包括一个或多个处理器或处理电路1960的集合,处理器或处理电路1960可以是商用现货(cots)处理器、专门的专用集成电路(asic)或任何其它类型的包括数字或模拟硬件组件或专用处理器的处理电路。每个硬件装置可包括存储器1990-1,其可以是用于临时存储由处理电路1960执行的指令1995或软件的非持久性存储器。每个硬件装置可包括一个或多个网络接口控制器(nic)1970(又称为网络接口卡),网络接口控制器1970包括物理网络接口1980。每个硬件装置还可包括非暂时性、持久性、机器可读存储介质1990-2,其中存储有由处理电路1960可执行的软件1995和/或指令。软件1995可包括任何类型的软件,包括用于实例化一个或多个虚拟化层1950(又称为管理程序)的软件、用于执行虚拟机1940的软件、以及允许它执行与本文中描述的一些实施例相关而描述的功能、特征和/或益处的软件。

虚拟机1940包括虚拟处理、虚拟存储器、虚拟联网或接口和虚拟存储设备,并且可由对应的虚拟化层1950或管理程序运行。虚拟设备1920的实例的不同实施例可在一个或多个虚拟机1940上实现,并且可以用不同的方式进行这些实现。

在操作期间,处理电路1960执行软件1995以便实例化管理程序或虚拟化层1950,它有时又可称为虚拟机监视器(vmm)。虚拟化层1950可向虚拟机1940呈现看似是联网硬件的虚拟操作平台。

如图19所示,硬件1930可以是具有通用或特定组件的独立网络节点。硬件1930可包括天线19225,并且可经由虚拟化实现一些功能。备选地,硬件1930可以是(例如,诸如在数据中心或客户端设备(cpe)中的)更大的硬件集群的一部分,其中许多硬件节点一起工作,并经由管理和编排(mano)19100进行管理,其尤其监督应用1920的生命周期管理。

在一些上下文中,将硬件的虚拟化称为网络功能虚拟化(nfv)。nfv可用于将许多网络设备类型合并到行业标准的大容量服务器硬件、物理交换机和物理存储装置(可位于数据中心中)以及客户端设备上。

在nfv的上下文中,虚拟机1940可以是物理机的软件实现,虚拟机运行程序就好像它们正在物理、非虚拟化机器上执行一样。每个虚拟机1940以及执行该虚拟机的硬件1930的那部分,如果是专用于该虚拟机的硬件和/或是由该虚拟机与其它虚拟机1940共享的硬件,则形成单独的虚拟网络元件(vne)。

仍然在nfv的上下文中,虚拟网络功能(vnf)负责处置在硬件联网基础设施1930之上的一个或多个虚拟机1940中运行的特定网络功能,并对应于图19中的应用1920。

在一些实施例中,各自包括一个或多个传送器19220和一个或多个接收器19210的一个或多个无线电单元19200可耦合到一个或多个天线19225。无线电单元19200可经由一个或多个合适的网络接口与硬件节点1930直接通信,并且可与虚拟组件组合使用以提供具有无线电能力的虚拟节点,如无线电接入节点或基站。

在一些实施例中,可使用控制系统19230来实现一些信令,控制系统19230可备选地用于硬件节点1930和无线电单元19200之间的通信。

远程主机计算机的操作

参考图20,根据实施例,通信系统包括诸如3gpp型蜂窝网络的电信网络2010,其包括诸如无线电接入网的接入网络2011和核心网2014。接入网络2011包括诸如nb、enb、gnb或其它类型的无线接入点的多个基站2012a、2012b、2012c,每个基站定义对应的覆盖区域2013a、2013b、2013c。每个基站2012a、2012b、2012c通过有线或无线连接2015可连接到核心网络2014。位于覆盖区域2013c中的第一ue2091配置成无线地连接到对应基站2012c或由对应基站2012c寻呼。覆盖区域2013a中的第二ue2092可无线连接到对应基站2012a。虽然在该示例中示出多个ue2091和2092,但是公开的实施例同样适用于唯一的ue在覆盖区域中或唯一的ue正在连接到对应基站2012的情形。

电信网络2010本身连接到主机计算机2030,主机计算机2030可体现在独立服务器、云实现的服务器、分布式服务器的硬件和/或软件中,或体现为服务器群中的处理资源。主机计算机2030可由服务提供商拥有或控制,或者可由服务提供商操作或代表服务提供商。电信网络2010和主机计算机2030之间的连接2021和2022可从核心网络2014直接扩展到主机计算机2030,或者可途经可选的中间网络2020。中间网络2020可以是公共、私有或被托管网络中的一个或多于一个的组合;中间网络2020(如果有的话)可以是骨干网络或因特网;特别地,中间网络2020可包括两个或更多个子网络(未示出)。

图20的通信系统作为整体实现所连接的ue2091、2092和主机计算机2030之间的连接性。可将该连接性描述为是过顶(over-the-top,ott)连接2050。主机计算机2030和所连接的ue2091、2092配置成使用接入网络2011、核心网络2014、任何中间网络2020和可能的进一步基础设施(未示出)作为中介经由ott连接2050来传递数据和/或信令。从ott连接2050经过的参与通信装置不知道上行链路和下行链路通信的路由的意义来说,ott连接2050可能是透明的。例如,可能没有或者不需要告知基站2012关于将源自主机计算机2030的数据转发(例如,移交)给连接的ue2091的传入下行链路通信的过去路由。类似地,基站2012不需要知道从ue2091发出到主机计算机2030的传出上行链路通信的未来路由。

根据实施例,现在将参考图21描述在前几段中讨论的ue、基站和主机计算机的示例实现。在通信系统2100中,主机计算机2110包括硬件2115,硬件2115包括配置成与通信系统2100的不同通信装置的接口设立和维持有线或无线连接的通信接口2116。主机计算机2110进一步包括可具有存储和/或处理能力的处理电路2118。特别地,处理电路2118可包括适合于执行指令的一个或多个可编程处理器、专用集成电路、现场可编程门阵列或它们的组合(未示出)。主机计算机2110进一步包括软件2111,软件2111存储在主机计算机2110中或由主机计算机2110可访问,并且由处理电路2118可执行。软件2111包括主机应用2112。主机应用2112可操作以向远程用户(诸如经由在ue2130和主机计算机2110处终止的ott连接2150连接的ue2130)提供服务。在向远程用户提供服务时,主机应用2112可提供使用ott连接2150传送的用户数据。

通信系统2100进一步包括基站2120,基站2120在电信系统中提供,并且包括硬件2125,使得它能够与主机计算机2110和ue2130通信。硬件2125可包括用于与通信系统2100的不同通信装置的接口设立和维持有线或无线连接的通信接口2126以及用于与位于由基站2120服务的覆盖区域(图21中未示出)中的ue2130设立和维持至少无线连接2170的无线电接口2127。通信接口2126可配置成便于连接2160到主机计算机2110。连接2160可以是直接的,或者它可通过电信系统的核心网络(图21中没有示出)和/或通过电信系统外部的一个或多个中间网络。在示出的实施例中,基站2120的硬件2125进一步包括处理电路2128,处理电路2128可包括适合于执行指令的一个或多个可编程处理器、专用集成电路、现场可编程门阵列或它们的组合(未示出)。基站2120进一步具有存储在内部或经由外部连接可访问的软件2121。

通信系统2100进一步包括已经提到的ue2130。它的硬件2135可包括配置成与服务于ue2130当前所在的覆盖区域的基站设立和维持无线连接2170的无线电接口2137。

ue2130的硬件2135进一步包括处理电路2138,处理电路2138可包括适合于执行指令的一个或多个可编程处理器、专用集成电路、现场可编程门阵列或它们的组合(未示出)。ue2130进一步包括存储在ue2130中或由ue2130可访问并且由处理电路2138可执行的软件2131。软件2131包括客户端应用2132。客户端应用2132可操作以在主机计算机2110的支持下经由ue2130向人或非人用户提供服务。在主机计算机2110中,执行的主机应用2112可经由在ue2130和主机计算机2110处终止的ott连接2150与执行的客户端应用2132通信。在向用户提供服务时,客户端应用2132可从主机应用2112接收请求数据,并且响应于请求数据提供用户数据。ott连接2150可传输请求数据和用户数据两者。客户端应用2132可与用户交互以生成它提供的用户数据。

注意,图21中示出的主机计算机2110、基站2120和ue2130可分别与图20的主机计算机2030、基站2012a、2012b、2012c之一和ue2091、2092之一相似或相同。也就是说,这些实体的内部工作可如图21所示,并且独立地,周围的网络拓扑可以是图20的网络拓扑。

在图21中,抽象地绘制了ott连接2150以便说明主机计算机2110和ue2130之间经由基站2120的通信,而没有明确提到任何中间装置和经由这些装置的精确消息路由。网络基础设施可确定路由,它可配置成对ue2130或对操作主机计算机2110的服务供应商或两者隐藏该路由。当ott连接2150活动时,网络基础设施可进一步做出决定,通过这些决定(例如,在负载平衡考虑或重新配置网络的基础上)动态地改变路由。

ue2130和基站2120之间的无线连接2170根据本公开通篇描述的实施例的教导。各种实施例中的一个或多个实施例改进了使用ott连接2150提供给ue2130的ott服务的性能,其中无线连接2170形成最后一段。更精确地说,这些实施例的教导可尤其改进时延,并且从而提供诸如更好的响应性之类的益处。

可出于监测数据速率、时延和这一个或多个实施例要改进的其它因素的目的而提供测量过程。响应于测量结果的变化,可以进一步存在可选的网络功能性来重新配置主机计算机2110和ue2130之间的ott连接2150。测量过程和/或用于重新配置ott连接2150的网络功能性可在主机计算机2110的软件2111和硬件2115中或在ue2130的软件2131和硬件2135中或在两者中实现。在实施例中,可在ott连接2150经过的通信装置中或与该通信装置联合部署传感器(未示出);传感器可通过供应上文举例说明的监测量的值或供应软件2111、2131可从中计算或估计监测量的其它物理量的值而参与测量过程。ott连接2150的重新配置可包括消息格式、重新传输设置、优选路由等;重新配置不需要影响基站2120,并且它对于基站2120可能是未知的或不可觉察的。此类过程和功能性在本领域中已知且已实践。在某些实施例中,测量可涉及便于主机计算机2110测量吞吐量、传播时间、时延等的专有ue信令。测量可以实现是因为软件2111和2131在监测传播时间、错误等时使得使用ott连接2150传送消息,特别是空的或‘虚设’消息。

图22是示出根据一个实施例在通信系统中实现的方法的流程图。通信系统包括主机计算机、基站和ue,它们可以是参考图20和图21描述的那些。为了简化本公开,本节中将只包括对图22的附图参考。在步骤2210中,主机计算机提供用户数据。在步骤2210的子步骤2211(它可以是可选的)中,主机计算机通过执行主机应用来提供用户数据。在步骤2220中,主机计算机发起将用户数据携带到ue的传输。在步骤2230(其可以是可选的)中,根据本公开通篇描述的实施例的教导,基站向ue传送在由主机计算机发起了的传输中曾携带的用户数据。在步骤2240(其也可以是可选的)中,ue执行与由主机计算机执行的主机应用相关联的客户端应用。

图23是示出根据一个实施例在通信系统中实现的方法的流程图。通信系统包括主机计算机、基站和ue,它们可以是参考图20和图21描述的那些。为了简化本公开,本节中将只包括对图23的附图参考。在该方法的步骤2310中,主机计算机提供用户数据。在可选的子步骤(未示出)中,主机计算机通过执行主机应用来提供用户数据。在步骤2320中,主机计算机发起将用户数据携带到ue的传输。根据本公开通篇描述的实施例的教导,传输可经过基站。在步骤2330(其可以是可选的)中,ue接收在传输中携带的用户数据。

如上所述,示例性实施例提供了方法以及由提供用于执行这些方法的步骤的功能性的各种模块组成的对应设备。这些模块可作为硬件实现(在包括诸如专用集成电路之类的集成电路的一个或多个芯片中体现),或者可作为供处理器执行的软件或固件实现。特别地,在固件或软件的情况下,示例性实施例可作为计算机程序产品提供,计算机程序产品包括计算机可读存储介质,其上体现计算机程序代码(即,软件或固件)以供计算机处理器执行。计算机可读存储介质可以是非暂时性的(例如,磁盘、光盘、只读存储器、闪速存储器装置、相变存储器)或暂时性的(例如,电、光、声或其它形式的传播信号,诸如载波、红外信号、数字信号等)。处理器和其它组件的耦合通常通过一个或多个总线或桥(又称为总线控制器)。存储装置和携带数字业务的信号分别表示一种或多种非暂时性或暂时性计算机可读存储介质。因此,给定电子装置的存储装置通常存储代码和/或数据,以便在该电子装置(如控制器)的一个或多个处理器的集合上执行。

虽然已经详细描述了实施例及其优点,但是应理解,在不背离由随附权利要求定义的其精神和范围的情况下,可在本文进行各种改变、替换和变更。例如,上文论述的许多特征和功能可以用软件、硬件、或固件或其组合实现。此外,操作它们的许多特征、功能和步骤可以重新排序、省略、添加等,并且仍然落在各种实施例的广泛范围内。

在以下列举的列表中提供本公开的一些示例实施例,但是本公开不限于此。

示例实施例

1.一种在无线通信网络(100)中可操作的无线装置(105)中的、标识要在无线装置进行的传输中使用的参考信号资源的方法(900),该方法包括:接收(s905)将无线装置配置成使用多个参考信号资源组的信令,每个组包括多个参考信号资源;在控制信道中接收(s910)要使用的参考信号资源的指示,其中要使用的参考信号资源包括仅选自所述多个参考信号资源组中的相应第一和第二参考信号资源组的第一和第二参考信号资源;以及在到网络中的网络节点的参考信号传输中使用(s915)第一和第二参考信号资源。

2.实施例1的方法,其中参考信号资源是探测参考信号(srs)资源。

3.一种在无线通信网络中可操作的无线装置中的、标识要在无线装置进行的传输中使用的一个或多个srs资源的方法,该方法包括:接收将无线装置配置成使用多个srs资源组的信令,每个组包括多个srs资源;在物理层下行链路控制信道中接收要使用的srs资源的指示;根据该指示确定第一和第二srs资源组,其中从所述多个srs资源组中选择第一和第二srs资源组;根据该指示确定仅从第一srs资源组中选择的第一srs资源;根据该指示确定仅从第二srs资源组中选择的第二srs资源;以及传送以下中的至少一个:a)由第一和第二srs资源标识的srs,和b)分别根据第一和第二srs资源的传输的第一和第二mimo层。

4.实施例3的方法,其中基于无线装置配置成传送的mimo层的最大数量、可从中选择srs资源的srs资源组的数量以及所述多个srs资源组中的srs资源的数量来确定用于发信号通知所述指示的字段的大小。

5.一种在无线通信网络中可操作的无线装置中的、标识要在无线装置进行的传输中使用的一个或多个srs资源的方法,该方法包括:接收将无线装置配置成使用多个srs资源的信令;在物理层下行链路控制信道中接收要使用的srs资源的指示;根据该指示从所述多个srs资源中确定应当在给定传输中使用的第一和第二srs资源,其中第一和第二srs资源可以是所述多个srs资源中的任何srs资源,但是第一和第二srs资源相同的情况除外;以及传送以下中的至少一个:a)由第一和第二srs资源标识的srs,和b)分别根据第一和第二srs资源的传输的第一和第二mimo层。

6.实施例5的方法,其中第一和第二srs资源各自分别通过第一和第二索引在所述多个srs资源中标识;并且根据指示确定第一和第二srs资源的步骤进一步具有按照单个固定顺序选择第一索引和第二索引的进一步例外,单个固定顺序是以下之一:a)第一索引总是大于第二索引,和b)第一索引总是小于第二索引。

7.一种在无线通信网络中可操作的无线装置中的、标识要在无线装置进行的传输中使用的一个或多个srs资源的方法,该方法包括:接收将无线装置配置成使用所述多个srs资源组中的第一srs资源组的信令,第一srs资源组包括多个srs资源;在物理层下行链路控制信道中接收要使用的srs资源的指示;根据该指示确定仅选自第一srs资源组的第一srs资源;传送以下中的至少一个:a)由第一srs资源标识的srs,和b)根据第一srs资源的传输的mimo层。

8.一种在网络节点中的配置无线装置中的参考信号传输设置的方法(1100),无线装置在无线通信网络中可操作,该方法包括:基于将参考信号资源编组为参考信号资源组,确定(s1105)可能的参考信号状态的总数,所述编组配置成使得仅可从每个参考信号资源组中选择一个参考信号资源以供在传输中使用;确定(s1110)参考信号指示位的不同组合到可能的参考信号状态中的相应参考信号状态的映射;将映射发信号通知(s1115)给无线装置;确定(s1120)用于来自无线装置的ul传输的一个或多个优选参考信号资源;以及向无线装置发信号通知(s1125)参考信号指示位,其通过到对应于这一个或多个优选参考信号资源的sri状态的映射来进行映射。

9.实施例8的方法,其中基于srs资源组的编组确定可能的sri状态的总数包括固定将srs资源映射到mimo层的排序,从而限制可能的sri状态的总数。

10.实施例8的方法,其中基于srs资源组的编组来确定可能的sri状态的总数包括虑及按照多个期望的顺序中的任何顺序将srs资源映射到mimo层。

11.实施例8-10中的任一实施例的方法,其中参考信号资源是探测参考信号(srs)资源。

12.一种用于通过获得要使用的参考信号资源的指示来促进无线通信网络(100)中的通信的无线装置(105、200),该无线装置包括配置成执行实施例1-7中的任一实施例的步骤的处理电路。

13.一种用于配置无线通信网络(100)中的参考信号资源的网络节点(110、300),该网络节点包括配置成执行实施例8-11中的任一实施例的步骤的处理电路。

14.一种用于通过获得要使用的参考信号资源的指示来促进无线通信网络(100)中通信的用户设备(ue)(200),该ue包括:配置成发送和接收无线信号的天线(220);收发器(215),其连接到天线和处理电路(205),并且配置成调节在天线和处理电路之间传递的信号;处理电路配置成执行实施例1-7中的任一实施例的步骤。

15.一种包括主机计算机的通信系统,主机计算机包括:配置成提供用户数据的处理电路;以及配置成将用户数据转发到蜂窝网络以便传输到无线装置的通信接口,其中蜂窝网络包括网络节点,该网络节点具有:a)配置成接收用户数据的通信接口;b)配置成与无线装置对接以将用户数据转发到无线装置的无线电接口;以及c)配置成执行实施例8-11中的任一实施例的步骤的处理电路。

16.前述实施例中的任一实施例的通信系统,进一步包括网络节点。

17.前2个实施例中的任一实施例的通信系统,进一步包括无线装置,其中无线装置配置成与网络节点通信。

18.前3个实施例中的任一实施例的通信系统,其中:主机计算机的处理电路配置成执行主机应用,从而提供所述用户数据;并且无线装置包括配置成执行与主机应用相关联的客户端应用的处理电路。

19.一种在包括主机计算机、网络节点和无线装置的通信系统中实现的方法,该方法包括:在主机计算机处提供用户数据;以及在主机计算机处发起经由包括网络节点的蜂窝网络将用户数据携带到无线装置的传输,其中网络节点执行实施例1-16中的任一实施例的步骤。

20.前一实施例的方法,进一步包括在网络节点处传送用户数据。

21.前两个实施例中的任一实施例的方法,其中在主机计算机处通过执行主机应用来提供用户数据,该方法进一步包括在无线装置处执行与主机应用相关联的客户端应用。

22.一种包括主机计算机和无线装置的通信系统,主机计算机包括:配置成提供用户数据的处理电路;以及配置成将用户数据转发到蜂窝网络以便传输到无线装置的通信接口,其中无线装置包括收发器和处理电路,无线装置的这些组件配置成执行实施例1-7中的任一实施例的步骤。

23.前一实施例的通信系统,其中蜂窝网络进一步包括配置成与无线装置通信的网络节点。

24.前2个实施例中的任一实施例的通信系统,其中:主机计算机的处理电路配置成执行主机应用,从而提供用户数据;并且无线装置的处理电路配置成执行与主机应用相关联的客户端应用。

25.一种在包括主机计算机、网络节点和无线装置的通信系统中实现的方法,该方法包括:在主机计算机处提供用户数据;以及在主机计算机处发起经由包括网络节点的蜂窝网络将用户数据携带到无线装置的传输,其中无线装置执行实施例1-7中的任一实施例的步骤。

26.前一实施例的方法,进一步包括在无线装置处从网络节点接收用户数据。

3gpp投稿

以下描述提供可如何在特定通信标准的框架内实现本文中描述的实施例的某些方面的示例。特别地,以下示例提供可如何在3gppran标准的框架内实现本文中描述的实施例的非限制性示例。由这些示例描述的改变仅意在说明可如何在特定标准中实现实施例的某些方面。然而,也可在3gpp规范中以及在其它规范或标准中以其它合适的方式实现实施例。

标题:基于非码本的传输的ulmimo

1-引言

在ran1-nrah3中,在线和离线达成了以下协定:

在ran1#90中同意了以下内容:1)对于在基于非码本的ulmimo中的pusch预编码器确定,支持alt.l(即,至少在ul准予中只有sri而没有tpmi指示)以用于宽带指示。注释:gnb应当只发信号通知(一个或多个)sri,使得可由ue同时进行从发信号通知的(一个或多个)sri中推断的ul预编码传输。ffs细节。ffs:如果支持子带指示,则为它向下选择alt.1-3。2)指定标识具有ulmimo能力的ue是否可支持跨越它的发射链进行相干传输的ue能力。ffs:是否ue能力标识在它的发射链的所有发射链对比没有一个发射链对比子集上是否支持相干传输。ffs:ulmimo预编码设计如何考虑上述能力。

虽然在raninrah#3[1]的离线讨论中同意了以下内容:对于基于非码本的传输,可使用(一个或多个)sri来指示示总共多达4个srs端口。但是注意:对于基于非码本的预编码,每个srs资源包含一个端口。

在这篇投稿中,我们讨论了基于非码本的ul传输,并呈现了关于sri指示的一些进一步细节。特别地,我们解决了ue应当如何发信号通知(一个或多个)sri以使得可由ue同时进行从(一个或多个)sri推断的ul预编码、sri信令对此应当如何考虑以及sri的频率选择性信令的需要的公开问题。

2-基于非码本的ul传输

srs资源可以是窄带,并且因此只占整个频段的部分。然而,确定(一个或多个)优选srs资源的(一个或多个)sri应当视为是宽带,这意味着,sri应当适用于对应pusch传输的整个带宽。例如,如果使用srs资源的宽带预编码,则ue仅对整个pusch分配应用相同的预编码。如果使用srs资源的频率选择性预编码,则不应预期ue在它在之前尚未传送srs的资源分配上被调度。

频率选择性ul闭环预编码到目前为止尚未显示出提供实质性增益,至少对于基于码本的预编码[2][3][4]是如此。基于互易性的高分辨率预编码可能具有额外的增益潜力,并且也可避免频率选择性sri的额外开销。如果不能利用完全互易性,则可通过使用频率选择性sri来为基于非码本的ul传输实现频率选择性预编码。然而,这也将导致开销信令增加,因此将需要进一步的研究以便评估此类方案的性能增益对比开销。

提议1:在考虑基于非码本的ul传输的性能增益对比开销的情况下进一步研究频率选择性sri的需要。

一些ue可能尚未校准(或仅部分地校准了)无线电链,这意味着ue不知道发射链的相对相位。在这种情况下,预编码(即,相干传输)将难以采用有用的方式应用。因此,在ran1#90中同意了支持标识具有ulmimo能力的ue是否可支持跨越它的发射链进行相干传输的ue能力。当ue不能在它的任何tx链上相干地传送时,最好是ue对每个天线布置分配一个srs资源,这对应于在图25中所见的数字预编码器矩阵的单位矩阵。然后,trp可通过报告一个或若干sri来选择应当用于ul传输的天线布置,其中每个sri应用一个层。

3-srs资源组

ul波束管理(即,基于ul参考信号的波束管理)的概念目前正在开发中,以便使nr控制相应ue天线子集的波束(或更准确地说是有效的天线模式)。预期通过让ue在不同的ue天线子集波束中传送不同的srs资源来执行ul波束管理,trp对这些srs资源执行rsrp测量,并发回信号通知与具有(一个或多个)最高rsrp值的(一个或多个)srs资源对应的(一个或多个)sri。如果多天线子集ue被调度进行来自多个天线子集中的每个天线子集的多个波束的srs传输,则trp和ue需要对可从不同的天线子集同时传送srs资源的哪些组合具有相互协定。否则,trp可能选择不能同时传送的srs资源,诸如当srs资源对应于相同天线子集中的不同的切换模拟波束时的srs资源。以下对来自ran1#90的用于发信号通知多个sri的协定的注释(如下)解决了这个问题,但是没有对它应如何进行做出结论。注释:gnb应当仅发信号通知(一个或多个)sri,使得ue可同时进行从发信号通知的(一个或多个)sri中推断的ul预编码传输。

解决这个问题的一种方式是标识srs资源组,其中一次只能传送srs资源组中的资源中的一个。来自每个srs资源组的这一个资源可以与来自其它组的其它选择的srs资源中的每个同时传送。假定知道srs资源组的数量以及组中有哪些srs资源,trp可在发信号通知多个sri时确定它可指引ue传送哪些srs资源。下文将给出一个示例:

假设ue有两个天线子集(例如,面板)(天线子集/面板a和天线子集/面板b),其中每个天线子集具有四个模拟波束(a1-a4和b1-b4),如图5所示。ue将从在ue能力中向trp发信号通知它具有两个srs资源组开始,其中每个srs资源组由四个srs资源组成。例如,可配置总共的srs资源,其中srs资源1-4可属于第一srs资源组(对应于天线子集a),并且srs资源5-8可属于第二srs资源组(对应于天线子集b)。在uetx波束扫描过程(即,u3)期间,trp可(通过非周期性srs传输请求中的指示)触发这8个srs资源,并且trp将知道在给定srs资源编组的情况下能和不能同时传送的srs资源。然后,trp可对这八个传送的srs资源执行测量,确定每个srs资源组的最佳srs资源,并将对应的sri发回信号通知给ue。注意,每个srs资源可由一个或若干srs端口组成,因此该过程可适用于基于非码本的ul传输(每个srs资源单个srs端口)和基于码本的ul传输(每个srs资源一个或若干srs端口)两者。然而,注意,对于允许在多个天线端口上预编码每个srs资源的基于非码本的ul传输,在这种情况下(即,当存在ul波束管理时),不应在属于不同天线子集的天线端口上应用srs预编码(因为那样就会打破某个srs资源仅属于某个天线子集的相互协定)。

我们注意到,此处,srs资源组的概念具有与为nr下行链路定义的dmrs端口组和[5]中提出的srs端口组类似的用途。假定sri指代srs资源,并且由于srs天线端口组将似乎意味着一个srs资源内的某种选择或细分,所以‘srs资源组’似乎更适合描述预期的行为。

提议2:定义srs资源组,其中可假设ue一次只能传送srs资源组中的一个srs资源,并且其中ue可同时传送来自多个srs资源组中的每个srs资源组的一个srs资源。

4–利用sri指示中的srs资源组

为了在dci中指示多个sri,一种选择是使用大小为n的位图,其中n是srs资源的数量(对应于最大秩),并且每个位指示是否应当使用srs资源来传送pusch层。然而,这不是非常高效的信令方式,由此浪费dci开销。

另一种选择是,对于每个秩,联合指示应当使用哪些srs资源,然后联合编码tri和多个sri。在这种情况下,从trp到ue的sri信令由指示个可能的sri状态组成,其中是一次从n个值中取k个值的组合数,并且n是srs资源的数量,l是传输秩,并且lmax是ue能够达到的最大传输秩。例如,在n=8并且lmax=2时,于是sri状态的可能的总数为这意味着,需要6个位来向ue指示选定的sri状态,从而与以下情况形成对比:如果使用了大小为n的位图方法,则需要n=8个位。

通过考虑对srs和/或puschmimo层传输的约束,有可能进一步减少sri开销。举例来说,假设ue具有两个天线子集(例如,面板),并且每个天线子集具有四个模拟波束,如图5所示。在这种情况下,将不允许许多可能的sri状态,因为只可从每个srs资源组中选择一个srs资源。因此,在这种情况下,优选的是在可能的sri状态和sri信令位之间进行映射,以便减少开销。例如,dci信令可指示个状态之一,从而指示使用这m个srs资源组中的哪个资源组来传送l个层,并且然后可指示在每个选择的srs资源组中要使用的srs资源。例如,如果每个组有4个srs资源,则需要4个状态以便从组中选择资源。然后,在m=2个资源组并且最多lmax=2层的情况下,总共有个状态,所以假定在这种情况下发信号通知sri时考虑srs编组,可使用5个位来发信号通知sri。

观察1:通过在sri信令期间考虑srs资源组,可减少sri信令的开销。

提议3:在dci中发信号通知多个sri指示时,考虑srs资源编组。

5-结论

在这篇投稿中,我们讨论了基于非码本的ul传输和关于sri指示的进一步细节。特别地,我们解决了ue应当如何发信号通知(一个或多个)sri以使得ue可同时进行从(一个或多个)sri中推断的ul预编码、sri信令对此应当如何考虑以及sri的频率选择性信令的需要的公开问题。我们的分析得出以下观察和建议:

观察1:通过在sri信令期间考虑srs资源组,可减少sri信令的开销。

提议1:在考虑基于非码本的ul传输的性能增益对比开销的情况下进一步研究频率选择性sri的需要。

提议2:定义srs资源组,其中可假设ue一次只能传送srs资源组中的一个srs资源,并且其中ue可同时传送来自多个srs资源组中的每个资源组的一个srs资源。

提议3:当在dci中发信号通知多个sri指示时,考虑srs资源编组。

6-参考文献

rl-1716921,“summaryofofflinediscussiononulmimoopenissues”,ericsson,3gpptsgranwg1nr#3,日本名古屋,2017年九月18日至21日

rl-1708669,“ulmimoproceduresforcodebookbasedtransmission”,ericsson,3gpptsgranwg1meeting#89,中国杭州,2017年五月15日至19日

rl-1711008,“ulmimoproceduresforcodebookbasedtransmission”,ericsson,3gpptsgranwg1meeting#89adhoc2,中国青岛,2017年六月27日至30日

rl-1714271,“ulmimoforcodebookbasedtransmission”,ericsson,3gpptsgranwg1meeting#90,捷克布拉格,2017年八月21日至25日

rl-1709735,“wayforwardonuplinkmulti-panelandmulti-trpoperation”,intel等人,3gpptsgranwg1meeting#89中国杭州,2017年五月15日至19日

缩写的列表

trp-传输/接收点

ue-用户设备

nw-网络

bpl-波束对链路

blf-波束对链路故障

blm-波束对链路监测

bps-波束对链路切换

rlm-无线电链路监测

rlf-无线电链路故障

pdcch-物理下行链路控制信道

rrc-无线电资源控制

crs-小区特定参考信号

csi-rs-信道状态信息参考信号

rsrp-参考信号接收功率

rsrq-参考信号接收质量

gnb-nr基站

prb-物理资源块

re-资源元素

srs10流程图_高效的SRS资源指示方法与流程相关推荐

  1. lds天线技术流程图_一种镭雕镀金方法与流程

    本发明涉及表面处理领域,尤其涉及一种镭雕镀金方法. 背景技术: 在电子通信产品的结构件中,一些产品经常采用在塑胶支架上镭雕化镀的方式来实现线路,LDS天线就是其中的一种.如图1所示,首先在塑料支架上镭 ...

  2. android h5游戏图片不缓存,H5小游戏资源缓存方法与流程

    本发明涉及H5资源缓存领域,尤其涉及H5小游戏资源缓存方法. 背景技术: 随着移动互联网的发展和手机硬件性能的不断提升,H5小游戏这种不需要下载安装即可使用的全新游戏应用得到了爆发式发展.这种用完即走 ...

  3. 一种自动将3DMax模型转换为UE4直接可用的模型资源的方法与流程

    本发明涉及一种自动将3D Max模型转换为UE4直接可用的模型资源的方法. 背景技术: 现有技术中大部分3D模型的建模工作主要由美术师在3d Max上进行.而由于使用模型的游戏引擎采取各自的模型标准, ...

  4. sap委外退料流程图_最新九牧SAPERP项目SAP-TB-MM委外加工采购流程(资料4)

    <最新九牧SAP(ERP项目)SAP-TB-MM委外加工采购流程.doc>由会员分享,可免费在线阅读全文,更多与<最新九牧SAP(ERP项目)SAP-TB-MM委外加工采购流程> ...

  5. smartart连续块状流程图_只须四步让你的流程图更美

    在进行算法教学时我们免不了要做各种各样的流程图,有些时候为了让Powerpoint展现更佳的视觉效果,可以将流程文字转换成漂亮的图形流程图. 首先,前期准备.点击"插入" 标签卡, ...

  6. endnote参考文献排版_高效管理论文参考文献的方法

    前言:文献管理很重要,一个好的管理方式可以让你在写论文时可以更好的集中精力去关注论文内容,而不用老是去注意那些无关琐碎的事,相信有写过参考文献比较多论文的同学,都有过被参考文献支配过的恐惧吧!不同期刊 ...

  7. ue4导入倾斜摄影_一种高精度倾斜摄影建模方法与流程

    技术领域:本发明属于测绘技术领域,涉及矿山地形监测.测绘地形图.珍贵建筑物修复重建.林业.农业.采矿业.公用事业和能源.城市开发.国防和灾害应急的地理信息处理. 背景技术: :目前成熟的倾斜三维建模软 ...

  8. java熔断器_一种熔断器的实现方法与流程

    本发明涉及java开发技术领域,特别涉及一种熔断器的实现方法. 背景技术: 目前,在微服务架构中,为了方便系统的前期的开发以及后期升级.维护,提交工作效率,一般会将系统划分为多个服务单元.各个服务单元 ...

  9. 图像迁移风格保存模型_一种图像风格迁移方法与流程

    本发明涉及图像处理技术领域,更为具体地,涉及一种图像风格迁移方法. 背景技术: 近年来,由深度学习所引领的人工智能技术浪潮,开始越来越广泛地应用到社会各个领域,尤其是在在计算机视觉领域,图像风格迁移作 ...

最新文章

  1. 使用云祺虚拟机备份软件恢复Citrix XenServer 虚拟机
  2. css行高line-height的一些深入理解及应用
  3. 螺旋桨设计软件_欧洲斥巨资研发的A400M螺旋桨运输机,为啥就没人买啊?| 图说...
  4. php new static,PHP中new self()和new static()的区别用法
  5. 20155310 《Java程序设计》实验三(敏捷开发与XP实践)实验报告
  6. Python下json中文乱码解决办法
  7. java md5方法 for Android
  8. 寻找阿姆斯特朗数(北理乐学)
  9. 2018西门子逻辑控制赛项6部10层电梯PLC
  10. 【将Cityscape和Foggy_Cityscape转换为PASACAL VOC格式的目标检测数据集】
  11. 单独设置一页或者多页的页眉或者页脚
  12. 简单的MCU加密方法,防破解、防抄袭、防山寨
  13. Win10“混合现实门户”图标更新:加入Fluent Design风格
  14. 国防科技大学计算机系邹革新,国防科技大学机电工程与自动化学院――邹逢兴教授...
  15. HTTP中Origin和Referer的区别?
  16. 计算机辅助药物设计自学,《计算机辅助药物分子设计》教学大纲
  17. find grep联合搜索
  18. VisualStdio调试出现0xC00000FD:Stack overflow原因及解决方法
  19. 佛系领导和狼性领导,哪种领导更值钱?
  20. Hdu1248 寒冰王座

热门文章

  1. C和指针之动态内存分配(读取范围在1和标准输入读取的size之前每个数据出现的次数)
  2. Android之Installation error: INSTALL_FAILED_UPDATE_INCOMPATIBLE问题解决
  3. 工厂模式(简单工厂、工厂方法、抽象工厂)
  4. js pug 代码_pug模版学习(一)
  5. android auto answer,Incoming call auto answer in android 4.0.3
  6. PHP进程退出信号_一文吃透 PHP 进程信号处理
  7. 理工男都能有多痴情?
  8. 这家AI公司用面具破解中国人脸识别系统!微信、支付宝、火车站无一幸免
  9. 朋友圈有趣的灵魂都去哪了?这几个优质公号给你答案
  10. python数据整理_python数据类型整理