数字信号的最佳接受

7.1 最小差错概率接受准则

7.1.1 数字信号接受的统计模型

消息空间、信号空间、噪声空间、观察空间即判决空间分别代表消息、发送信号、噪声、接收信号波形及判决结果的所有可能状态的集合。
∑ i = 1 n P ( x i ) = 1 \sum_{i=1}^{n}P(x_i)=1 i=1∑n​P(xi​)=1

7.1.2 将消息变换为电信号

信道特性是加性高斯噪声信道,噪声空间 n n n是加性高斯噪声。
【结论】

  • 若噪声是高斯白噪声,则它在任意两个时刻的样值都是互不相关的,同时也是统计独立
  • 若噪声时带限高斯型的,按抽样定理对其抽样,则它在抽样时刻上的样值也是互不相关的,同时也是统计独立
    f ( n i ) = 1 2 π σ n e − n i 2 2 σ n 2 f(n_i)=\frac{1}{\sqrt{2 \pi} \sigma_n}e^{-\frac{n_i^2}{2\sigma_n^2}} f(ni​)=2π ​σn​1​e−2σn2​ni2​​
    f ( n ) = 1 ( 2 π σ n ) k e − 1 2 σ n 2 ∑ i = 1 k n i 2 = 1 ( 2 π σ n ) k e − 1 n 0 ∫ 0 T [ n ( t ) ] 2 d t f(n)=\frac{1}{(\sqrt{2 \pi} \sigma_n)^k}e^{-\frac{1}{2\sigma_n^2}\sum_{i=1}^{k}n_i^2}=\frac{1}{(\sqrt{2 \pi} \sigma_n)^k}e^{-\frac{1}{n_0}\int_{0}^{T}[n(t)]^2dt} f(n)=(2π ​σn​)k1​e−2σn2​1​∑i=1k​ni2​=(2π ​σn​)k1​e−n0​1​∫0T​[n(t)]2dt
    f s i ( y ) = 1 ( 2 π σ n ) k e − 1 n 0 ∫ 0 T [ y ( t ) − s i ( t ) ] 2 d t f_{si}(y)=\frac{1}{(\sqrt{2 \pi} \sigma_n)^k}e^{-\frac{1}{n_0}\int_{0}^{T}[y(t)-s_i(t)]^2dt} fsi​(y)=(2π ​σn​)k1​e−n0​1​∫0T​[y(t)−si​(t)]2dt似然函数

7.1.3 最佳接受准则(最小差错概率准则

系统总的误码率:
P e = P ( s 1 ) P s 1 ( s 2 ) + P ( s 2 ) P s 2 ( s 1 ) = P ( s 1 ) ∫ y 0 ′ ∞ f s 1 ( y ) d y + P ( s 2 ) ∫ − ∞ y 0 ′ f s 2 ( y ) d y P_e=P(s_1)P_{s1}(s_2)+P(s_2)P_{s2}(s_1)=P(s_1)\int_{y_0'}^{\infty}f_{s1}(y)dy+P(s_2)\int_{-\infty}^{y_0'}f_{s2}(y)dy Pe​=P(s1​)Ps1​(s2​)+P(s2​)Ps2​(s1​)=P(s1​)∫y0′​∞​fs1​(y)dy+P(s2​)∫−∞y0′​​fs2​(y)dy
系统总的误码率与先验概率、似然函数及划分点 y 0 ′ y_0' y0′​有关
似然比准则:
{ f s 1 ( y 0 ) f s 2 ( y 0 ) > P ( s 1 ) P ( s 2 ) , 判为 r 1 f s 1 ( y 0 ) f s 2 ( y 0 ) < P ( s 1 ) P ( s 2 ) , 判为 r 2 \begin{cases} \dfrac{f_{s1}(y_0)}{f_{s2}(y_0)}>\dfrac{P(s_1)}{P(s_2)},&\text{判为}r_1\\ \dfrac{f_{s1}(y_0)}{f_{s2}(y_0)}<\dfrac{P(s_1)}{P(s_2)},&\text{判为}r_2 \end{cases} ⎩⎪⎪⎨⎪⎪⎧​fs2​(y0​)fs1​(y0​)​>P(s2​)P(s1​)​,fs2​(y0​)fs1​(y0​)​<P(s2​)P(s1​)​,​判为r1​判为r2​​
在加性高斯白噪声条件下,似然比准则和最小差错概率准则等价
当 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)的发送概率相等时,即 P ( s 1 ) P(s_1) P(s1​)= P ( s 2 ) P(s_2) P(s2​)时,则
{ f s 1 ( y 0 ) > f s 2 ( y 0 ) , 判为 r 1 f s 1 ( y 0 ) < f s 2 ( y 0 ) , 判为 r 2 \begin{cases} f_{s1}(y_0)>f_{s2}(y_0),&\text{判为}r_1\\ f_{s1}(y_0)<f_{s2}(y_0),&\text{判为}r_2 \end{cases} {fs1​(y0​)>fs2​(y0​),fs1​(y0​)<fs2​(y0​),​判为r1​判为r2​​
物理概念:接收到的波形中,那个似然函数大就判为哪个信号出现。
最小差错概率准则是数字通信系统最常采用的准则

7.2 确知数字信号的最佳接受

数字通信系统中接收机输入信号根据其特性的不同分为:确知信号和随参信号

  • 确知信号:一个信号出现后,它的所有参数都是确知的。
  • 随参信号:分为随机相位信号、随机振幅信号、随机振幅和随机相位信号(又称起伏信号)

所谓最佳接收机设计是指在一组给定的假设条件下,利用信号检测理论给出满足某种最佳准则接收机的数学描述和组成原理框图,而不涉及结婚时搜集各级的具体电路
采用的最佳准则是最小差错概率准则

7.2.1 二进制确知数字信号最佳接收机结构$$

{ U 1 + ∫ 0 T y ( t ) s 1 ( t ) d t > U 2 + ∫ 0 T y ( t ) s 2 ( t ) d t , 判为 r 1 U 1 + ∫ 0 T y ( t ) s 1 ( t ) d t < U 2 + ∫ 0 T y ( t ) s 2 ( t ) d t , 判为 r 2 \begin{cases} U_1+\int_{0}^{T}y(t)s_1(t)dt>U_2+\int_{0}^{T}y(t)s_2(t)dt,&\text{判为}r_1\\ U_1+\int_{0}^{T}y(t)s_1(t)dt<U_2+\int_{0}^{T}y(t)s_2(t)dt,&\text{判为}r_2 \end{cases} {U1​+∫0T​y(t)s1​(t)dt>U2​+∫0T​y(t)s2​(t)dt,U1​+∫0T​y(t)s1​(t)dt<U2​+∫0T​y(t)s2​(t)dt,​判为r1​判为r2​​
其中
{ U 1 = n 0 2 ln ⁡ P ( s 1 ) , 判为 r 1 U 2 = n 0 2 ln ⁡ P ( s 2 ) , 判为 r 2 \begin{cases} U_1=\frac{n_0}{2}\ln P(s_1),&\text{判为}r_1\\ U_2=\frac{n_0}{2}\ln P(s_2),&\text{判为}r_2 \end{cases} {U1​=2n0​​lnP(s1​),U2​=2n0​​lnP(s2​),​判为r1​判为r2​​
结构: y ( t ) y(t) y(t)分别与 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)相乘再经过积分(相乘后积分:相关器)分别加上 U 1 U_1 U1​和 U 2 U_2 U2​经过引入抽样脉冲的比较器后输出。
【注意】猝熄脉冲引入到积分器中的目的:猝熄脉冲在每个码元末了时刻对积分器进行清洗,使积分器的输出信号值归到零
这种最佳接受机的结构是按比较观察波形 y ( t ) y(t) y(t)与 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)的相关性而构成的,成为相关接收机。
当 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)的先验概率相等时,即 P ( s 1 ) P(s_1) P(s1​)= P ( s 2 ) P(s_2) P(s2​)时,则 U 1 = U 2 U_1=U_2 U1​=U2​

{ ∫ 0 T y ( t ) s 1 ( t ) d t > ∫ 0 T y ( t ) s 2 ( t ) d t , 判为 r 1 ∫ 0 T y ( t ) s 1 ( t ) d t < ∫ 0 T y ( t ) s 2 ( t ) d t , 判为 r 2 \begin{cases} \int_{0}^{T}y(t)s_1(t)dt>\int_{0}^{T}y(t)s_2(t)dt,&\text{判为}r_1\\ \int_{0}^{T}y(t)s_1(t)dt<\int_{0}^{T}y(t)s_2(t)dt,&\text{判为}r_2 \end{cases} {∫0T​y(t)s1​(t)dt>∫0T​y(t)s2​(t)dt,∫0T​y(t)s1​(t)dt<∫0T​y(t)s2​(t)dt,​判为r1​判为r2​​
则最佳接收机结构的加法器可以省去。
2.2二进制确知信号最佳接收机误码性能
【结论】最佳接收机的误码性能与先验概率 P ( s 1 ) P(s_1) P(s1​)和 P ( s 2 ) P(s_2) P(s2​)、噪声功率谱密度 n 0 n_0 n0​及 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)之差的能量有关,而与 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)本身的具体结构无关

  • 定义 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)之间的互相关系数为:
    ρ = ∫ 0 T s 1 ( t ) s 2 ( t ) d t E 1 E 2 \rho=\frac{\int_{0}^{T}s_1(t)s_2(t)dt}{\sqrt{E_1E_2}} ρ=E1​E2​ ​∫0T​s1​(t)s2​(t)dt​
  • 当 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)具有相等的能量时:
    A = E b ( 1 − ρ ) n 0 A=\sqrt{\frac{E_b(1-\rho)}{n_0}} A=n0​Eb​(1−ρ)​ ​
    P e = 1 2 e r f c ( A 2 ) = 1 2 e r f c ( E b ( 1 − ρ ) 2 n 0 ) P_e=\frac{1}{2}erfc(\frac{A}{\sqrt2})=\frac{1}{2}erfc(\sqrt{\frac{E_b(1-\rho)}{2n_0}}) Pe​=21​erfc(2 ​A​)=21​erfc(2n0​Eb​(1−ρ)​ ​)
    (二进制确知信号等概且能量相等时最佳接收机误码率的一般表示式)
    它与信噪比 E b n 0 \dfrac{E_b}{n_0} n0​Eb​​及发送信号之间互相关系数 ρ \rho ρ有关

    • 当互相关系数 ρ = − 1 \rho=-1 ρ=−1时
      P e = 1 2 e r f c ( E b n 0 ) P_e=\frac{1}{2}erfc(\sqrt{\frac{E_b}{n_0}}) Pe​=21​erfc(n0​Eb​​ ​)
      发送信号先验概率相等且能量相等时,二进制确知信号最佳接收机所能达到的最小误码率
      响应的信号 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)之间的互相关系数 ρ = − 1 \rho=-1 ρ=−1:2PSK信号当发送二进制信号 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)之间的互相关系数 ρ = − 1 \rho=-1 ρ=−1时的波形就称为是最佳波形
    • 当互相关系数 ρ = 0 \rho=0 ρ=0时(2FSK信号的相关系数就等于或近似等于0)
      P e = 1 2 e r f c ( E b 2 n 0 ) P_e=\frac{1}{2}erfc(\sqrt{\frac{E_b}{2n_0}}) Pe​=21​erfc(2n0​Eb​​ ​)
    • 当互相关系数 ρ = 1 \rho=1 ρ=1时(两种波形相同)
      P e = 1 2 P_e=\frac{1}{2} Pe​=21​
  • 若发送信号 s 1 ( t ) s_1(t) s1​(t)和 s 2 ( t ) s_2(t) s2​(t)是不等能量信号
    2ASK信号: E 1 = 0 E_1=0 E1​=0, E 2 = E b E_2=E_b E2​=Eb​,则 A = E b 2 n 0 A=\sqrt{\dfrac{E_b}{2n_0}} A=2n0​Eb​​ ​
    P e = 1 2 e r f c ( E b 4 n 0 ) P_e=\frac{1}{2}erfc(\sqrt{\frac{E_b}{4n_0}}) Pe​=21​erfc(4n0​Eb​​ ​)
  • 在数字基带传输系统误码性能分析中:
    为什么双极性信号的误码率低于单极性信号?
    因为双极性信号之间的互相关系数 ρ = − 1 \rho=-1 ρ=−1,而单极性信号之间的互相关系数 ρ = 0 \rho=0 ρ=0
  • 在数字频带传输西酮误码性能分析中:
    为什么2PSK误码率性能优于2FSK和2ASK,2FSK误码性能优于2ASK?

    • 2PSK信号能使互相关系数 ρ = − 1 \rho=-1 ρ=−1,2PSK信号是最佳信号波形;
    • 2FSK和2ASK信号对应的互相关系数 ρ = 0 \rho=0 ρ=0,2PSK系统的误码率性能优于2FSK和2ASK;
    • 2FSK信号是等能量信号,而2ASK信号不是等能量信号,2FSK系统的误码率性能优于2ASK系统

7.2.3多进制确知信号最佳接收机误码性

【结论】多进制确知信号的最佳接收机性能与信噪比 E n 0 \dfrac{E}{n_0} n0​E​有关,还与进制数 m m m有关
在相同进制数 P e P_e Pe​下,所需的信号能量(每比特所占能量)将随进制数 m m m的增大而减小,但减小量越来越小
E b n 0 = E b n 0 log ⁡ 2 m = E n 0 k \frac{E_b}{n_0}=\frac{E_b}{n_0\log_2{m}}=\frac{E}{n_0k} n0​Eb​​=n0​log2​mEb​​=n0​kE​

7.3 普通接收机与最佳接收机性能比较

两种结构形式接收机误码率表示式具有相同数学形式,实际接收机中的信噪比 S N \dfrac{S}{N} NS​与最佳接收机中的能量噪声功率谱闽都之比 E b n 0 \dfrac{E_b}{n_0} n0​Eb​​相对应

接受方式 普通接收机误码率 P e P_e Pe​ 最佳接收机误码率 P e P_e Pe​
相干OOK 1 2 e r f c ( r 4 ) \frac{1}{2}erfc(\sqrt{\frac{r}{4}}) 21​erfc(4r​ ​) 1 2 e r f c ( E b 4 n 0 ) \frac{1}{2}erfc(\sqrt{\frac{E_b}{4n_0}}) 21​erfc(4n0​Eb​​ ​)
非相干OOK 1 2 e − r 4 \frac{1}{2}e^{-\frac{r}{4}} 21​e−4r​ 1 2 e − E b 4 n 0 \frac{1}{2}e^{-\frac{E_b}{4n_0}} 21​e−4n0​Eb​​
相干FSK 1 2 e r f c ( r 2 ) \frac{1}{2}erfc(\sqrt{\dfrac{r}{2}}) 21​erfc(2r​ ​) 1 2 e r f c ( E b 2 n 0 ) \frac{1}{2}erfc(\sqrt{\frac{E_b}{2n_0}}) 21​erfc(2n0​Eb​​ ​)
非相干FSK 1 2 e − r 2 \frac{1}{2}e^{-\frac{r}{2}} 21​e−2r​ 1 2 e − E b 2 n 0 \frac{1}{2}e^{-\frac{E_b}{2n_0}} 21​e−2n0​Eb​​
相干PSK 1 2 e r f c ( r ) \frac{1}{2}erfc(\sqrt{r}) 21​erfc(r ​) 1 2 e r f c ( E b n 0 ) \frac{1}{2}erfc(\sqrt{\frac{E_b}{n_0}}) 21​erfc(n0​Eb​​ ​)
同步检测2DPSK e r f c ( r ) [ 1 − 1 2 e r f c ( r ) ] erfc(\sqrt{r})[1-\frac{1}{2}erfc(\sqrt{r})] erfc(r ​)[1−21​erfc(r ​)] e r f c ( E b n 0 ) [ 1 − 1 2 e r f c ( E b n 0 ) ] erfc(\sqrt{\frac{E_b}{n_0}})[1-\frac{1}{2}erfc(\sqrt{\frac{E_b}{n_0}})] erfc(n0​Eb​​ ​)[1−21​erfc(n0​Eb​​ ​)]
差分相干2DPSK 1 2 e − r \frac{1}{2}e^{-r} 21​e−r 1 2 e − E b n 0 \frac{1}{2}e^{-\frac{E_b}{n_0}} 21​e−n0​Eb​​

若 r > E b n 0 r>\dfrac{E_b}{n_0} r>n0​Eb​​,实际接收机误码率小于最佳接收机误码率,实际接收机性能优于最佳接收机性能;
若 r < E b n 0 r<\dfrac{E_b}{n_0} r<n0​Eb​​,实际接收机误码率大于最佳接收机误码率,最佳接收机性能优于实际接收机性能;
若 r = E b n 0 r=\dfrac{E_b}{n_0} r=n0​Eb​​,实际接收机误码率等于最佳接收机误码率,实际接收机性能优于最佳接收机性能;

  • 【分析 r r r与 E b n 0 \dfrac{E_b}{n_0} n0​Eb​​之间的关系】

    • 实际接收机输入总是有一个带通滤波器,其作用有两个:

      • 使输入信号顺利通过;
      • 使噪声尽可能少的通过,以减小噪声对信号检测的影响。

信噪比 r = S N r=\dfrac{S}{N} r=NS​指的是带通滤波器输出端的信噪比。则带通滤波器输出端的信噪比为:
r = S N = S n 0 B r=\frac{S}{N}=\frac{S}{n_0B} r=NS​=n0​BS​

对于最佳接收系统,接收机前段没有带通滤波器,其输入端信号能量与噪声功率谱密度之比为:
E b n 0 = S T n 0 = S n 0 1 T \frac{E_b}{n_0}=\frac{ST}{n_0}=\frac{S}{n_0\dfrac{1}{T}} n0​Eb​​=n0​ST​=n0​T1​S​

对系统性能的比较最终可归结为对实际接收机带通滤波器带宽 B B B与码元时间宽度 T T T的导数的比较:

  • 若 B < 1 T B<\dfrac{1}{T} B<T1​,则实际接收机性能优于最佳接收机性能;
  • 若 B > 1 T B>\dfrac{1}{T} B>T1​,则最佳接收机性能优于实际接收机性能;
  • 若 B = 1 T B=\dfrac{1}{T} B=T1​,则实际接收机性能与实际接收机性能相同

对于2PSK等数字调制信号, 1 T \dfrac{1}{T} T1​的宽度等于2PSK频谱主瓣宽度的一半。若选择带通滤波器的带宽 B ≤ 1 T B \leq \dfrac{1}{T} B≤T1​,则必然会使信号产生严重的失真,这与实际接收机中假设“带通滤波器应使输入信号顺利通过”条件相矛盾。在普通接收机中,为使信号顺利通过,带通滤波器的带宽必须满足 B > 1 T B>\dfrac{1}{T} B>T1​。在此情况系,实际接收机性能比最佳接收机性能差。
【结论】相同条件下,最佳接收机性能一定由于实际接收机性能

7.4 数字信号匹配滤波接收原理

  • 在数字信号接受中,滤波器的作用有两个:

    • 使滤波器输出有用信号成分尽可能强
    • 抑制信号带外噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号判决的影响
  • 最佳线性滤波器设计准则:
    • 使滤波器输出信号波形与发送信号波形之间的均方误差最小——导出最佳线性滤波器称为维纳滤波器
    • 使滤波器输出信噪比在某一特定时刻达到最大——导出的最佳线性滤波器称为匹配滤波器(广泛应用)

7.4.1 数字匹配滤波器原理

抽样判决器输出数据正确与否,与滤波器输出信号波形和发送波形之间的相似程度无关,也就是与滤波器输出信号波形的失真程度无关,而只取决于抽样时刻信号的瞬时功率与噪声平均功率之比,即输出信噪比
当选择的滤波器传输特性使输出信噪比达到最大值时,该滤波器就称为输出信噪比最大的最佳线性滤波器——为匹配滤波器
线性滤波器所能给出的最大输出信噪比为:
r o max ⁡ = 2 E n 0 r_{o\max}=\frac{2E}{n_0} romax​=n0​2E​
成立条件为:
H ( ω ) = K S ∗ ( ω ) e − j ω t 0 H(\omega)=KS^*(\omega)e^{-j\omega t_0} H(ω)=KS∗(ω)e−jωt0​
即滤波器的传输函数除相乘因子 K e − j ω t 0 Ke^{-j\omega t_0} Ke−jωt0​外,与信号频谱的复共轭相一致,称为匹配滤波器

  • 匹配滤波器的单位冲击响应为
    h ( t ) = K s ( t 0 − t ) h(t)=Ks(t_0-t) h(t)=Ks(t0​−t)
    匹配滤波器的单位冲激响应 h ( t ) h(t) h(t)是输入信号 s ( t ) s(t) s(t)的镜像函数, t 0 t_0 t0​为输出最大信噪比时刻,一般情况下可取 t 0 = T t_0=T t0​=T
    匹配滤波器的输出波形是输入信号 s ( t ) s(t) s(t)的自相关函数的 K K K倍
    匹配滤波器可以看成是一个计算输入信号自相关函数的相关器,其在 T T T时刻得到最大输出信噪比 r o max ⁡ = 2 E n 0 r_{o\max}=\dfrac{2E}{n_0} romax​=n0​2E​。由于输出信噪比与常数 K K K无关,通常取 K = 1 K=1 K=1
  • 输出信号:
    s o ( t ) = K R ( t − T ) s_o(t)=KR(t-T) so​(t)=KR(t−T)

7.4.2 匹配滤波器在最佳接收中的应用

匹配滤波器在抽样时刻 t = T t=T t=T的输出样值与最佳接收机中相关器在 t = T t=T t=T时的输出样值相等,
可以用匹配滤波器代替相关器构成最佳接收机

  • 在最小差错概率准则下,相关器形式的最佳接收机与匹配滤波器形式的最佳接收机等价
  • 无论是相关器还是匹配滤波器形式的最佳接收机,比较器都是在 t = T t=T t=T时刻才做出判决,也即在码元结束时刻才能给出最佳判决结果
  • 判决时刻的任何偏差都将影响接收机的最佳性能

7.5 最佳基带传输系统

最佳接收机的性能不仅与接收机结构有关,而且与发送端多选择的信号形式有关

7.5.1 最佳基带传输系统的组成

结构:{ a n a_n an​} → \to →发送滤波器传输函数 G T ( ω ) G_T(\omega) GT​(ω) → \to →信道传输特性 C ( ω ) C(\omega) C(ω) → \to →接受滤波器传输函数 G R ( ω ) G_R(\omega) GR​(ω) → \to →抽样判决 → \to →{ a n ′ a_n' an′​}
最佳基带传输系统的准则是:判决器输出概率最小
影响系统误码率性能的因素有两个:码间干扰(乘性噪声,通过系统传输函数的设计,可消除)和噪声(加性噪声,通过接受滤波器的设计,不能消除)
最佳基带传输系统的设计就是通过对发送滤波器、接受滤波器和系统总的传输函数的设计,使得输出差错概率最小

  • 理想信道的最佳基带系统
    G T ( ω ) = G R ( ω ) = H ( ω ) G_T(\omega)=G_R(\omega)=\sqrt{H(\omega)} GT​(ω)=GR​(ω)=H(ω) ​
  • 非理想信道的最佳基带系统
    在接收端增加一个横向均衡滤波器,使系统总传输特性满足上式要求
    T ( ω ) = T s ∑ i = − ∞ ∞ ∣ G T ( ω + 2 π i T s ) ∣ 2 ∣ C ( ω + 2 π i T s ) ∣ 2 T(\omega)=\frac{T_s}{\sum_{i=-\infty}^{\infty}|G_T(\omega+\frac{2 \pi i}{T_s})|^2|C(\omega+\frac{2 \pi i}{T_s})|^2} T(ω)=∑i=−∞∞​∣GT​(ω+Ts​2πi​)∣2∣C(ω+Ts​2πi​)∣2Ts​​

7.5.2 最佳基带传输系统的误码性能

P e = L − 1 L e r f c [ 3 E ( L 2 − 1 ) n 0 ] P_e=\frac{L-1}{L}erfc[\sqrt{\frac{3E}{(L^2-1)n_0}}] Pe​=LL−1​erfc[(L2−1)n0​3E​ ​]
条件: L L L进制、理想信道(即 C ( ω ) C(\omega) C(ω))、消除码间串扰
二进制最佳基带传输系统的误码性能与采用发送波形的二进制确知信号最佳接受机的误码性能相等

【笔记整理】通信原理第七章复习——数字信号的最佳接受相关推荐

  1. 【笔记整理】通信原理第五章复习——模拟信号的数字化

    5.1 引言 数字通信系统的优点: (1)抗干扰能力强 (2)传输差错可控 (3)便于现代化数字信号处理技术来对数字信息进行处理 (4)易于集成化 (5)易于加密处理,保密强度高 利用数字通信系统传输 ...

  2. 【笔记整理】通信原理第六章复习——数字带通传输系统(上)(二进制数字调制)

    数字的带通传输系统 数字信号的传输方式分为基带传输和带通传输.实际中的大多数信道因具有带通特性而不能直接传送基带信号,这是因为数字基带信号往往具有丰富的低频分量.为了使数字信号在带通信道中传输,必须用 ...

  3. 【笔记整理】通信原理第四章复习——数字基带传输

    4.1 引言 数字基带信号--数字信号「补充:基带信号(指未经调制的信号.特征是其频谱从零频率或很低频率开始,占据较宽的频带.)基带在传输前,必须经过一些处理或某些变换,比如码型变换.波形变换和频谱变 ...

  4. 【笔记整理】通信原理第六章复习——数字带通传输系统(下)(多进制数字调制)

    多进制数字调制系统 在信道频带受限时,为了提高频带利用率,通常多进制数字调制系统.以增加信号功率和实现上的复杂性. RB=Rblog⁡2M,ηb=RbBR_B=\frac{R_b}{\log_2M}, ...

  5. 计算机网络原理第七章,北大计算机网络原理第七章.pdf

    北大计算机网络原理第七章 计算机网络计算机网络 北京大学计算中北京大学计算中心 王竹威王竹威 zhuweiw@zhuweiw@ 第七章应用层 应用层要做什么? 应用层要做什么? 180 zhuweiw ...

  6. 通信原理-第9章-数字信号的最佳接收

    学习步骤 首先看该章节后的习题与小结,圈出术语 带着名术语去书本找解释 带着术语去理解书中的图标.案例及例题 应用 观看该章节后的习题与小结,圈出术语 最佳接收:接收滤波器接收最高质量的信号,我们将错 ...

  7. MYSQL学习笔记(自用)第七章

    MYSQL学习笔记(自用)第七章 第一节.创建视图| Creating Views USE sql_invoicing;CREATE VIEW sales_by_client AS SELECT c. ...

  8. 通信原理第五章 基带信号的表示和传输

    通信原理第五章 基带信号的表示和传输 思维导图

  9. 通信原理2_各章知识点提纲_期末复习必备_考研复习必备

    通信原理2 复习提纲 知识点总结 第七章 信源与信源编码 第八章 信道 第九章 信道编码 第十章 扩频 第十一章 OFDM 整理不易,转载需注明出处 第七章 信源与信源编码 第八章 信道 第九章 信道 ...

最新文章

  1. POJ2186:Popular Cows(tarjan+缩点)
  2. 分类系统的构成与外部表象
  3. c语言输入r1 r2垫片的面积,2011学生C语言上机实验
  4. EasyRTSPClient:基于live555封装的支持重连的RTSP客户端RTSPClient
  5. FormsAuthentication 和 Session 超时时间不一的问题
  6. 动态规划——最长公共子序列问题(LCS)
  7. 程序员的自我修养 pdf_软件特攻队|C/C++程序员的自我修养(5)
  8. linux内核模块开发(笔记),Linux内核模块学习笔记
  9. java连接redis集群
  10. centos7 安装couchbase集群
  11. 一般试卷的纸张大小是多少_试卷字体多大合适 标准试卷的字体大小
  12. TypeError: from_buffer() cannot return the address of the raw string within a str or unicode or byte
  13. ByteBuffer的原理和使用详解
  14. Qt之简易版网络调试助手
  15. 使用 mv 命令移动文件夹
  16. 手把手教你用Unet实现语义分割(Pytorch版)
  17. 【解读】山香科技:互联网从软件革命到移动革命
  18. 4.发布帖子,评论帖子
  19. 【Java 基础语法01】 举例描述二进制和十进制的互转
  20. SSIS 通过 WINscp 从SFTP下载文件

热门文章

  1. Cesi运行报错AttributeError: can‘t set attribute
  2. 我的分形屏保 国王风暴《KingBlizzard》
  3. 【高并发编程】再谈同步、异步、阻塞、非阻塞
  4. 404 Not Found [IP: 91.189.91.39 80] 解决办法:换源,还是换源 !!
  5. 吕爱国倾心讲座:混合方法研究的类型与程序设计
  6. 达梦数据库 开发版试用时间限制
  7. 计算机二级您是系统管理用户,全国计算机等级考试(NCRE)考务管理系统考生网报手册...
  8. SSD固态硬盘优化设置图文教程
  9. 改良的用于情感分类的餐馆评论数据集
  10. 【原创】快速上手使用思维导图