目录

  • 时间序列
  • 指数平滑
    • 一次指数平滑
      • 预测示例
    • 二次指数平滑
      • 预测示例
    • 三次指数平滑

本博客参考:《python数学实验与建模 》

时间序列

时间序列数据是按照时间顺序排列的、随着时间变化且相互关联的数据序列,这类数据往往反映了某一事物、现象等随时间的变化状态或程度
常用的时间序列预测方法有多种:移动平均法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等等,本篇博客浅谈指数平滑法

指数平滑

指数平滑法实际上是一种特殊的加权移动平均法,与一次移动平均法相比,后者认为最近N期数据对于未来的值影响相同,即都加权1N\frac{1}{N}N1​;并且N以前的数据对未来值没有影响,加权为0,即某一期的预测值为
ytp=1N(yt−1+....+yt−N)y_{t}^p=\frac{1}{N}(y_{t-1}+....+y_{t-N})ytp​=N1​(yt−1​+....+yt−N​)

二次移动平均法更高次移动平均法的权数不是1N\frac{1}{N}N1​,并且次数越高,权数的结构越复杂,但是永远保持对称的权数,即两端项权数小、中间项权数大,这种方法的缺点是预测值总是停留在过去的水平上而无法预计会导致将来更高或更低的波动,不符合一般系统的动态性
一般,历史数据对于未来值的影响是随时间间隔的增长而是递减的,下面我们对指数平滑法的原理进行简要说明

一次指数平滑

设原始时间序列为
y=[y1,y2,...,yt]y=[y_1,y_2,...,y_t]y=[y1​,y2​,...,yt​]
设加权系数α\alphaα,0<α<10<\alpha<10<α<1

假设我们想要知道yt+1y_{t+1}yt+1​的值,那么经过一次指数平滑预测,我们可以得到

yt+1p=St(1)=αyt+(1−α)St−1(1)=St−1(1)+α(yt−St−1(1))=ytp+α(yt−ytp)(ytp表示yt的预测值)(1)\begin{aligned} y^{p}_{t+1}=&S_t^{(1)}\\ =&\alpha y_t+(1-\alpha)S^{(1)}_{t-1} \tag{1}\\ =&S^{(1)}_{t-1}+\alpha(y_t-S^{(1)}_{t-1}) \\ =&y_t^{p}+\alpha(y_t-y_{t}^p) &&(y^p_t表示y_t的预测值) \end{aligned}yt+1p​====​St(1)​αyt​+(1−α)St−1(1)​St−1(1)​+α(yt​−St−1(1)​)ytp​+α(yt​−ytp​)​​(ytp​表示yt​的预测值)​(1)

  1. St(1)S^{(1)}_tSt(1)​表示第t次的一次指数平滑值,将其展开
    St(1)=αyt+(1−α)St−1(1)=αyt+(1−α)[αyt−1+(1−α)St−2(1)]=..=α∑i=0∞(1−α)iyt−i\begin{aligned} S^{(1)}_t=&\alpha y_t+(1-\alpha)S^{(1)}_{t-1}\\ =&\alpha y_t+(1-\alpha)[\alpha y_{t-1}+(1-\alpha)S^{(1)}_{t-2}]\\ =&..\\ =&\alpha\sum^{\infty}_{i=0} (1-\alpha)^iy_{t-i} \end{aligned}St(1)​====​αyt​+(1−α)St−1(1)​αyt​+(1−α)[αyt−1​+(1−α)St−2(1)​]..αi=0∑∞​(1−α)iyt−i​​
    从上面的式子中我们会发现St(1)S_t^{(1)}St(1)​的实质是全部原始数据的加权平均值
  2. 加权系数α\alphaα规定了新数据和原数据所占比重的大小
    从式子(2)中我们可以看出,新的预测值是根据预测误差对原预测值进行修正得到的,加权系数的大小代表着修正幅度的大小,下面我们来看两种极端情况

α=0\alpha=0α=0表示下期预测值等于本期预测值,即不考虑任何新的信息
α=1\alpha=1α=1表示下期预测值等于本期预测值,即完全不相信过去的信息

上述情况对现实中的数据预测意义不大,因此我们要选择合适的加权系数使得0<α<10<\alpha<10<α<1,选取原则如下:
(1)时间序列波动不大且比较平稳,α\alphaα值应小一些,这样可以使得模型能够包含较长时间序列的信息
(2)时间序列具有迅速且明显的变动倾向,α\alphaα值应大一些,使得模型的预测值能够迅速跟上数据的变化
3. 关于初始指数平滑值S0(1)S^{(1)}_0S0(1)​
(1)当时间序列的数据较多(n>20),S0(1)S^{(1)}_0S0(1)​对于后面的预测值影响很小,可取时间序列的初始值作为S0(1)S^{(1)}_0S0(1)​,即S0(1)=y0S^{(1)}_0=y_0S0(1)​=y0​
(2)当时间序列的数据较少(n<20),S0(1)S^{(1)}_0S0(1)​对于后面的预测值影响较大,可以取最初m个时间序列数据的平均值作为S0(1)S^{(1)}_0S0(1)​,即S0(1)=y0+y1+...+ymmS^{(1)}_0=\frac{y_0+y_1+...+y_m}{m}S0(1)​=my0​+y1​+...+ym​​

预测示例

已知美国1790-2000年每隔10年的人口数据,请对2010年的美国人口进行预测

年份 1790 1800 1810 1820 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
人口 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 76.0 92.0 106.5 123.2 131.7 150.7 179.3 104.0 226.5 251.4 281.4

(1)加权系数α\alphaα的确定
仅仅从初始数据,我们并不能看出数据特征,因此我们尝试选取不同的加权系数并查看各自的预测效果,我们将分别取α=0.2、0.5、0.8\alpha=0.2、0.5、0.8α=0.2、0.5、0.8

(2)取初始指数平滑值S0(1)=y0=5.3S^{(1)}_0=y_0=5.3S0(1)​=y0​=5.3
(3)根据预测模型:yt+1p=ytp+α(yt−ytp)y^{p}_{t+1} =y_t^{p}+ \alpha(y_t-y_{t}^p)yt+1p​=ytp​+α(yt​−ytp​)进行预测

代码

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
y=np.array([3.9,5.3,7.2,9.6,12.9,17.1,23.2,31.4,38.6,50.2,62.9,76.0,92.0,106.5,123.2,131.7,150.7,179.3,204.0,226.5,251.4,281.4])
y.shape
>>> (22,)
# 定义一次指数平滑函数
def expmove(y,alpha):n=len(y)M=np.zeros(n)# 生成空序列,用于存储指数平滑值MM[0]=y[0]# 初始指数平滑值的赋值for i in range(1,len(y)):M[i]=alpha*y[i-1]+(1-alpha)*M[i-1]# 开始预测return M
# 使用三种alpha值查看预测效果
y_pred1=expmove(y,0.2)
y_pred2=expmove(y,0.5)
y_pred3=expmove(y,0.8)# 注意,此处的y_pred是一个预测序列,并非一个值
# 查看预测数据
d=pd.DataFrame(np.c_[y,y_pred1,y_pred2,y_pred3])
d

# 可视化查看预测值与真实值的对比
plt.figure(figsize=(12,8))
plt.plot(y,label='y')
plt.plot(y_pred1,label='y1')
plt.plot(y_pred2,label='y2')
plt.plot(y_pred3,label='y3')
plt.grid()
plt.legend()

运行结果

从上面的图像中我们看到α=0.8\alpha=0.8α=0.8的预测效果更好,我们使用α=0.8\alpha=0.8α=0.8预测时间序列的下一期数据

y_pred2010=0.8*y_pred3[-1]+(1-0.8)*y_pred3[-1]
y_pred2010
>>> 245.26975527147619

二次指数平滑

当时间序列的变动出现直线趋势时,一次指数平滑预测值存在明显的滞后偏差1,因此需要将这种滞后误差加以修正,可以在一次指数平滑的基础上进行二次指数指数平滑

上面我们我们知道一次指数平滑值
St(1)=St−1(1)+α(yt−St−1(1))(1)S_t^{(1)} = S^{(1)}_{t-1}+\alpha(y_t-S^{(1)}_{t-1})\tag{1}St(1)​=St−1(1)​+α(yt​−St−1(1)​)(1)
那么二次指数平滑值
St(2)=aSt(1)+(1−α)St−1(2)(2)S^{(2)}_t=aS^{(1)}_t+(1-\alpha)S_{t-1}^{(2)}\tag{2}St(2)​=aSt(1)​+(1−α)St−1(2)​(2)
当时间序列yty_tyt​从某时期开始具有直线趋势,可用直线
yt+mp=at+btm(其中m表示待预测的第m期数据)(3)y_{t+m}^p=a_t+b_tm(其中m表示待预测的第m期数据)\tag{3}yt+mp​=at​+bt​m(其中m表示待预测的第m期数据)(3)
进行趋势预测,截距和斜率的值如下2

{at=2St(1)−St(2)bt=α1−α(St(1)−St(2))\begin{cases} a_t=2S_t^{(1)}-S_t^{(2)}\\ b_t=\frac{\alpha}{1-\alpha}(S_t^{(1)}-S_t^{(2)}) \end{cases} {at​=2St(1)​−St(2)​bt​=1−αα​(St(1)​−St(2)​)​

预测示例

已知某家具城近十年的销售额如下,请预测该家具城明、后两年的销售额

年份 2013 2014 2015 2016 217 2018 2019 2020 2021 2022
销售额 2828 2949 2995 3181 3220 3384 3497 3702 3813 3948

(1)加权系数α\alphaα的确定
根据上述数据我们可以看出数据的波动不大,基本呈线性趋势,因此我们可以将加权系数的值适当取小一些,取α=0.4\alpha=0.4α=0.4

(2)取初始指数平滑值S0(1)=S0(2)=y0=2828S^{(1)}_0=S^{(2)}_0=y_0=2828S0(1)​=S0(2)​=y0​=2828
根据公式(1)(2)计算指数平滑值

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
alpha=0.4
# 定义指数平滑函数
def expmove(y,alpha=0.4):n=len(y)M=np.zeros(n)# 生成空序列,用于存储指数平滑值MM[0]=y[0]# 初始指数平滑值的赋值for i in range(1,len(y)):M[i]=alpha*y[i-1]+(1-alpha)*M[i-1]# 开始预测return M
# 一次指数平滑序列
ss1=expmove(y)
# 二次指数平滑序列
ss2=expmove(ss1)

(3)根据公式(3)对时间序列的值进行预测

# 预测原时间序列
y_pred=np.zeros(len(y))
for i in range(1,len(y)):y_pred[i]=2*ss1[i-1]-ss2[i-1]+alpha/(1-alpha)*(ss1[i-1]-ss2[i-1])
# 2023
y_pred2023=2*ss1[-1]-ss2[-1]+alpha/(1-alpha)*(ss1[-1]-ss2[-1])*1
# 2024
y_pred2024=2*ss1[-1]-ss2[-1]+alpha/(1-alpha)*(ss1[-1]-ss2[-1])*2
y_pred2023,y_pred2024
>>>(4128.513034240001, 4335.155486720001)
# 查看预测数据
d=pd.DataFrame(np.c_[y,ss1,ss2,y_pred])
d

运行结果

# 对预测数据进行简单的处理
y_pred=np.append(y_pred,[y_pred2023,y_pred2024])
y_pred[0]=y[0]
# 可视化查看预测值与真实值的对比
plt.figure(figsize=(12,8))
plt.plot(y,label='y')
plt.plot(ss1,label='ss1')
plt.plot(ss2,label='ss2')
plt.plot(y_pred,label='y_pred')
plt.grid()
plt.legend()

运行结果

三次指数平滑

To be continued


  1. 这里应该是需要推导一下的 ↩︎

  2. 这里应该也需要推导一下 ↩︎

python数学建模--时间序列模型--指数平滑相关推荐

  1. 数学建模传染病模型_数学建模| 时间序列模型

    1 数学建模 时间序列模型 1.与实践有关系的一组数据,叫做时间序列: 2.得到时间序列的数据后,要构建模型,其中平稳时间序列的模型,是本节课重点介绍的: 3.y=at+季节性+周期性 一.     ...

  2. 数学建模-三次指数平滑法(预测模型)

            三次指数平滑预测法是在二次指数平滑值的基础上进行第三次指数平滑.同样,三次指数平滑值并不直接用来预测,而是为求解平滑系数.建立预测模型作准备.            三次指数平滑法几乎 ...

  3. 数学建模 时间序列模型

    时间序列模型 时间序列是按时间顺序排列的.随时间变化且相互关联的数据序列.分析时间序 列的方法构成数据分析的一个重要领域,即时间序列分析. 时间序列根据所研究的依据不同,可有不同的分类. 1.按所研究 ...

  4. 数学建模——时间序列模型及spss实现

    实验数据:链接: https://pan.baidu.com/s/1SFy2Zc6A6KAT5rVUVUMWEA 提取码: 8191 本部分过于复杂,以例题形式讲解 例题1:某产品销售数据(2014年 ...

  5. 数学建模——支持向量机模型详解Python代码

    数学建模--支持向量机模型详解Python代码 from numpy import * import random import matplotlib.pyplot as plt import num ...

  6. 数学建模——线性规划模型详解Python代码

    数学建模--线性规划模型详解Python代码 标准形式为: min z=2X1+3X2+x s.t x1+4x2+2x3>=8 3x1+2x2>=6 x1,x2,x3>=0 上述线性 ...

  7. 【Python数学建模】SEIR传染病模型模型延伸-SEIDR模型(一),加入疫苗接种、政府管控、病毒变异等因素的影响

    目录 一. SEIR传染病模型 二. SEIR模型的延伸--SEIDR模型 三. 模型延伸--影响因素1:疫苗接种 四. 模型延伸--影响因素2:政府管控 五. 模型延伸--影响因素3:病毒变异 写在 ...

  8. 数学建模常见模型总结

    数学建模常见模型总结 一.插值 当已有数据量不够,需要补充,且认定已有数据可信时,通常利用函数插值方法. 常用插值方法 拉格朗日插值 分段线性插值 Hermite 三次样条插值 克里金法 matlab ...

  9. 数学建模常用模型04:灰色关联分析法

    数学建模常用模型04:灰色关联分析法 灰色关联分析法 本文所用的资料参考来源:美赛资料网:美赛资料网 与灰色预测模型一样,比赛不能优先使用,灰色关联往往可以与层次分析结合使用.层次分析用在确定权重上面 ...

最新文章

  1. python vs javascript_Python“是”vs JavaScript===
  2. 设计模式之五 责任链模式(Chain of Responsibility)
  3. 【直播预告】7月18日3D游戏引擎免费公开课答疑,參与送C币!
  4. 2018 AI 产品趋势:喧嚣的追风者和静默的收割人
  5. 万物互联时代 能效管理是怎样一个玩法?
  6. 阿里云制造行业总经理胡鑫:中台技术如何支撑企业数字化转型
  7. 细胞计算机生命游戏,【图片】【20170108 其它內容】【转】生命游戏【三体吧】_百度贴吧...
  8. 差点令金融世界崩塌的数学公式
  9. linux版本和目录结构
  10. Spring Boot 默认数据源 HikariDataSource 与 JdbcTemplate 初遇
  11. Mysql调试存储过程最简单的方法
  12. 三角网导线平差实例_导线平差实例(一):简易平差
  13. MKVToolNix v7.4.0 正式版
  14. 天津电动自行车外贸出口认证GCC合格证
  15. 牛逼的项目一定要有个牛逼的名字
  16. pyinstaller打包指南,No module named xxx,is only available if OpenCV is installed.虚拟环境打包
  17. 学计算机高中选那三科,高中选哪三科最吃香
  18. 国家开发银行广东省分行
  19. c#文件名去掉后缀_C#如何从文件路径中分离出文件名以及文件扩展名
  20. 如何更改AD域安全策略-密码必须符合复杂性要求

热门文章

  1. OpenCV3 和 Qt5 计算机视觉 学习笔记 - 图像转换
  2. 华为鸿蒙系统到底能否使用,【图片】华为鸿蒙系统的厉害之处在于 你可能非用不可 !【手机吧】_百度贴吧...
  3. 输入一串字符,并判断其中英文字符和数字字符的个数——C语言实现(C语言练习)
  4. element组件el-date-picker禁用当前时分秒之前的日期时间选择(代码最少)
  5. boost spirit 解析字符串 (一)
  6. 人民币转换为中文大写
  7. mysql篇:如何进入mysql
  8. RTMP 直播推流时延
  9. 计算字符串长度.length()和数组长度.length的区别
  10. Linux系统下管理员账号root忘记密码怎么找回