与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中有k个值{1,…,k}可以选取。而且我们认为在给定后,满足多值高斯分布,即。由此可以得到联合分布

整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值高斯分布中的一个生成样例,。整个过程称作混合高斯模型。注意的是这里的仍然是隐含随机变量。模型中还有三个变量。最大似然估计为。对数化后如下:

这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的,那么上式可以简化为:

这时候我们再来对进行求导得到:

就是样本类别中的比率。是类别为j的样本特征均值,是类别为j的样例的特征的协方差矩阵。

实际上,当知道后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。

之前我们是假设给定了,实际上是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:

循环下面步骤,直到收敛: {

(E步)对于每一个i和j,计算

(M步),更新参数:

}

在E步中,我们将其他参数看作常量,计算的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,值又不对了,需要重新计算,周而复始,直至收敛。

的具体计算公式如下:

这个式子利用了贝叶斯公式。

这里我们使用代替了前面的,由简单的0/1值变成了概率值。

对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。

混合高斯模型(Mixtures of Gaussians)和EM算法相关推荐

  1. 基于Python实现k-means算法和混合高斯模型

    1. 实验目的 实现一个 k-means 算法和混合高斯模型,并且用 EM 算法估计模型中的参数. 2. 实验要求 用高斯分布产生 k 个高斯分布的数据(不同均值和方差)(其中参数自己设定). 用 k ...

  2. 【转载】混合高斯模型(Mixtures of Gaussians)和EM算法

    混合高斯模型(Mixtures of Gaussians)和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation ...

  3. python gmm em算法 2维数据_AI大语音(六)——混合高斯模型(GMM)(深度解析)...

    1 GMM基础 高斯混合模型(GMM)指的是多个高斯分布函数的线性组合,理论上GMM可以拟合出任意类型的分布,通常用于解决同一集合下的数据包含多个不同的分布的情况. 灵魂的拷问:为什么GMM可以拟合出 ...

  4. EM算法推断混合高斯模型参数

    EM算法推断混合高斯模型参数 写在前面 随机生成混合高斯模型的数据 EM算法估计混合高斯分布的参数 初始化, E步骤 EM算法,M步骤 测试脚本 画出随机产生的数据的实际分布 画出推断得到的分布 写在 ...

  5. EM算法 估计混合高斯模型参数 Python实现

    EM算法 估计混合高斯模型参数 Python实现 EM算法是一种用来解决含有隐变量问题的算法,混合高斯模型中对于某个数据我们并不知道是来自于哪个模型,因此可以视为隐 变量,故可以采用隐含高斯模型来求解 ...

  6. 详解EM算法与混合高斯模型(Gaussian mixture model, GMM)

    最近在看晓川老(shi)师(shu)的博士论文,接触了混合高斯模型(Gaussian mixture model, GMM)和EM(Expectation Maximization)算法,不禁被论文中 ...

  7. 混合高斯模型(GMM)推导及实现

    作者:桂. 时间:2017-03-20  06:20:54 链接:http://www.cnblogs.com/xingshansi/p/6584555.html 前言 本文是曲线拟合与分布拟合系列的 ...

  8. 聚类(1)——混合高斯模型 Gaussian Mixture Model

    聚类系列: 聚类(序)----监督学习与无监督学习 聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clusteri ...

  9. 混合高斯模型_EM算法求解高斯混合模型(GMM)

    单维的高斯模型: 求解一维的高斯模型参数时,我们可以使用最大似然法,其对数似然函数的表达式(log-likelyhood)如下: 对均值和方差求偏导可以求的高斯分布中的 在混合高斯模型中, 记 其对数 ...

最新文章

  1. python转弯轨迹_使点沿着曲线轨迹移动
  2. java泛型中的标记,Java泛型中的标记符含义
  3. Spring MVC+Ant+Tomcat+Eclipse最简单的demo
  4. PHP上传文件到七牛云和阿里云
  5. session实现机制_如何理解php session运行机制
  6. 阮一峰的学习Javascript闭包(Closure)
  7. 2017.7.30 玩具装箱 思考记录
  8. 【转载】Nginx简介及使用Nginx实现负载均衡的原理
  9. Python学习系列----第六章 数据结构
  10. java 整数相乘_Java中两个int相乘的结果是怎么算的?
  11. python绘制中国地图散点图_使用Python实现画一个中国地图
  12. adb获取剪贴板内容_Android复制粘贴剪切板内容的一种方法
  13. 决策树分析,让你的风险应对更专业
  14. 制作背景为透明的图标
  15. 【DTM】HUAWEI Ads与DTM网页转化追踪(二)
  16. VPS、云服务器(云主机)、虚拟主机有何异同?
  17. 电视影评-《战狼2》观后感
  18. C语言经典编程(浙大版C语言第三版)详解
  19. Linux下载并安装rabbitmq-server-3.6.5-1.noarch.rpm
  20. KVM虚拟化配置详解

热门文章

  1. android6.0单独编译和调试framework源码的方法
  2. 一秒解决CentOS下service 功能 不能使用 bash: service: command not found
  3. Swoft 源码剖析 - Swoft 中的注解机制
  4. 安卓应用安全指南 4.4.3 创建/使用服务高级话题
  5. mysql和Oracle 备份表
  6. IOS CALayer
  7. Linux内核的同步机制---自旋锁
  8. 网络配置之ifconfig及Ip命令详解
  9. 完美支持蓝光高清 小米盒子复活版体验
  10. Aria2:轻量命令行下载工具