递归树:如何借助树来求解递归算法的时间复杂度

今天,我们来讲这种数据结构的一种特殊应用,递归树。

我们都知道,递归代码的时间复杂度分析起来很麻烦。我们在《排序》那里讲过,如何利用递推公式,求解归并排序、快速排序的时间复杂度,但是,有些情况,比如快排的平均时间复杂度的分析,用递推公式的话,会涉及非常复杂的数学推导。

除了用递推公式这种比较复杂的分析方法,有没有更简单的方法呢?今天,我们就来学习另外一种方法,借助递归树来分析递归算法的时间复杂度。

递归树与时间复杂度分析

我们前面讲过,递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。

如果我们把这个一层一层的分解过程画成图,它其实就是一棵树。我们给这棵树起一个名字,叫作递归树。我这里画了一棵斐波那契数列的递归树,你可以看看。节点里的数字表示数据的规模,一个节点的求解可以分解为左右子节点两个问题的求解。

通过这个例子,你对递归树的样子应该有个感性的认识了,看起来并不复杂。现在,我们就来看,如何用递归树来求解时间复杂度。

归并排序算法你还记得吧?它的递归实现代码非常简洁。现在我们就借助归并排序来看看,如何用递归树,来分析递归代码的时间复杂度。

归并排序的原理我就不详细介绍了,如果你忘记了,可以回看一下第 12 节的内容。归并排序每次会将数据规模一分为二。我们把归并排序画成递归树,就是下面这个样子:

因为每次分解都是一分为二,所以代价很低,我们把时间上的消耗记作常量 1。归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中我们可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。我们把每一层归并操作消耗的时间记作 n。

现在,我们只需要知道这棵树的高度 h,用高度 h 乘以每一层的时间消耗 n,就可以得到总的时间复杂度 O(n∗h)。

从归并排序的原理和递归树,可以看出来,归并排序递归树是一棵满二叉树。我们前两节中讲到,满二叉树的高度大约是 log2n,所以,归并排序递归实现的时间复杂度就是 O(nlogn)。我这里的时间复杂度都是估算的,对树的高度的计算也没有那么精确,但是这并不影响复杂度的计算结果。

利用递归树的时间复杂度分析方法并不难理解,关键还是在实战,所以,接下来我会通过三个实际的递归算法,带你实战一下递归的复杂度分析。学完这节课之后,你应该能真正掌握递归代码的复杂度分析。

实战一:分析快速排序的时间复杂度

在用递归树推导之前,我们先来回忆一下用递推公式的分析方法。你可以回想一下,当时,我们为什么说用递推公式来求解平均时间复杂度非常复杂?

快速排序在最好情况下,每次分区都能一分为二,这个时候用递推公式 T(n)=2T(n/2)+n,很容易就能推导出时间复杂度是 O(nlogn)。但是,我们并不可能每次分区都这么幸运,正好一分为二。

我们假设平均情况下,每次分区之后,两个分区的大小比例为 1:k。当 k=9 时,如果用递推公式的方法来求解时间复杂度的话,递推公式就写成 T(n)=T(n/10)+T(9n/10)+n。

这个公式可以推导出时间复杂度,但是推导过程非常复杂。那我们来看看,用递归树来分析快速排序的平均情况时间复杂度,是不是比较简单呢?

我们还是取 k 等于 9,也就是说,每次分区都很不平均,一个分区是另一个分区的 9 倍。如果我们把递归分解的过程画成递归树,就是下面这个样子:

快速排序的过程中,每次分区都要遍历待分区区间的所有数据,所以,每一层分区操作所遍历的数据的个数之和就是 n。我们现在只要求出递归树的高度 h,这个快排过程遍历的数据个数就是 h∗n ,也就是说,时间复杂度就是 O(h∗n)。

因为每次分区并不是均匀地一分为二,所以递归树并不是满二叉树。这样一个递归树的高度是多少呢?

我们知道,快速排序结束的条件就是待排序的小区间,大小为 1,也就是说叶子节点里的数据规模是 1。从根节点 n 到叶子节点 1,递归树中最短的一个路径每次都乘以 1/10,最长的一个路径每次都乘以 9/10。通过计算,我们可以得到,从根节点到叶子节点的最短路径是 log10n,最长的路径是 log10/9n。

所以,遍历数据的个数总和就介于 nlog10n 和 nlog10/9n 之间。根据复杂度的大 O 表示法,对数复杂度的底数不管是多少,我们统一写成 logn,所以,当分区大小比例是 1:9 时,快速排序的时间复杂度仍然是 O(nlogn)。

刚刚我们假设 k=9,那如果 k=99,也就是说,每次分区极其不平均,两个区间大小是 1:99,这个时候的时间复杂度是多少呢?

我们可以类比上面 k=9 的分析过程。当 k=99 的时候,树的最短路径就是 log100n,最长路径是 log100/99n,所以总遍历数据个数介于 nlog100n 和 nlog100/99n 之间。尽管底数变了,但是时间复杂度也仍然是 O(nlogn)。

也就是说,对于 k 等于 9,99,甚至是 999,9999……,只要 k 的值不随 n 变化,是一个事先确定的常量,那快排的时间复杂度就是 O(nlogn)。所以,从概率论的角度来说,快排的平均时间复杂度就是 O(nlogn)。

实战二:分析斐波那契数列的时间复杂度

在递归那一节中,我们举了一个跨台阶的例子,你还记得吗?那个例子实际上就是一个斐波那契数列。为了方便你回忆,我把它的代码实现贴在这里。

int f(int n) {if (n == 1) return 1;if (n == 2) return 2;return f(n-1) + f(n-2);
}

这样一段代码的时间复杂度是多少呢?你可以先试着分析一下,然后再来看,我是怎么利用递归树来分析的。

我们先把上面的递归代码画成递归树,就是下面这个样子:

这棵递归树的高度是多少呢?

f(n) 分解为 f(n−1) 和 f(n−2),每次数据规模都是 −1 或者 −2,叶子节点的数据规模是 1 或者 2。所以,从根节点走到叶子节点,每条路径是长短不一的。如果每次都是 −1,那最长路径大约就是 n;如果每次都是 −2,那最短路径大约就是n/2。

每次分解之后的合并操作只需要一次加法运算,我们把这次加法运算的时间消耗记作 1。所以,从上往下,第一层的总时间消耗是 1,第二层的总时间消耗是 2,第三层的总时间消耗就是 22。依次类推,第 k 层的时间消耗就是 2k−1,那整个算法的总的时间消耗就是每一层时间消耗之和。

如果路径长度都为 n,那这个总和就是 2n−1

如果路径长度都是 n/2 ,那整个算法的总的时间消耗就是 2n/2−1。

所以,这个算法的时间复杂度就介于 O(2n) 和 O(2n/2) 之间。虽然这样得到的结果还不够精确,只是一个范围,但是我们也基本上知道了上面算法的时间复杂度是指数级的,非常高。

实战三:分析全排列的时间复杂度

前面两个复杂度分析都比较简单,我们再来看个稍微复杂的。

我们在高中的时候都学过排列组合。“如何把 n 个数据的所有排列都找出来”,这就是全排列的问题。

我来举个例子。比如,1,2,3 这样 3 个数据,有下面这几种不同的排列:

1, 2, 3
1, 3, 2
2, 1, 3
2, 3, 1
3, 1, 2
3, 2, 1

如何编程打印一组数据的所有排列呢?这里就可以用递归来实现。

如果我们确定了最后一位数据,那就变成了求解剩下 n−1 个数据的排列问题。而最后一位数据可以是 n 个数据中的任意一个,因此它的取值就有 n 种情况。所以,“n 个数据的排列”问题,就可以分解成 n 个“n−1 个数据的排列”的子问题。

如果我们把它写成递推公式,就是下面这个样子:

假设数组中存储的是1,2, 3…n。

f(1,2,…n) = {最后一位是1, f(n-1)} + {最后一位是2, f(n-1)} +…+{最后一位是n, f(n-1)}。

如果我们把递推公式改写成代码,就是下面这个样子:

// 调用方式:
// int[]a = a={1, 2, 3, 4}; printPermutations(a, 4, 4);
// k表示要处理的子数组的数据个数
public void printPermutations(int[] data, int n, int k) {if (k == 1) {for (int i = 0; i < n; ++i) {System.out.print(data[i] + " ");}System.out.println();}for (int i = 0; i < k; ++i) {int tmp = data[i];data[i] = data[k-1];data[k-1] = tmp;printPermutations(data, n, k - 1);tmp = data[i];data[i] = data[k-1];data[k-1] = tmp;}
}

如果不用我前面讲的递归树分析方法,这个递归代码的时间复杂度会比较难分析。现在,我们来看下,如何借助递归树,轻松分析出这个代码的时间复杂度。

首先,我们还是画出递归树。不过,现在的递归树已经不是标准的二叉树了。

第一层分解有 n 次交换操作,第二层有 n 个节点,每个节点分解需要 n−1 次交换,所以第二层总的交换次数是 n∗(n−1)。第三层有 n ∗ (n−1) 个节点,每个节点分解需要 n−2 次交换,所以第三层总的交换次数是 n ∗ (n−1) ∗ (n−2)。

以此类推,第 k 层总的交换次数就是 n ∗ (n−1) ∗ (n−2) ∗ … ∗ (n−k+1)。最后一层的交换次数就是 n∗(n−1) ∗ (n−2) ∗ … ∗ 2 ∗ 1。每一层的交换次数之和就是总的交换次数。

n + n * (n-1) + n * (n-1) * (n-2) +… + n * (n-1) * (n-2) * … * 2 * 1

这个公式的求和比较复杂,我们看最后一个数,n ∗ (n−1) ∗ (n−2) ∗ … ∗ 2 ∗ 1 等于 n!,而前面的 n−1 个数都小于最后一个数,所以,总和肯定小于 n ∗ n!,也就是说,全排列的递归算法的时间复杂度大于 O(n!),小于 O(n ∗ n!),虽然我们没法知道非常精确的时间复杂度,但是这样一个范围已经让我们知道,全排列的时间复杂度是非常高的。

这里我稍微说下,掌握分析的方法很重要,思路是重点,不要纠结于精确的时间复杂度到底是多少。

内容小结

今天,我们用递归树分析了递归代码的时间复杂度。加上我们在排序那一节讲到的递推公式的时间复杂度分析方法,我们现在已经学习了两种递归代码的时间复杂度分析方法了。

有些代码比较适合用递推公式来分析,比如归并排序的时间复杂度、快速排序的最好情况时间复杂度;有些比较适合采用递归树来分析,比如快速排序的平均时间复杂度。而有些可能两个都不怎么适合使用,比如二叉树的递归前中后序遍历。

时间复杂度分析的理论知识并不多,也不复杂,掌握起来也不难,但是,在我们平时的工作、学习中,面对的代码千差万别,能够灵活应用学到的复杂度分析方法,来分析现有的代码,并不是件简单的事情,所以,你平时要多实战、多分析,只有这样,面对任何代码的时间复杂度分析,你才能做到游刃有余、毫不畏惧。

算法学习笔记16:递归树相关推荐

  1. c++学习笔记(16) 递归

    递归:能够解决那些难以用简单循环解决的问题 例如:八皇后问题,阶乘 递归函数: 调用自身的函数 1.阶乘: 0 !=1 1!=1 n!=n*(n-1)! (n-1)!=(n-1)(n-2)! 假设函数 ...

  2. 数据结构与算法学习笔记4:递归+分治法

    数据结构与算法学习笔记4 递归 斐波那契数列 青蛙跳台阶问题 链表倒序打印 分治法 二分查找/折半查找 Binary Search 题目1:快速幂 题目2:如何判断一个数是否为2的次幂 递归 指在函数 ...

  3. 区块链学习笔记16——ETH交易树和收据树

    区块链学习笔记16--ETH交易树和收据树 学习视频:北京大学肖臻老师<区块链技术与应用> 笔记参考:北京大学肖臻老师<区块链技术与应用>公开课系列笔记--目录导航页 交易树和 ...

  4. 数据结构与算法学习④(哈夫曼树 图 分治回溯和递归)

    数据结构与算法学习④(哈夫曼树 图 回溯和递归 数据结构与算法学习④ 1.哈夫曼树 1.1.相关概念 1.2.哈夫曼树的构建 1.3.哈夫曼编码 1.4.面试题 2.图 2.1.图的相关概念 2.2. ...

  5. l2-004 这是二叉搜索树吗?_算法学习笔记(45): 二叉搜索树

    二叉搜索树(Binary Search Tree, BST)是一种常用的数据结构,在理想情况下,它可以以 的复杂度完成一系列修改和查询,包括: 插入一个数 删除一个数 查询某数的排名(排名定义为比该数 ...

  6. 【基础】基础算法学习笔记(状态空间)

    基础算法学习笔记(状态空间) 一.状态空间 1.定义(什么是状态空间):一个实际问题的各种可能情况构成的集合.(解释:为什么需要算法来和程序来处理问题?如果一道题可以手算得到答案,换句话说就是存在通过 ...

  7. Python最优化算法学习笔记(Gurobi)

    微信公众号:数学建模与人工智能 github地址:https://github.com/QInzhengk/Math-Model-and-Machine-Learning Python最优化算法学习笔 ...

  8. Python预测 数据分析与算法 学习笔记(特征工程、时间序列)

    微信公众号:数学建模与人工智能 GitHub - QInzhengk/Math-Model-and-Machine-Learning 第3章 探索规律 3.1 相关分析 相关关系是一种与函数关系相区别 ...

  9. 大顶堆删除最大值_算法学习笔记(47): 二叉堆

    堆(Heap)是一类数据结构,它们拥有树状结构,且能够保证父节点比子节点大(或小).当根节点保存堆中最大值时,称为大根堆:反之,则称为小根堆. 二叉堆(Binary Heap)是最简单.常用的堆,是一 ...

最新文章

  1. Java Swing 之Timer配合JProgressBar的使用
  2. 轻松玩转jquery。
  3. 共聚焦图片怎么加标尺_科研教程|利用PS给电镜加标尺
  4. html button跳转页面_Html
  5. 转 Grand Central Dispatch 基础教程:Part 1/2 -swift
  6. inventor中齿条怎么画_渐开线齿轮是怎么回事,图解6种齿轮加工工艺
  7. 线程同步--关键代码段(三)
  8. 前端开发过程中非常重要的知识点和框架
  9. java 先进先出 集合_Java中的集合Queue、LinkedList、PriorityQueue(四)
  10. Ueditor编辑器 .Net 版
  11. 灭蚊灯UKCA FCC GB4706安全检测认证
  12. oracle rac查看节点及宕库
  13. 白泽四足机器人Opencat玩法之——校准关节和陀螺仪
  14. 2022.09青少年软件编程(Python)等级考试试卷(四级)
  15. html怎么读取lrc文件,lrc文件怎么打开?lrc是什么文件?
  16. android10获取手机号码,【android,10】10.调用web服务获取手机号码归属地
  17. MATLAB中mat转换为xlsx表格数据
  18. 转:Web 2.0时代必读的24本经典书籍
  19. 实现车牌识别详细流程
  20. mysql中quarter_MySQL QUARTER()用法及代码示例

热门文章

  1. 学习项目课程第一周总结
  2. 基于微信预约挂号小程序毕业设计毕设作品(3)后台功能
  3. 零基础入门转录组分析——第五章(表达定量)
  4. 下一代物联网的发展趋势和驱动力
  5. js跳转页面参数过长用post请求跳转页面
  6. 笛卡尔积算法的sku
  7. TortoiseSVN进行patch后出现中文乱码的解决方法
  8. HDU 4386(计算几何+婆罗摩笈多公式一般形式)
  9. 玩课网计算机基础课后答案,三年级(上)Windows基础教案.doc
  10. 微信小程序订单管理源码_【程序源代码】微信小程序商城管理系统