• 这个压缩库,主要是用来解压和压缩相关文件使用,好处就是引入比较方便,而且极其易使用,方便用户操作。
  • 首先是引入这四个文件,相关代码如下:
  • 首先是zip.h头文件
#ifndef _zip_H
#define _zip_H// ZIP functions -- for creating zip files
// This file is a repackaged form of the Info-Zip source code available
// at www.info-zip.org. The original copyright notice may be found in
// zip.cpp. The repackaging was done by Lucian Wischik to simplify and
// extend its use in Windows/C++. Also to add encryption and unicode.#ifndef _unzip_H
DECLARE_HANDLE(HZIP);
#endif
// An HZIP identifies a zip file that is being createdtypedef DWORD ZRESULT;
// return codes from any of the zip functions. Listed later.HZIP CreateZip(const TCHAR *fn, const char *password);
HZIP CreateZip(void *buf,unsigned int len, const char *password);
HZIP CreateZipHandle(HANDLE h, const char *password);
// CreateZip - call this to start the creation of a zip file.
// As the zip is being created, it will be stored somewhere:
// to a pipe:              CreateZipHandle(hpipe_write);
// in a file (by handle):  CreateZipHandle(hfile);
// in a file (by name):    CreateZip("c:\\test.zip");
// in memory:              CreateZip(buf, len);
// or in pagefile memory:  CreateZip(0, len);
// The final case stores it in memory backed by the system paging file,
// where the zip may not exceed len bytes. This is a bit friendlier than
// allocating memory with new[]: it won't lead to fragmentation, and the
// memory won't be touched unless needed. That means you can give very
// large estimates of the maximum-size without too much worry.
// As for the password, it lets you encrypt every file in the archive.
// (This api doesn't support per-file encryption.)
// Note: because pipes don't allow random access, the structure of a zipfile
// created into a pipe is slightly different from that created into a file
// or memory. In particular, the compressed-size of the item cannot be
// stored in the zipfile until after the item itself. (Also, for an item added
// itself via a pipe, the uncompressed-size might not either be known until
// after.) This is not normally a problem. But if you try to unzip via a pipe
// as well, then the unzipper will not know these things about the item until
// after it has been unzipped. Therefore: for unzippers which don't just write
// each item to disk or to a pipe, but instead pre-allocate memory space into
// which to unzip them, then either you have to create the zip not to a pipe,
// or you have to add items not from a pipe, or at least when adding items
// from a pipe you have to specify the length.
// Note: for windows-ce, you cannot close the handle until after CloseZip.
// but for real windows, the zip makes its own copy of your handle, so you
// can close yours anytime.ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, const TCHAR *fn);
ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, void *src,unsigned int len);
ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h);
ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h, unsigned int len);
ZRESULT ZipAddFolder(HZIP hz,const TCHAR *dstzn);
// ZipAdd - call this for each file to be added to the zip.
// dstzn is the name that the file will be stored as in the zip file.
// The file to be added to the zip can come
// from a pipe:  ZipAddHandle(hz,"file.dat", hpipe_read);
// from a file:  ZipAddHandle(hz,"file.dat", hfile);
// from a filen: ZipAdd(hz,"file.dat", "c:\\docs\\origfile.dat");
// from memory:  ZipAdd(hz,"subdir\\file.dat", buf,len);
// (folder):     ZipAddFolder(hz,"subdir");
// Note: if adding an item from a pipe, and if also creating the zip file itself
// to a pipe, then you might wish to pass a non-zero length to the ZipAddHandle
// function. This will let the zipfile store the item's size ahead of the
// compressed item itself, which in turn makes it easier when unzipping the
// zipfile from a pipe.ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len);
// ZipGetMemory - If the zip was created in memory, via ZipCreate(0,len),
// then this function will return information about that memory block.
// buf will receive a pointer to its start, and len its length.
// Note: you can't add any more after calling this.ZRESULT CloseZip(HZIP hz);
// CloseZip - the zip handle must be closed with this function.unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf,unsigned int len);
// FormatZipMessage - given an error code, formats it as a string.
// It returns the length of the error message. If buf/len points
// to a real buffer, then it also writes as much as possible into there.// These are the result codes:
#define ZR_OK         0x00000000     // nb. the pseudo-code zr-recent is never returned,
#define ZR_RECENT     0x00000001     // but can be passed to FormatZipMessage.
// The following come from general system stuff (e.g. files not openable)
#define ZR_GENMASK    0x0000FF00
#define ZR_NODUPH     0x00000100     // couldn't duplicate the handle
#define ZR_NOFILE     0x00000200     // couldn't create/open the file
#define ZR_NOALLOC    0x00000300     // failed to allocate some resource
#define ZR_WRITE      0x00000400     // a general error writing to the file
#define ZR_NOTFOUND   0x00000500     // couldn't find that file in the zip
#define ZR_MORE       0x00000600     // there's still more data to be unzipped
#define ZR_CORRUPT    0x00000700     // the zipfile is corrupt or not a zipfile
#define ZR_READ       0x00000800     // a general error reading the file
// The following come from mistakes on the part of the caller
#define ZR_CALLERMASK 0x00FF0000
#define ZR_ARGS       0x00010000     // general mistake with the arguments
#define ZR_NOTMMAP    0x00020000     // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn't
#define ZR_MEMSIZE    0x00030000     // the memory size is too small
#define ZR_FAILED     0x00040000     // the thing was already failed when you called this function
#define ZR_ENDED      0x00050000     // the zip creation has already been closed
#define ZR_MISSIZE    0x00060000     // the indicated input file size turned out mistaken
#define ZR_PARTIALUNZ 0x00070000     // the file had already been partially unzipped
#define ZR_ZMODE      0x00080000     // tried to mix creating/opening a zip
// The following come from bugs within the zip library itself
#define ZR_BUGMASK    0xFF000000
#define ZR_NOTINITED  0x01000000     // initialisation didn't work
#define ZR_SEEK       0x02000000     // trying to seek in an unseekable file
#define ZR_NOCHANGE   0x04000000     // changed its mind on storage, but not allowed
#define ZR_FLATE      0x05000000     // an internal error in the de/inflation code// e.g.
//
// (1) Traditional use, creating a zipfile from existing files
//     HZIP hz = CreateZip("c:\\simple1.zip",0);
//     ZipAdd(hz,"znsimple.bmp", "c:\\simple.bmp");
//     ZipAdd(hz,"znsimple.txt", "c:\\simple.txt");
//     CloseZip(hz);
//
// (2) Memory use, creating an auto-allocated mem-based zip file from various sources
//     HZIP hz = CreateZip(0,100000, 0);
//     // adding a conventional file...
//     ZipAdd(hz,"src1.txt",  "c:\\src1.txt");
//     // adding something from memory...
//     char buf[1000]; for (int i=0; i<1000; i++) buf[i]=(char)(i&0x7F);
//     ZipAdd(hz,"file.dat",  buf,1000);
//     // adding something from a pipe...
//     HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,NULL,0);
//     HANDLE hthread = CreateThread(0,0,ThreadFunc,(void*)hwrite,0,0);
//     ZipAdd(hz,"unz3.dat",  hread,1000);  // the '1000' is optional.
//     WaitForSingleObject(hthread,INFINITE);
//     CloseHandle(hthread); CloseHandle(hread);
//     ... meanwhile DWORD WINAPI ThreadFunc(void *dat)
//                   { HANDLE hwrite = (HANDLE)dat;
//                     char buf[1000]={17};
//                     DWORD writ; WriteFile(hwrite,buf,1000,&writ,NULL);
//                     CloseHandle(hwrite);
//                     return 0;
//                   }
//     // and now that the zip is created, let's do something with it:
//     void *zbuf; unsigned long zlen; ZipGetMemory(hz,&zbuf,&zlen);
//     HANDLE hfz = CreateFile("test2.zip",GENERIC_WRITE,0,0,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,0);
//     DWORD writ; WriteFile(hfz,zbuf,zlen,&writ,NULL);
//     CloseHandle(hfz);
//     CloseZip(hz);
//
// (3) Handle use, for file handles and pipes
//     HANDLE hzread,hzwrite; CreatePipe(&hzread,&hzwrite,0,0);
//     HANDLE hthread = CreateThread(0,0,ZipReceiverThread,(void*)hzread,0,0);
//     HZIP hz = CreateZipHandle(hzwrite,0);
//     // ... add to it
//     CloseZip(hz);
//     CloseHandle(hzwrite);
//     WaitForSingleObject(hthread,INFINITE);
//     CloseHandle(hthread);
//     ... meanwhile DWORD WINAPI ZipReceiverThread(void *dat)
//                   { HANDLE hread = (HANDLE)dat;
//                     char buf[1000];
//                     while (true)
//                     { DWORD red; ReadFile(hread,buf,1000,&red,NULL);
//                       // ... and do something with this zip data we're receiving
//                       if (red==0) break;
//                     }
//                     CloseHandle(hread);
//                     return 0;
//                   }// Now we indulge in a little skullduggery so that the code works whether
// the user has included just zip or both zip and unzip.
// Idea: if header files for both zip and unzip are present, then presumably
// the cpp files for zip and unzip are both present, so we will call
// one or the other of them based on a dynamic choice. If the header file
// for only one is present, then we will bind to that particular one.
ZRESULT CloseZipZ(HZIP hz);
unsigned int FormatZipMessageZ(ZRESULT code, char *buf,unsigned int len);
bool IsZipHandleZ(HZIP hz);
#ifdef _unzip_H
#undef CloseZip
#define CloseZip(hz) (IsZipHandleZ(hz)?CloseZipZ(hz):CloseZipU(hz))
#else
#define CloseZip CloseZipZ
#define FormatZipMessage FormatZipMessageZ
#endif
#endif

zip.cpp文件

#include "stdafx.h"
#include <windows.h>
#include <stdio.h>
#include <tchar.h>
#include "zip.h"// THIS FILE is almost entirely based upon code by info-zip.
// It has been modified by Lucian Wischik. The modifications
// were a complete rewrite of the bit of code that generates the
// layout of the zipfile, and support for zipping to/from memory
// or handles or pipes or pagefile or diskfiles, encryption, unicode.
// The original code may be found at http://www.info-zip.org
// The original copyright text follows.
//
//
//
// This is version 1999-Oct-05 of the Info-ZIP copyright and license.
// The definitive version of this document should be available at
// ftp://ftp.cdrom.com/pub/infozip/license.html indefinitely.
//
// Copyright (c) 1990-1999 Info-ZIP.  All rights reserved.
//
// For the purposes of this copyright and license, "Info-ZIP" is defined as
// the following set of individuals:
//
//   Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois,
//   Jean-loup Gailly, Hunter Goatley, Ian Gorman, Chris Herborth, Dirk Haase,
//   Greg Hartwig, Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum,
//   Johnny Lee, Onno van der Linden, Igor Mandrichenko, Steve P. Miller,
//   Sergio Monesi, Keith Owens, George Petrov, Greg Roelofs, Kai Uwe Rommel,
//   Steve Salisbury, Dave Smith, Christian Spieler, Antoine Verheijen,
//   Paul von Behren, Rich Wales, Mike White
//
// This software is provided "as is," without warranty of any kind, express
// or implied.  In no event shall Info-ZIP or its contributors be held liable
// for any direct, indirect, incidental, special or consequential damages
// arising out of the use of or inability to use this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
//    1. Redistributions of source code must retain the above copyright notice,
//       definition, disclaimer, and this list of conditions.
//
//    2. Redistributions in binary form must reproduce the above copyright
//       notice, definition, disclaimer, and this list of conditions in
//       documentation and/or other materials provided with the distribution.
//
//    3. Altered versions--including, but not limited to, ports to new operating
//       systems, existing ports with new graphical interfaces, and dynamic,
//       shared, or static library versions--must be plainly marked as such
//       and must not be misrepresented as being the original source.  Such
//       altered versions also must not be misrepresented as being Info-ZIP
//       releases--including, but not limited to, labeling of the altered
//       versions with the names "Info-ZIP" (or any variation thereof, including,
//       but not limited to, different capitalizations), "Pocket UnZip," "WiZ"
//       or "MacZip" without the explicit permission of Info-ZIP.  Such altered
//       versions are further prohibited from misrepresentative use of the
//       Zip-Bugs or Info-ZIP e-mail addresses or of the Info-ZIP URL(s).
//
//    4. Info-ZIP retains the right to use the names "Info-ZIP," "Zip," "UnZip,"
//       "WiZ," "Pocket UnZip," "Pocket Zip," and "MacZip" for its own source and
//       binary releases.
//typedef unsigned char uch;      // unsigned 8-bit value
typedef unsigned short ush;     // unsigned 16-bit value
typedef unsigned long ulg;      // unsigned 32-bit value
typedef size_t extent;          // file size
typedef unsigned Pos;   // must be at least 32 bits
typedef unsigned IPos; // A Pos is an index in the character window. Pos is used only for parameter passing#ifndef EOF
#define EOF (-1)
#endif// Error return values.  The values 0..4 and 12..18 follow the conventions
// of PKZIP.   The values 4..10 are all assigned to "insufficient memory"
// by PKZIP, so the codes 5..10 are used here for other purposes.
#define ZE_MISS         -1      // used by procname(), zipbare()
#define ZE_OK           0       // success
#define ZE_EOF          2       // unexpected end of zip file
#define ZE_FORM         3       // zip file structure error
#define ZE_MEM          4       // out of memory
#define ZE_LOGIC        5       // internal logic error
#define ZE_BIG          6       // entry too large to split
#define ZE_NOTE         7       // invalid comment format
#define ZE_TEST         8       // zip test (-T) failed or out of memory
#define ZE_ABORT        9       // user interrupt or termination
#define ZE_TEMP         10      // error using a temp file
#define ZE_READ         11      // read or seek error
#define ZE_NONE         12      // nothing to do
#define ZE_NAME         13      // missing or empty zip file
#define ZE_WRITE        14      // error writing to a file
#define ZE_CREAT        15      // couldn't open to write
#define ZE_PARMS        16      // bad command line
#define ZE_OPEN         18      // could not open a specified file to read
#define ZE_MAXERR       18      // the highest error number// internal file attribute
#define UNKNOWN (-1)
#define BINARY  0
#define ASCII   1#define BEST -1                 // Use best method (deflation or store)
#define STORE 0                 // Store method
#define DEFLATE 8               // Deflation method#define CRCVAL_INITIAL  0L// MSDOS file or directory attributes
#define MSDOS_HIDDEN_ATTR 0x02
#define MSDOS_DIR_ATTR 0x10// Lengths of headers after signatures in bytes
#define LOCHEAD 26
#define CENHEAD 42
#define ENDHEAD 18// Definitions for extra field handling:
#define EB_HEADSIZE       4     /* length of a extra field block header */
#define EB_LEN            2     /* offset of data length field in header */
#define EB_UT_MINLEN      1     /* minimal UT field contains Flags byte */
#define EB_UT_FLAGS       0     /* byte offset of Flags field */
#define EB_UT_TIME1       1     /* byte offset of 1st time value */
#define EB_UT_FL_MTIME    (1 << 0)      /* mtime present */
#define EB_UT_FL_ATIME    (1 << 1)      /* atime present */
#define EB_UT_FL_CTIME    (1 << 2)      /* ctime present */
#define EB_UT_LEN(n)      (EB_UT_MINLEN + 4 * (n))
#define EB_L_UT_SIZE    (EB_HEADSIZE + EB_UT_LEN(3))
#define EB_C_UT_SIZE    (EB_HEADSIZE + EB_UT_LEN(1))// Macros for writing machine integers to little-endian format
#define PUTSH(a,f) {char _putsh_c=(char)((a)&0xff); wfunc(param,&_putsh_c,1); _putsh_c=(char)((a)>>8); wfunc(param,&_putsh_c,1);}
#define PUTLG(a,f) {PUTSH((a) & 0xffff,(f)) PUTSH((a) >> 16,(f))}// -- Structure of a ZIP file --
// Signatures for zip file information headers
#define LOCSIG     0x04034b50L
#define CENSIG     0x02014b50L
#define ENDSIG     0x06054b50L
#define EXTLOCSIG  0x08074b50L#define MIN_MATCH  3
#define MAX_MATCH  258
// The minimum and maximum match lengths#define WSIZE  (0x8000)
// Maximum window size = 32K. If you are really short of memory, compile
// with a smaller WSIZE but this reduces the compression ratio for files
// of size > WSIZE. WSIZE must be a power of two in the current implementation.
//#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
// Minimum amount of lookahead, except at the end of the input file.
// See deflate.c for comments about the MIN_MATCH+1.
//#define MAX_DIST  (WSIZE-MIN_LOOKAHEAD)
// In order to simplify the code, particularly on 16 bit machines, match
// distances are limited to MAX_DIST instead of WSIZE.
//#define ZIP_HANDLE   1
#define ZIP_FILENAME 2
#define ZIP_MEMORY   3
#define ZIP_FOLDER   4// ===========================================================================
// Constants
//#define MAX_BITS 15
// All codes must not exceed MAX_BITS bits#define MAX_BL_BITS 7
// Bit length codes must not exceed MAX_BL_BITS bits#define LENGTH_CODES 29
// number of length codes, not counting the special END_BLOCK code#define LITERALS  256
// number of literal bytes 0..255#define END_BLOCK 256
// end of block literal code#define L_CODES (LITERALS+1+LENGTH_CODES)
// number of Literal or Length codes, including the END_BLOCK code#define D_CODES   30
// number of distance codes#define BL_CODES  19
// number of codes used to transfer the bit lengths#define STORED_BLOCK 0
#define STATIC_TREES 1
#define DYN_TREES    2
// The three kinds of block type#define LIT_BUFSIZE  0x8000
#define DIST_BUFSIZE  LIT_BUFSIZE
// Sizes of match buffers for literals/lengths and distances.  There are
// 4 reasons for limiting LIT_BUFSIZE to 64K:
//   - frequencies can be kept in 16 bit counters
//   - if compression is not successful for the first block, all input data is
//     still in the window so we can still emit a stored block even when input
//     comes from standard input.  (This can also be done for all blocks if
//     LIT_BUFSIZE is not greater than 32K.)
//   - if compression is not successful for a file smaller than 64K, we can
//     even emit a stored file instead of a stored block (saving 5 bytes).
//   - creating new Huffman trees less frequently may not provide fast
//     adaptation to changes in the input data statistics. (Take for
//     example a binary file with poorly compressible code followed by
//     a highly compressible string table.) Smaller buffer sizes give
//     fast adaptation but have of course the overhead of transmitting trees
//     more frequently.
//   - I can't count above 4
// The current code is general and allows DIST_BUFSIZE < LIT_BUFSIZE (to save
// memory at the expense of compression). Some optimizations would be possible
// if we rely on DIST_BUFSIZE == LIT_BUFSIZE.
//#define REP_3_6      16
// repeat previous bit length 3-6 times (2 bits of repeat count)#define REPZ_3_10    17
// repeat a zero length 3-10 times  (3 bits of repeat count)#define REPZ_11_138  18
// repeat a zero length 11-138 times  (7 bits of repeat count)#define HEAP_SIZE (2*L_CODES+1)
// maximum heap size// ===========================================================================
// Local data used by the "bit string" routines.
//#define Buf_size (8 * 2*sizeof(char))
// Number of bits used within bi_buf. (bi_buf may be implemented on
// more than 16 bits on some systems.)// Output a 16 bit value to the bit stream, lower (oldest) byte first
#define PUTSHORT(state,w) \
{ if (state.bs.out_offset >= state.bs.out_size-1) \state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \state.bs.out_buf[state.bs.out_offset++] = (char) ((w) & 0xff); \state.bs.out_buf[state.bs.out_offset++] = (char) ((ush)(w) >> 8); \
}#define PUTBYTE(state,b) \
{ if (state.bs.out_offset >= state.bs.out_size) \state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset); \state.bs.out_buf[state.bs.out_offset++] = (char) (b); \
}// DEFLATE.CPP HEADER#define HASH_BITS  15
// For portability to 16 bit machines, do not use values above 15.#define HASH_SIZE (unsigned)(1<<HASH_BITS)
#define HASH_MASK (HASH_SIZE-1)
#define WMASK     (WSIZE-1)
// HASH_SIZE and WSIZE must be powers of two#define NIL 0
// Tail of hash chains#define FAST 4
#define SLOW 2
// speed options for the general purpose bit flag#define TOO_FAR 4096
// Matches of length 3 are discarded if their distance exceeds TOO_FAR#define EQUAL 0
// result of memcmp for equal strings// ===========================================================================
// Local data used by the "longest match" routines.#define H_SHIFT  ((HASH_BITS+MIN_MATCH-1)/MIN_MATCH)
// Number of bits by which ins_h and del_h must be shifted at each
// input step. It must be such that after MIN_MATCH steps, the oldest
// byte no longer takes part in the hash key, that is:
//   H_SHIFT * MIN_MATCH >= HASH_BITS#define max_insert_length  max_lazy_match
// Insert new strings in the hash table only if the match length
// is not greater than this length. This saves time but degrades compression.
// max_insert_length is used only for compression levels <= 3.const int extra_lbits[LENGTH_CODES] // extra bits for each length code= {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};const int extra_dbits[D_CODES] // extra bits for each distance code= {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};const int extra_blbits[BL_CODES]// extra bits for each bit length code= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};const uch bl_order[BL_CODES] = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
// The lengths of the bit length codes are sent in order of decreasing
// probability, to avoid transmitting the lengths for unused bit length codes.typedef struct config {ush good_length; // reduce lazy search above this match lengthush max_lazy;    // do not perform lazy search above this match lengthush nice_length; // quit search above this match lengthush max_chain;
} config;// Values for max_lazy_match, good_match, nice_match and max_chain_length,
// depending on the desired pack level (0..9). The values given below have
// been tuned to exclude worst case performance for pathological files.
// Better values may be found for specific files.
//const config configuration_table[10] = {//  good lazy nice chain{0,    0,  0,    0},  // 0 store only{4,    4,  8,    4},  // 1 maximum speed, no lazy matches{4,    5, 16,    8},  // 2{4,    6, 32,   32},  // 3{4,    4, 16,   16},  // 4 lazy matches */{8,   16, 32,   32},  // 5{8,   16, 128, 128},  // 6{8,   32, 128, 256},  // 7{32, 128, 258, 1024}, // 8{32, 258, 258, 4096}};// 9 maximum compression */// Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
// For deflate_fast() (levels <= 3) good is ignored and lazy has a different meaning.// Data structure describing a single value and its code string.
typedef struct ct_data {union {ush  freq;       // frequency countush  code;       // bit string} fc;union {ush  dad;        // father node in Huffman treeush  len;        // length of bit string} dl;
} ct_data;typedef struct tree_desc {ct_data *dyn_tree;      // the dynamic treect_data *static_tree;   // corresponding static tree or NULLconst int *extra_bits;  // extra bits for each code or NULLint     extra_base;     // base index for extra_bitsint     elems;          // max number of elements in the treeint     max_length;     // max bit length for the codesint     max_code;       // largest code with non zero frequency
} tree_desc;class TTreeState
{ public:TTreeState();ct_data dyn_ltree[HEAP_SIZE];    // literal and length treect_data dyn_dtree[2*D_CODES+1];  // distance treect_data static_ltree[L_CODES+2]; // the static literal tree...// ... Since the bit lengths are imposed, there is no need for the L_CODES// extra codes used during heap construction. However the codes 286 and 287// are needed to build a canonical tree (see ct_init below).ct_data static_dtree[D_CODES]; // the static distance tree...// ... (Actually a trivial tree since all codes use 5 bits.)ct_data bl_tree[2*BL_CODES+1];  // Huffman tree for the bit lengthstree_desc l_desc;tree_desc d_desc;tree_desc bl_desc;ush bl_count[MAX_BITS+1];  // number of codes at each bit length for an optimal treeint heap[2*L_CODES+1]; // heap used to build the Huffman treesint heap_len;               // number of elements in the heapint heap_max;               // element of largest frequency// The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.// The same heap array is used to build all trees.uch depth[2*L_CODES+1];// Depth of each subtree used as tie breaker for trees of equal frequencyuch length_code[MAX_MATCH-MIN_MATCH+1];// length code for each normalized match length (0 == MIN_MATCH)uch dist_code[512];// distance codes. The first 256 values correspond to the distances// 3 .. 258, the last 256 values correspond to the top 8 bits of// the 15 bit distances.int base_length[LENGTH_CODES];// First normalized length for each code (0 = MIN_MATCH)int base_dist[D_CODES];// First normalized distance for each code (0 = distance of 1)uch far l_buf[LIT_BUFSIZE];  // buffer for literals/lengthsush far d_buf[DIST_BUFSIZE]; // buffer for distancesuch flag_buf[(LIT_BUFSIZE/8)];// flag_buf is a bit array distinguishing literals from lengths in// l_buf, and thus indicating the presence or absence of a distance.unsigned last_lit;    // running index in l_bufunsigned last_dist;   // running index in d_bufunsigned last_flags;  // running index in flag_bufuch flags;            // current flags not yet saved in flag_bufuch flag_bit;         // current bit used in flags// bits are filled in flags starting at bit 0 (least significant).// Note: these flags are overkill in the current code since we don't// take advantage of DIST_BUFSIZE == LIT_BUFSIZE.ulg opt_len;          // bit length of current block with optimal treesulg static_len;       // bit length of current block with static treesulg cmpr_bytelen;     // total byte length of compressed fileulg cmpr_len_bits;    // number of bits past 'cmpr_bytelen'ulg input_len;        // total byte length of input file// input_len is for debugging only since we can get it by other means.ush *file_type;       // pointer to UNKNOWN, BINARY or ASCII
//  int *file_method;     // pointer to DEFLATE or STORE
};TTreeState::TTreeState()
{ tree_desc a = {dyn_ltree, static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS, 0};  l_desc = a;tree_desc b = {dyn_dtree, static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS, 0};  d_desc = b;tree_desc c = {bl_tree, NULL,       extra_blbits, 0,         BL_CODES, MAX_BL_BITS, 0};  bl_desc = c;last_lit=0;last_dist=0;last_flags=0;
}class TBitState
{ public:int flush_flg;//unsigned bi_buf;// Output buffer. bits are inserted starting at the bottom (least significant// bits). The width of bi_buf must be at least 16 bits.int bi_valid;// Number of valid bits in bi_buf.  All bits above the last valid bit// are always zero.char *out_buf;// Current output buffer.unsigned out_offset;// Current offset in output buffer.// On 16 bit machines, the buffer is limited to 64K.unsigned out_size;// Size of current output bufferulg bits_sent;   // bit length of the compressed data  only needed for debugging???
};class TDeflateState
{ public:TDeflateState() {window_size=0;}uch    window[2L*WSIZE];// Sliding window. Input bytes are read into the second half of the window,// and move to the first half later to keep a dictionary of at least WSIZE// bytes. With this organization, matches are limited to a distance of// WSIZE-MAX_MATCH bytes, but this ensures that IO is always// performed with a length multiple of the block size. Also, it limits// the window size to 64K, which is quite useful on MSDOS.// To do: limit the window size to WSIZE+CBSZ if SMALL_MEM (the code would// be less efficient since the data would have to be copied WSIZE/CBSZ times)Pos    prev[WSIZE];// Link to older string with same hash index. To limit the size of this// array to 64K, this link is maintained only for the last 32K strings.// An index in this array is thus a window index modulo 32K.Pos    head[HASH_SIZE];// Heads of the hash chains or NIL. If your compiler thinks that// HASH_SIZE is a dynamic value, recompile with -DDYN_ALLOC.ulg window_size;// window size, 2*WSIZE except for MMAP or BIG_MEM, where it is the// input file length plus MIN_LOOKAHEAD.long block_start;// window position at the beginning of the current output block. Gets// negative when the window is moved backwards.int sliding;// Set to false when the input file is already in memoryunsigned ins_h;  // hash index of string to be insertedunsigned int prev_length;// Length of the best match at previous step. Matches not greater than this// are discarded. This is used in the lazy match evaluation.unsigned strstart;         // start of string to insertunsigned match_start; // start of matching stringint      eofile;           // flag set at end of input fileunsigned lookahead;        // number of valid bytes ahead in windowunsigned max_chain_length;// To speed up deflation, hash chains are never searched beyond this length.// A higher limit improves compression ratio but degrades the speed.unsigned int max_lazy_match;// Attempt to find a better match only when the current match is strictly// smaller than this value. This mechanism is used only for compression// levels >= 4.unsigned good_match;// Use a faster search when the previous match is longer than thisint nice_match; // Stop searching when current match exceeds this
};typedef __int64 lutime_t;       // define it ourselves since we don't include time.htypedef struct iztimes {lutime_t atime,mtime,ctime;
} iztimes; // access, modify, create timestypedef struct zlist {ush vem, ver, flg, how;       // See central header in zipfile.c for what vem..off areulg tim, crc, siz, len;extent nam, ext, cext, com;   // offset of ext must be >= LOCHEADush dsk, att, lflg;           // offset of lflg must be >= LOCHEADulg atx, off;char name[MAX_PATH];          // File name in zip filechar *extra;                  // Extra field (set only if ext != 0)char *cextra;                 // Extra in central (set only if cext != 0)char *comment;                // Comment (set only if com != 0)char iname[MAX_PATH];         // Internal file name after cleanupchar zname[MAX_PATH];         // External version of internal nameint mark;                     // Marker for files to operate onint trash;                    // Marker for files to deleteint dosflag;                  // Set to force MSDOS file attributesstruct zlist far *nxt;        // Pointer to next header in list
} TZipFileInfo;struct TState;
typedef unsigned (*READFUNC)(TState &state, char *buf,unsigned size);
typedef unsigned (*FLUSHFUNC)(void *param, const char *buf, unsigned *size);
typedef unsigned (*WRITEFUNC)(void *param, const char *buf, unsigned size);
struct TState
{ void *param;int level; bool seekable;READFUNC readfunc; FLUSHFUNC flush_outbuf;TTreeState ts; TBitState bs; TDeflateState ds;const char *err;
};void Assert(TState &state,bool cond, const char *msg)
{ if (cond) return;state.err=msg;
}
void __cdecl Trace(const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);}
void __cdecl Tracec(bool ,const char *x, ...) {va_list paramList; va_start(paramList, x); paramList; va_end(paramList);}// ===========================================================================
// Local (static) routines in this file.
//void init_block     (TState &);
void pqdownheap     (TState &,ct_data *tree, int k);
void gen_bitlen     (TState &,tree_desc *desc);
void gen_codes      (TState &state,ct_data *tree, int max_code);
void build_tree     (TState &,tree_desc *desc);
void scan_tree      (TState &,ct_data *tree, int max_code);
void send_tree      (TState &state,ct_data *tree, int max_code);
int  build_bl_tree  (TState &);
void send_all_trees (TState &state,int lcodes, int dcodes, int blcodes);
void compress_block (TState &state,ct_data *ltree, ct_data *dtree);
void set_file_type  (TState &);
void send_bits      (TState &state, int value, int length);
unsigned bi_reverse (unsigned code, int len);
void bi_windup      (TState &state);
void copy_block     (TState &state,char *buf, unsigned len, int header);#define send_code(state, c, tree) send_bits(state, tree[c].fc.code, tree[c].dl.len)
// Send a code of the given tree. c and tree must not have side effects// alternatively...
//#define send_code(state, c, tree)
//     { if (state.verbose>1) fprintf(stderr,"\ncd %3d ",(c));
//       send_bits(state, tree[c].fc.code, tree[c].dl.len); }#define d_code(dist) ((dist) < 256 ? state.ts.dist_code[dist] : state.ts.dist_code[256+((dist)>>7)])
// Mapping from a distance to a distance code. dist is the distance - 1 and
// must not have side effects. dist_code[256] and dist_code[257] are never used.#define Max(a,b) (a >= b ? a : b)
/* the arguments must not have side effects *//* ===========================================================================* Allocate the match buffer, initialize the various tables and save the* location of the internal file attribute (ascii/binary) and method* (DEFLATE/STORE).*/
void ct_init(TState &state, ush *attr)
{int n;        /* iterates over tree elements */int bits;     /* bit counter */int length;   /* length value */int code;     /* code value */int dist;     /* distance index */state.ts.file_type = attr;//state.ts.file_method = method;state.ts.cmpr_bytelen = state.ts.cmpr_len_bits = 0L;state.ts.input_len = 0L;if (state.ts.static_dtree[0].dl.len != 0) return; /* ct_init already called *//* Initialize the mapping length (0..255) -> length code (0..28) */length = 0;for (code = 0; code < LENGTH_CODES-1; code++) {state.ts.base_length[code] = length;for (n = 0; n < (1<<extra_lbits[code]); n++) {state.ts.length_code[length++] = (uch)code;}}Assert(state,length == 256, "ct_init: length != 256");/* Note that the length 255 (match length 258) can be represented* in two different ways: code 284 + 5 bits or code 285, so we* overwrite length_code[255] to use the best encoding:*/state.ts.length_code[length-1] = (uch)code;/* Initialize the mapping dist (0..32K) -> dist code (0..29) */dist = 0;for (code = 0 ; code < 16; code++) {state.ts.base_dist[code] = dist;for (n = 0; n < (1<<extra_dbits[code]); n++) {state.ts.dist_code[dist++] = (uch)code;}}Assert(state,dist == 256, "ct_init: dist != 256");dist >>= 7; /* from now on, all distances are divided by 128 */for ( ; code < D_CODES; code++) {state.ts.base_dist[code] = dist << 7;for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {state.ts.dist_code[256 + dist++] = (uch)code;}}Assert(state,dist == 256, "ct_init: 256+dist != 512");/* Construct the codes of the static literal tree */for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;n = 0;while (n <= 143) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;while (n <= 255) state.ts.static_ltree[n++].dl.len = 9, state.ts.bl_count[9]++;while (n <= 279) state.ts.static_ltree[n++].dl.len = 7, state.ts.bl_count[7]++;while (n <= 287) state.ts.static_ltree[n++].dl.len = 8, state.ts.bl_count[8]++;/* fc.codes 286 and 287 do not exist, but we must include them in the* tree construction to get a canonical Huffman tree (longest code* all ones)*/gen_codes(state,(ct_data *)state.ts.static_ltree, L_CODES+1);/* The static distance tree is trivial: */for (n = 0; n < D_CODES; n++) {state.ts.static_dtree[n].dl.len = 5;state.ts.static_dtree[n].fc.code = (ush)bi_reverse(n, 5);}/* Initialize the first block of the first file: */init_block(state);
}/* ===========================================================================* Initialize a new block.*/
void init_block(TState &state)
{int n; /* iterates over tree elements *//* Initialize the trees. */for (n = 0; n < L_CODES;  n++) state.ts.dyn_ltree[n].fc.freq = 0;for (n = 0; n < D_CODES;  n++) state.ts.dyn_dtree[n].fc.freq = 0;for (n = 0; n < BL_CODES; n++) state.ts.bl_tree[n].fc.freq = 0;state.ts.dyn_ltree[END_BLOCK].fc.freq = 1;state.ts.opt_len = state.ts.static_len = 0L;state.ts.last_lit = state.ts.last_dist = state.ts.last_flags = 0;state.ts.flags = 0; state.ts.flag_bit = 1;
}#define SMALLEST 1
/* Index within the heap array of least frequent node in the Huffman tree *//* ===========================================================================* Remove the smallest element from the heap and recreate the heap with* one less element. Updates heap and heap_len.*/
#define pqremove(tree, top) \
{\top = state.ts.heap[SMALLEST]; \state.ts.heap[SMALLEST] = state.ts.heap[state.ts.heap_len--]; \pqdownheap(state,tree, SMALLEST); \
}/* ===========================================================================* Compares to subtrees, using the tree depth as tie breaker when* the subtrees have equal frequency. This minimizes the worst case length.*/
#define smaller(tree, n, m) \(tree[n].fc.freq < tree[m].fc.freq || \(tree[n].fc.freq == tree[m].fc.freq && state.ts.depth[n] <= state.ts.depth[m]))/* ===========================================================================* Restore the heap property by moving down the tree starting at node k,* exchanging a node with the smallest of its two sons if necessary, stopping* when the heap property is re-established (each father smaller than its* two sons).*/
void pqdownheap(TState &state,ct_data *tree, int k)
{int v = state.ts.heap[k];int j = k << 1;  /* left son of k */int htemp;       /* required because of bug in SASC compiler */while (j <= state.ts.heap_len) {/* Set j to the smallest of the two sons: */if (j < state.ts.heap_len && smaller(tree, state.ts.heap[j+1], state.ts.heap[j])) j++;/* Exit if v is smaller than both sons */htemp = state.ts.heap[j];if (smaller(tree, v, htemp)) break;/* Exchange v with the smallest son */state.ts.heap[k] = htemp;k = j;/* And continue down the tree, setting j to the left son of k */j <<= 1;}state.ts.heap[k] = v;
}/* ===========================================================================* Compute the optimal bit lengths for a tree and update the total bit length* for the current block.* IN assertion: the fields freq and dad are set, heap[heap_max] and*    above are the tree nodes sorted by increasing frequency.* OUT assertions: the field len is set to the optimal bit length, the*     array bl_count contains the frequencies for each bit length.*     The length opt_len is updated; static_len is also updated if stree is*     not null.*/
void gen_bitlen(TState &state,tree_desc *desc)
{ct_data *tree  = desc->dyn_tree;const int *extra     = desc->extra_bits;int base            = desc->extra_base;int max_code        = desc->max_code;int max_length      = desc->max_length;ct_data *stree = desc->static_tree;int h;              /* heap index */int n, m;           /* iterate over the tree elements */int bits;           /* bit length */int xbits;          /* extra bits */ush f;              /* frequency */int overflow = 0;   /* number of elements with bit length too large */for (bits = 0; bits <= MAX_BITS; bits++) state.ts.bl_count[bits] = 0;/* In a first pass, compute the optimal bit lengths (which may* overflow in the case of the bit length tree).*/tree[state.ts.heap[state.ts.heap_max]].dl.len = 0; /* root of the heap */for (h = state.ts.heap_max+1; h < HEAP_SIZE; h++) {n = state.ts.heap[h];bits = tree[tree[n].dl.dad].dl.len + 1;if (bits > max_length) bits = max_length, overflow++;tree[n].dl.len = (ush)bits;/* We overwrite tree[n].dl.dad which is no longer needed */if (n > max_code) continue; /* not a leaf node */state.ts.bl_count[bits]++;xbits = 0;if (n >= base) xbits = extra[n-base];f = tree[n].fc.freq;state.ts.opt_len += (ulg)f * (bits + xbits);if (stree) state.ts.static_len += (ulg)f * (stree[n].dl.len + xbits);}if (overflow == 0) return;Trace("\nbit length overflow\n");/* This happens for example on obj2 and pic of the Calgary corpus *//* Find the first bit length which could increase: */do {bits = max_length-1;while (state.ts.bl_count[bits] == 0) bits--;state.ts.bl_count[bits]--;           /* move one leaf down the tree */state.ts.bl_count[bits+1] += (ush)2; /* move one overflow item as its brother */state.ts.bl_count[max_length]--;/* The brother of the overflow item also moves one step up,* but this does not affect bl_count[max_length]*/overflow -= 2;} while (overflow > 0);/* Now recompute all bit lengths, scanning in increasing frequency.* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all* lengths instead of fixing only the wrong ones. This idea is taken* from 'ar' written by Haruhiko Okumura.)*/for (bits = max_length; bits != 0; bits--) {n = state.ts.bl_count[bits];while (n != 0) {m = state.ts.heap[--h];if (m > max_code) continue;if (tree[m].dl.len != (ush)bits) {Trace("code %d bits %d->%d\n", m, tree[m].dl.len, bits);state.ts.opt_len += ((long)bits-(long)tree[m].dl.len)*(long)tree[m].fc.freq;tree[m].dl.len = (ush)bits;}n--;}}
}/* ===========================================================================* Generate the codes for a given tree and bit counts (which need not be* optimal).* IN assertion: the array bl_count contains the bit length statistics for* the given tree and the field len is set for all tree elements.* OUT assertion: the field code is set for all tree elements of non*     zero code length.*/
void gen_codes (TState &state, ct_data *tree, int max_code)
{ush next_code[MAX_BITS+1]; /* next code value for each bit length */ush code = 0;              /* running code value */int bits;                  /* bit index */int n;                     /* code index *//* The distribution counts are first used to generate the code values* without bit reversal.*/for (bits = 1; bits <= MAX_BITS; bits++) {next_code[bits] = code = (ush)((code + state.ts.bl_count[bits-1]) << 1);}/* Check that the bit counts in bl_count are consistent. The last code* must be all ones.*/Assert(state,code + state.ts.bl_count[MAX_BITS]-1 == (1<< ((ush) MAX_BITS)) - 1,"inconsistent bit counts");Trace("\ngen_codes: max_code %d ", max_code);for (n = 0;  n <= max_code; n++) {int len = tree[n].dl.len;if (len == 0) continue;/* Now reverse the bits */tree[n].fc.code = (ush)bi_reverse(next_code[len]++, len);//Tracec(tree != state.ts.static_ltree, "\nn %3d %c l %2d c %4x (%x) ", n, (isgraph(n) ? n : ' '), len, tree[n].fc.code, next_code[len]-1);}
}/* ===========================================================================* Construct one Huffman tree and assigns the code bit strings and lengths.* Update the total bit length for the current block.* IN assertion: the field freq is set for all tree elements.* OUT assertions: the fields len and code are set to the optimal bit length*     and corresponding code. The length opt_len is updated; static_len is*     also updated if stree is not null. The field max_code is set.*/
void build_tree(TState &state,tree_desc *desc)
{ct_data *tree   = desc->dyn_tree;ct_data *stree  = desc->static_tree;int elems            = desc->elems;int n, m;          /* iterate over heap elements */int max_code = -1; /* largest code with non zero frequency */int node = elems;  /* next internal node of the tree *//* Construct the initial heap, with least frequent element in* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].* heap[0] is not used.*/state.ts.heap_len = 0, state.ts.heap_max = HEAP_SIZE;for (n = 0; n < elems; n++) {if (tree[n].fc.freq != 0) {state.ts.heap[++state.ts.heap_len] = max_code = n;state.ts.depth[n] = 0;} else {tree[n].dl.len = 0;}}/* The pkzip format requires that at least one distance code exists,* and that at least one bit should be sent even if there is only one* possible code. So to avoid special checks later on we force at least* two codes of non zero frequency.*/while (state.ts.heap_len < 2) {int newcp = state.ts.heap[++state.ts.heap_len] = (max_code < 2 ? ++max_code : 0);tree[newcp].fc.freq = 1;state.ts.depth[newcp] = 0;state.ts.opt_len--; if (stree) state.ts.static_len -= stree[newcp].dl.len;/* new is 0 or 1 so it does not have extra bits */}desc->max_code = max_code;/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,* establish sub-heaps of increasing lengths:*/for (n = state.ts.heap_len/2; n >= 1; n--) pqdownheap(state,tree, n);/* Construct the Huffman tree by repeatedly combining the least two* frequent nodes.*/do {pqremove(tree, n);   /* n = node of least frequency */m = state.ts.heap[SMALLEST];  /* m = node of next least frequency */state.ts.heap[--state.ts.heap_max] = n; /* keep the nodes sorted by frequency */state.ts.heap[--state.ts.heap_max] = m;/* Create a new node father of n and m */tree[node].fc.freq = (ush)(tree[n].fc.freq + tree[m].fc.freq);state.ts.depth[node] = (uch) (Max(state.ts.depth[n], state.ts.depth[m]) + 1);tree[n].dl.dad = tree[m].dl.dad = (ush)node;/* and insert the new node in the heap */state.ts.heap[SMALLEST] = node++;pqdownheap(state,tree, SMALLEST);} while (state.ts.heap_len >= 2);state.ts.heap[--state.ts.heap_max] = state.ts.heap[SMALLEST];/* At this point, the fields freq and dad are set. We can now* generate the bit lengths.*/gen_bitlen(state,(tree_desc *)desc);/* The field len is now set, we can generate the bit codes */gen_codes (state,(ct_data *)tree, max_code);
}/* ===========================================================================* Scan a literal or distance tree to determine the frequencies of the codes* in the bit length tree. Updates opt_len to take into account the repeat* counts. (The contribution of the bit length codes will be added later* during the construction of bl_tree.)*/
void scan_tree (TState &state,ct_data *tree, int max_code)
{int n;                     /* iterates over all tree elements */int prevlen = -1;          /* last emitted length */int curlen;                /* length of current code */int nextlen = tree[0].dl.len; /* length of next code */int count = 0;             /* repeat count of the current code */int max_count = 7;         /* max repeat count */int min_count = 4;         /* min repeat count */if (nextlen == 0) max_count = 138, min_count = 3;tree[max_code+1].dl.len = (ush)-1; /* guard */for (n = 0; n <= max_code; n++) {curlen = nextlen; nextlen = tree[n+1].dl.len;if (++count < max_count && curlen == nextlen) {continue;} else if (count < min_count) {state.ts.bl_tree[curlen].fc.freq = (ush)(state.ts.bl_tree[curlen].fc.freq + count);} else if (curlen != 0) {if (curlen != prevlen) state.ts.bl_tree[curlen].fc.freq++;state.ts.bl_tree[REP_3_6].fc.freq++;} else if (count <= 10) {state.ts.bl_tree[REPZ_3_10].fc.freq++;} else {state.ts.bl_tree[REPZ_11_138].fc.freq++;}count = 0; prevlen = curlen;if (nextlen == 0) {max_count = 138, min_count = 3;} else if (curlen == nextlen) {max_count = 6, min_count = 3;} else {max_count = 7, min_count = 4;}}
}/* ===========================================================================* Send a literal or distance tree in compressed form, using the codes in* bl_tree.*/
void send_tree (TState &state, ct_data *tree, int max_code)
{int n;                     /* iterates over all tree elements */int prevlen = -1;          /* last emitted length */int curlen;                /* length of current code */int nextlen = tree[0].dl.len; /* length of next code */int count = 0;             /* repeat count of the current code */int max_count = 7;         /* max repeat count */int min_count = 4;         /* min repeat count *//* tree[max_code+1].dl.len = -1; */  /* guard already set */if (nextlen == 0) max_count = 138, min_count = 3;for (n = 0; n <= max_code; n++) {curlen = nextlen; nextlen = tree[n+1].dl.len;if (++count < max_count && curlen == nextlen) {continue;} else if (count < min_count) {do { send_code(state, curlen, state.ts.bl_tree); } while (--count != 0);} else if (curlen != 0) {if (curlen != prevlen) {send_code(state, curlen, state.ts.bl_tree); count--;}Assert(state,count >= 3 && count <= 6, " 3_6?");send_code(state,REP_3_6, state.ts.bl_tree); send_bits(state,count-3, 2);} else if (count <= 10) {send_code(state,REPZ_3_10, state.ts.bl_tree); send_bits(state,count-3, 3);} else {send_code(state,REPZ_11_138, state.ts.bl_tree); send_bits(state,count-11, 7);}count = 0; prevlen = curlen;if (nextlen == 0) {max_count = 138, min_count = 3;} else if (curlen == nextlen) {max_count = 6, min_count = 3;} else {max_count = 7, min_count = 4;}}
}/* ===========================================================================* Construct the Huffman tree for the bit lengths and return the index in* bl_order of the last bit length code to send.*/
int build_bl_tree(TState &state)
{int max_blindex;  /* index of last bit length code of non zero freq *//* Determine the bit length frequencies for literal and distance trees */scan_tree(state,(ct_data *)state.ts.dyn_ltree, state.ts.l_desc.max_code);scan_tree(state,(ct_data *)state.ts.dyn_dtree, state.ts.d_desc.max_code);/* Build the bit length tree: */build_tree(state,(tree_desc *)(&state.ts.bl_desc));/* opt_len now includes the length of the tree representations, except* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.*//* Determine the number of bit length codes to send. The pkzip format* requires that at least 4 bit length codes be sent. (appnote.txt says* 3 but the actual value used is 4.)*/for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {if (state.ts.bl_tree[bl_order[max_blindex]].dl.len != 0) break;}/* Update opt_len to include the bit length tree and counts */state.ts.opt_len += 3*(max_blindex+1) + 5+5+4;Trace("\ndyn trees: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);return max_blindex;
}/* ===========================================================================* Send the header for a block using dynamic Huffman trees: the counts, the* lengths of the bit length codes, the literal tree and the distance tree.* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.*/
void send_all_trees(TState &state,int lcodes, int dcodes, int blcodes)
{int rank;                    /* index in bl_order */Assert(state,lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");Assert(state,lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,"too many codes");Trace("\nbl counts: ");send_bits(state,lcodes-257, 5);/* not +255 as stated in appnote.txt 1.93a or -256 in 2.04c */send_bits(state,dcodes-1,   5);send_bits(state,blcodes-4,  4); /* not -3 as stated in appnote.txt */for (rank = 0; rank < blcodes; rank++) {Trace("\nbl code %2d ", bl_order[rank]);send_bits(state,state.ts.bl_tree[bl_order[rank]].dl.len, 3);}    Trace("\nbl tree: sent %ld", state.bs.bits_sent);send_tree(state,(ct_data *)state.ts.dyn_ltree, lcodes-1); /* send the literal tree */Trace("\nlit tree: sent %ld", state.bs.bits_sent);send_tree(state,(ct_data *)state.ts.dyn_dtree, dcodes-1); /* send the distance tree */Trace("\ndist tree: sent %ld", state.bs.bits_sent);
}/* ===========================================================================* Determine the best encoding for the current block: dynamic trees, static* trees or store, and output the encoded block to the zip file. This function* returns the total compressed length (in bytes) for the file so far.*/
ulg flush_block(TState &state,char *buf, ulg stored_len, int eof)
{ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */int max_blindex;  /* index of last bit length code of non zero freq */state.ts.flag_buf[state.ts.last_flags] = state.ts.flags; /* Save the flags for the last 8 items *//* Check if the file is ascii or binary */if (*state.ts.file_type == (ush)UNKNOWN) set_file_type(state);/* Construct the literal and distance trees */build_tree(state,(tree_desc *)(&state.ts.l_desc));Trace("\nlit data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);build_tree(state,(tree_desc *)(&state.ts.d_desc));Trace("\ndist data: dyn %ld, stat %ld", state.ts.opt_len, state.ts.static_len);/* At this point, opt_len and static_len are the total bit lengths of* the compressed block data, excluding the tree representations.*//* Build the bit length tree for the above two trees, and get the index* in bl_order of the last bit length code to send.*/max_blindex = build_bl_tree(state);/* Determine the best encoding. Compute first the block length in bytes */opt_lenb = (state.ts.opt_len+3+7)>>3;static_lenb = (state.ts.static_len+3+7)>>3;state.ts.input_len += stored_len; /* for debugging only */Trace("\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",opt_lenb, state.ts.opt_len, static_lenb, state.ts.static_len, stored_len,state.ts.last_lit, state.ts.last_dist);if (static_lenb <= opt_lenb) opt_lenb = static_lenb;// Originally, zip allowed the file to be transformed from a compressed// into a stored file in the case where compression failed, there// was only one block, and it was allowed to change. I've removed this// possibility since the code's cleaner if no changes are allowed.//if (stored_len <= opt_lenb && eof && state.ts.cmpr_bytelen == 0L//   && state.ts.cmpr_len_bits == 0L && state.seekable)//{   // && state.ts.file_method != NULL//    // Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there://    Assert(state,buf!=NULL,"block vanished");//    copy_block(state,buf, (unsigned)stored_len, 0); // without header//    state.ts.cmpr_bytelen = stored_len;//    Assert(state,false,"unimplemented *state.ts.file_method = STORE;");//    //*state.ts.file_method = STORE;//}//elseif (stored_len+4 <= opt_lenb && buf != (char*)NULL) {/* 4: two words for the lengths *//* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.* Otherwise we can't have processed more than WSIZE input bytes since* the last block flush, because compression would have been* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to* transform a block into a stored block.*/send_bits(state,(STORED_BLOCK<<1)+eof, 3);  /* send block type */state.ts.cmpr_bytelen += ((state.ts.cmpr_len_bits + 3 + 7) >> 3) + stored_len + 4;state.ts.cmpr_len_bits = 0L;copy_block(state,buf, (unsigned)stored_len, 1); /* with header */}else if (static_lenb == opt_lenb) {send_bits(state,(STATIC_TREES<<1)+eof, 3);compress_block(state,(ct_data *)state.ts.static_ltree, (ct_data *)state.ts.static_dtree);state.ts.cmpr_len_bits += 3 + state.ts.static_len;state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;state.ts.cmpr_len_bits &= 7L;}else {send_bits(state,(DYN_TREES<<1)+eof, 3);send_all_trees(state,state.ts.l_desc.max_code+1, state.ts.d_desc.max_code+1, max_blindex+1);compress_block(state,(ct_data *)state.ts.dyn_ltree, (ct_data *)state.ts.dyn_dtree);state.ts.cmpr_len_bits += 3 + state.ts.opt_len;state.ts.cmpr_bytelen += state.ts.cmpr_len_bits >> 3;state.ts.cmpr_len_bits &= 7L;}Assert(state,((state.ts.cmpr_bytelen << 3) + state.ts.cmpr_len_bits) == state.bs.bits_sent, "bad compressed size");init_block(state);if (eof) {// Assert(state,input_len == isize, "bad input size");bi_windup(state);state.ts.cmpr_len_bits += 7;  /* align on byte boundary */}Trace("\n");return state.ts.cmpr_bytelen + (state.ts.cmpr_len_bits >> 3);
}/* ===========================================================================* Save the match info and tally the frequency counts. Return true if* the current block must be flushed.*/
int ct_tally (TState &state,int dist, int lc)
{state.ts.l_buf[state.ts.last_lit++] = (uch)lc;if (dist == 0) {/* lc is the unmatched char */state.ts.dyn_ltree[lc].fc.freq++;} else {/* Here, lc is the match length - MIN_MATCH */dist--;             /* dist = match distance - 1 */Assert(state,(ush)dist < (ush)MAX_DIST &&(ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&(ush)d_code(dist) < (ush)D_CODES,  "ct_tally: bad match");state.ts.dyn_ltree[state.ts.length_code[lc]+LITERALS+1].fc.freq++;state.ts.dyn_dtree[d_code(dist)].fc.freq++;state.ts.d_buf[state.ts.last_dist++] = (ush)dist;state.ts.flags |= state.ts.flag_bit;}state.ts.flag_bit <<= 1;/* Output the flags if they fill a byte: */if ((state.ts.last_lit & 7) == 0) {state.ts.flag_buf[state.ts.last_flags++] = state.ts.flags;state.ts.flags = 0, state.ts.flag_bit = 1;}/* Try to guess if it is profitable to stop the current block here */if (state.level > 2 && (state.ts.last_lit & 0xfff) == 0) {/* Compute an upper bound for the compressed length */ulg out_length = (ulg)state.ts.last_lit*8L;ulg in_length = (ulg)state.ds.strstart-state.ds.block_start;int dcode;for (dcode = 0; dcode < D_CODES; dcode++) {out_length += (ulg)state.ts.dyn_dtree[dcode].fc.freq*(5L+extra_dbits[dcode]);}out_length >>= 3;Trace("\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",state.ts.last_lit, state.ts.last_dist, in_length, out_length,100L - out_length*100L/in_length);if (state.ts.last_dist < state.ts.last_lit/2 && out_length < in_length/2) return 1;}return (state.ts.last_lit == LIT_BUFSIZE-1 || state.ts.last_dist == DIST_BUFSIZE);/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K* on 16 bit machines and because stored blocks are restricted to* 64K-1 bytes.*/
}/* ===========================================================================* Send the block data compressed using the given Huffman trees*/
void compress_block(TState &state,ct_data *ltree, ct_data *dtree)
{unsigned dist;      /* distance of matched string */int lc;             /* match length or unmatched char (if dist == 0) */unsigned lx = 0;    /* running index in l_buf */unsigned dx = 0;    /* running index in d_buf */unsigned fx = 0;    /* running index in flag_buf */uch flag = 0;       /* current flags */unsigned code;      /* the code to send */int extra;          /* number of extra bits to send */if (state.ts.last_lit != 0) do {if ((lx & 7) == 0) flag = state.ts.flag_buf[fx++];lc = state.ts.l_buf[lx++];if ((flag & 1) == 0) {send_code(state,lc, ltree); /* send a literal byte */} else {/* Here, lc is the match length - MIN_MATCH */code = state.ts.length_code[lc];send_code(state,code+LITERALS+1, ltree); /* send the length code */extra = extra_lbits[code];if (extra != 0) {lc -= state.ts.base_length[code];send_bits(state,lc, extra);        /* send the extra length bits */}dist = state.ts.d_buf[dx++];/* Here, dist is the match distance - 1 */code = d_code(dist);Assert(state,code < D_CODES, "bad d_code");send_code(state,code, dtree);       /* send the distance code */extra = extra_dbits[code];if (extra != 0) {dist -= state.ts.base_dist[code];send_bits(state,dist, extra);   /* send the extra distance bits */}} /* literal or match pair ? */flag >>= 1;} while (lx < state.ts.last_lit);send_code(state,END_BLOCK, ltree);
}/* ===========================================================================* Set the file type to ASCII or BINARY, using a crude approximation:* binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.* IN assertion: the fields freq of dyn_ltree are set and the total of all* frequencies does not exceed 64K (to fit in an int on 16 bit machines).*/
void set_file_type(TState &state)
{int n = 0;unsigned ascii_freq = 0;unsigned bin_freq = 0;while (n < 7)        bin_freq += state.ts.dyn_ltree[n++].fc.freq;while (n < 128)    ascii_freq += state.ts.dyn_ltree[n++].fc.freq;while (n < LITERALS) bin_freq += state.ts.dyn_ltree[n++].fc.freq;*state.ts.file_type = (ush)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
}/* ===========================================================================* Initialize the bit string routines.*/
void bi_init (TState &state,char *tgt_buf, unsigned tgt_size, int flsh_allowed)
{state.bs.out_buf = tgt_buf;state.bs.out_size = tgt_size;state.bs.out_offset = 0;state.bs.flush_flg = flsh_allowed;state.bs.bi_buf = 0;state.bs.bi_valid = 0;state.bs.bits_sent = 0L;
}/* ===========================================================================* Send a value on a given number of bits.* IN assertion: length <= 16 and value fits in length bits.*/
void send_bits(TState &state,int value, int length)
{Assert(state,length > 0 && length <= 15, "invalid length");state.bs.bits_sent += (ulg)length;/* If not enough room in bi_buf, use (bi_valid) bits from bi_buf and* (Buf_size - bi_valid) bits from value to flush the filled bi_buf,* then fill in the rest of (value), leaving (length - (Buf_size-bi_valid))* unused bits in bi_buf.*/state.bs.bi_buf |= (value << state.bs.bi_valid);state.bs.bi_valid += length;if (state.bs.bi_valid > (int)Buf_size) {PUTSHORT(state,state.bs.bi_buf);state.bs.bi_valid -= Buf_size;state.bs.bi_buf = (unsigned)value >> (length - state.bs.bi_valid);}
}/* ===========================================================================* Reverse the first len bits of a code, using straightforward code (a faster* method would use a table)* IN assertion: 1 <= len <= 15*/
unsigned bi_reverse(unsigned code, int len)
{register unsigned res = 0;do {res |= code & 1;code >>= 1, res <<= 1;} while (--len > 0);return res >> 1;
}/* ===========================================================================* Write out any remaining bits in an incomplete byte.*/
void bi_windup(TState &state)
{if (state.bs.bi_valid > 8) {PUTSHORT(state,state.bs.bi_buf);} else if (state.bs.bi_valid > 0) {PUTBYTE(state,state.bs.bi_buf);}if (state.bs.flush_flg) {state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset);}state.bs.bi_buf = 0;state.bs.bi_valid = 0;state.bs.bits_sent = (state.bs.bits_sent+7) & ~7;
}/* ===========================================================================* Copy a stored block to the zip file, storing first the length and its* one's complement if requested.*/
void copy_block(TState &state, char *block, unsigned len, int header)
{bi_windup(state);              /* align on byte boundary */if (header) {PUTSHORT(state,(ush)len);PUTSHORT(state,(ush)~len);state.bs.bits_sent += 2*16;}if (state.bs.flush_flg) {state.flush_outbuf(state.param,state.bs.out_buf, &state.bs.out_offset);state.bs.out_offset = len;state.flush_outbuf(state.param,block, &state.bs.out_offset);} else if (state.bs.out_offset + len > state.bs.out_size) {Assert(state,false,"output buffer too small for in-memory compression");} else {memcpy(state.bs.out_buf + state.bs.out_offset, block, len);state.bs.out_offset += len;}state.bs.bits_sent += (ulg)len<<3;
}/* ===========================================================================*  Prototypes for functions.*/void fill_window  (TState &state);
ulg deflate_fast  (TState &state);int  longest_match (TState &state,IPos cur_match);/* ===========================================================================* Update a hash value with the given input byte* IN  assertion: all calls to to UPDATE_HASH are made with consecutive*    input characters, so that a running hash key can be computed from the*    previous key instead of complete recalculation each time.*/
#define UPDATE_HASH(h,c) (h = (((h)<<H_SHIFT) ^ (c)) & HASH_MASK)/* ===========================================================================* Insert string s in the dictionary and set match_head to the previous head* of the hash chain (the most recent string with same hash key). Return* the previous length of the hash chain.* IN  assertion: all calls to to INSERT_STRING are made with consecutive*    input characters and the first MIN_MATCH bytes of s are valid*    (except for the last MIN_MATCH-1 bytes of the input file).*/
#define INSERT_STRING(s, match_head) \(UPDATE_HASH(state.ds.ins_h, state.ds.window[(s) + (MIN_MATCH-1)]), \state.ds.prev[(s) & WMASK] = match_head = state.ds.head[state.ds.ins_h], \state.ds.head[state.ds.ins_h] = (s))/* ===========================================================================* Initialize the "longest match" routines for a new file** IN assertion: window_size is > 0 if the input file is already read or*    mmap'ed in the window[] array, 0 otherwise. In the first case,*    window_size is sufficient to contain the whole input file plus*    MIN_LOOKAHEAD bytes (to avoid referencing memory beyond the end*    of window[] when looking for matches towards the end).*/
void lm_init (TState &state, int pack_level, ush *flags)
{register unsigned j;Assert(state,pack_level>=1 && pack_level<=8,"bad pack level");/* Do not slide the window if the whole input is already in memory* (window_size > 0)*/state.ds.sliding = 0;if (state.ds.window_size == 0L) {state.ds.sliding = 1;state.ds.window_size = (ulg)2L*WSIZE;}/* Initialize the hash table (avoiding 64K overflow for 16 bit systems).* prev[] will be initialized on the fly.*/state.ds.head[HASH_SIZE-1] = NIL;memset((char*)state.ds.head, NIL, (unsigned)(HASH_SIZE-1)*sizeof(*state.ds.head));/* Set the default configuration parameters:*/state.ds.max_lazy_match   = configuration_table[pack_level].max_lazy;state.ds.good_match       = configuration_table[pack_level].good_length;state.ds.nice_match       = configuration_table[pack_level].nice_length;state.ds.max_chain_length = configuration_table[pack_level].max_chain;if (pack_level <= 2) {*flags |= FAST;} else if (pack_level >= 8) {*flags |= SLOW;}/* ??? reduce max_chain_length for binary files */state.ds.strstart = 0;state.ds.block_start = 0L;j = WSIZE;j <<= 1; // Can read 64K in one stepstate.ds.lookahead = state.readfunc(state, (char*)state.ds.window, j);if (state.ds.lookahead == 0 || state.ds.lookahead == (unsigned)EOF) {state.ds.eofile = 1, state.ds.lookahead = 0;return;}state.ds.eofile = 0;/* Make sure that we always have enough lookahead. This is important* if input comes from a device such as a tty.*/if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);state.ds.ins_h = 0;for (j=0; j<MIN_MATCH-1; j++) UPDATE_HASH(state.ds.ins_h, state.ds.window[j]);/* If lookahead < MIN_MATCH, ins_h is garbage, but this is* not important since only literal bytes will be emitted.*/
}/* ===========================================================================* Set match_start to the longest match starting at the given string and* return its length. Matches shorter or equal to prev_length are discarded,* in which case the result is equal to prev_length and match_start is* garbage.* IN assertions: cur_match is the head of the hash chain for the current*   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1*/
// For 80x86 and 680x0 and ARM, an optimized version is in match.asm or
// match.S. The code is functionally equivalent, so you can use the C version
// if desired. Which I do so desire!
int longest_match(TState &state,IPos cur_match)
{unsigned chain_length = state.ds.max_chain_length;   /* max hash chain length */register uch far *scan = state.ds.window + state.ds.strstart; /* current string */register uch far *match;                    /* matched string */register int len;                           /* length of current match */int best_len = state.ds.prev_length;                 /* best match length so far */IPos limit = state.ds.strstart > (IPos)MAX_DIST ? state.ds.strstart - (IPos)MAX_DIST : NIL;/* Stop when cur_match becomes <= limit. To simplify the code,* we prevent matches with the string of window index 0.*/// The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.// It is easy to get rid of this optimization if necessary.Assert(state,HASH_BITS>=8 && MAX_MATCH==258,"Code too clever");register uch far *strend = state.ds.window + state.ds.strstart + MAX_MATCH;register uch scan_end1  = scan[best_len-1];register uch scan_end   = scan[best_len];/* Do not waste too much time if we already have a good match: */if (state.ds.prev_length >= state.ds.good_match) {chain_length >>= 2;}Assert(state,state.ds.strstart <= state.ds.window_size-MIN_LOOKAHEAD, "insufficient lookahead");do {Assert(state,cur_match < state.ds.strstart, "no future");match = state.ds.window + cur_match;/* Skip to next match if the match length cannot increase* or if the match length is less than 2:*/if (match[best_len]   != scan_end  ||match[best_len-1] != scan_end1 ||*match            != *scan     ||*++match          != scan[1])      continue;/* The check at best_len-1 can be removed because it will be made* again later. (This heuristic is not always a win.)* It is not necessary to compare scan[2] and match[2] since they* are always equal when the other bytes match, given that* the hash keys are equal and that HASH_BITS >= 8.*/scan += 2, match++;/* We check for insufficient lookahead only every 8th comparison;* the 256th check will be made at strstart+258.*/do {} while (*++scan == *++match && *++scan == *++match &&*++scan == *++match && *++scan == *++match &&*++scan == *++match && *++scan == *++match &&*++scan == *++match && *++scan == *++match &&scan < strend);Assert(state,scan <= state.ds.window+(unsigned)(state.ds.window_size-1), "wild scan");len = MAX_MATCH - (int)(strend - scan);scan = strend - MAX_MATCH;if (len > best_len) {state.ds.match_start = cur_match;best_len = len;if (len >= state.ds.nice_match) break;scan_end1  = scan[best_len-1];scan_end   = scan[best_len];}} while ((cur_match = state.ds.prev[cur_match & WMASK]) > limit&& --chain_length != 0);return best_len;
}#define check_match(state,start, match, length)
// or alternatively...
//void check_match(TState &state,IPos start, IPos match, int length)
//{ // check that the match is indeed a match
//    if (memcmp((char*)state.ds.window + match,
//                (char*)state.ds.window + start, length) != EQUAL) {//        fprintf(stderr,
//            " start %d, match %d, length %d\n",
//            start, match, length);
//        error("invalid match");
//    }
//    if (state.verbose > 1) {//        fprintf(stderr,"\\[%d,%d]", start-match, length);
//        do { fprintf(stdout,"%c",state.ds.window[start++]); } while (--length != 0);
//    }
//}/* ===========================================================================* Fill the window when the lookahead becomes insufficient.* Updates strstart and lookahead, and sets eofile if end of input file.** IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0* OUT assertions: strstart <= window_size-MIN_LOOKAHEAD*    At least one byte has been read, or eofile is set; file reads are*    performed for at least two bytes (required for the translate_eol option).*/
void fill_window(TState &state)
{register unsigned n, m;unsigned more;    /* Amount of free space at the end of the window. */do {more = (unsigned)(state.ds.window_size - (ulg)state.ds.lookahead - (ulg)state.ds.strstart);/* If the window is almost full and there is insufficient lookahead,* move the upper half to the lower one to make room in the upper half.*/if (more == (unsigned)EOF) {/* Very unlikely, but possible on 16 bit machine if strstart == 0* and lookahead == 1 (input done one byte at time)*/more--;/* For MMAP or BIG_MEM, the whole input file is already in memory so* we must not perform sliding. We must however call (*read_buf)() in* order to compute the crc, update lookahead and possibly set eofile.*/} else if (state.ds.strstart >= WSIZE+MAX_DIST && state.ds.sliding) {/* By the IN assertion, the window is not empty so we can't confuse* more == 0 with more == 64K on a 16 bit machine.*/memcpy((char*)state.ds.window, (char*)state.ds.window+WSIZE, (unsigned)WSIZE);state.ds.match_start -= WSIZE;state.ds.strstart    -= WSIZE; /* we now have strstart >= MAX_DIST: */state.ds.block_start -= (long) WSIZE;for (n = 0; n < HASH_SIZE; n++) {m = state.ds.head[n];state.ds.head[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL);}for (n = 0; n < WSIZE; n++) {m = state.ds.prev[n];state.ds.prev[n] = (Pos)(m >= WSIZE ? m-WSIZE : NIL);/* If n is not on any hash chain, prev[n] is garbage but* its value will never be used.*/}more += WSIZE;}if (state.ds.eofile) return;/* If there was no sliding:*    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&*    more == window_size - lookahead - strstart* => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)* => more >= window_size - 2*WSIZE + 2* In the MMAP or BIG_MEM case (not yet supported in gzip),*   window_size == input_size + MIN_LOOKAHEAD  &&*   strstart + lookahead <= input_size => more >= MIN_LOOKAHEAD.* Otherwise, window_size == 2*WSIZE so more >= 2.* If there was sliding, more >= WSIZE. So in all cases, more >= 2.*/Assert(state,more >= 2, "more < 2");n = state.readfunc(state, (char*)state.ds.window+state.ds.strstart+state.ds.lookahead, more);if (n == 0 || n == (unsigned)EOF) {state.ds.eofile = 1;} else {state.ds.lookahead += n;}} while (state.ds.lookahead < MIN_LOOKAHEAD && !state.ds.eofile);
}/* ===========================================================================* Flush the current block, with given end-of-file flag.* IN assertion: strstart is set to the end of the current match.*/
#define FLUSH_BLOCK(state,eof) \flush_block(state,state.ds.block_start >= 0L ? (char*)&state.ds.window[(unsigned)state.ds.block_start] : \(char*)NULL, (long)state.ds.strstart - state.ds.block_start, (eof))/* ===========================================================================* Processes a new input file and return its compressed length. This* function does not perform lazy evaluation of matches and inserts* new strings in the dictionary only for unmatched strings or for short* matches. It is used only for the fast compression options.*/
ulg deflate_fast(TState &state)
{IPos hash_head = NIL;       /* head of the hash chain */int flush;                  /* set if current block must be flushed */unsigned match_length = 0;  /* length of best match */state.ds.prev_length = MIN_MATCH-1;while (state.ds.lookahead != 0) {/* Insert the string window[strstart .. strstart+2] in the* dictionary, and set hash_head to the head of the hash chain:*/if (state.ds.lookahead >= MIN_MATCH)INSERT_STRING(state.ds.strstart, hash_head);/* Find the longest match, discarding those <= prev_length.* At this point we have always match_length < MIN_MATCH*/if (hash_head != NIL && state.ds.strstart - hash_head <= MAX_DIST) {/* To simplify the code, we prevent matches with the string* of window index 0 (in particular we have to avoid a match* of the string with itself at the start of the input file).*//* Do not look for matches beyond the end of the input.* This is necessary to make deflate deterministic.*/if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;match_length = longest_match (state,hash_head);/* longest_match() sets match_start */if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;}if (match_length >= MIN_MATCH) {check_match(state,state.ds.strstart, state.ds.match_start, match_length);flush = ct_tally(state,state.ds.strstart-state.ds.match_start, match_length - MIN_MATCH);state.ds.lookahead -= match_length;/* Insert new strings in the hash table only if the match length* is not too large. This saves time but degrades compression.*/if (match_length <= state.ds.max_insert_length&& state.ds.lookahead >= MIN_MATCH) {match_length--; /* string at strstart already in hash table */do {state.ds.strstart++;INSERT_STRING(state.ds.strstart, hash_head);/* strstart never exceeds WSIZE-MAX_MATCH, so there are* always MIN_MATCH bytes ahead.*/} while (--match_length != 0);state.ds.strstart++;} else {state.ds.strstart += match_length;match_length = 0;state.ds.ins_h = state.ds.window[state.ds.strstart];UPDATE_HASH(state.ds.ins_h, state.ds.window[state.ds.strstart+1]);Assert(state,MIN_MATCH==3,"Call UPDATE_HASH() MIN_MATCH-3 more times");}} else {/* No match, output a literal byte */flush = ct_tally (state,0, state.ds.window[state.ds.strstart]);state.ds.lookahead--;state.ds.strstart++;}if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;/* Make sure that we always have enough lookahead, except* at the end of the input file. We need MAX_MATCH bytes* for the next match, plus MIN_MATCH bytes to insert the* string following the next match.*/if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);}return FLUSH_BLOCK(state,1); /* eof */
}/* ===========================================================================* Same as above, but achieves better compression. We use a lazy* evaluation for matches: a match is finally adopted only if there is* no better match at the next window position.*/
ulg deflate(TState &state)
{IPos hash_head = NIL;       /* head of hash chain */IPos prev_match;            /* previous match */int flush;                  /* set if current block must be flushed */int match_available = 0;    /* set if previous match exists */register unsigned match_length = MIN_MATCH-1; /* length of best match */if (state.level <= 3) return deflate_fast(state); /* optimized for speed *//* Process the input block. */while (state.ds.lookahead != 0) {/* Insert the string window[strstart .. strstart+2] in the* dictionary, and set hash_head to the head of the hash chain:*/if (state.ds.lookahead >= MIN_MATCH)INSERT_STRING(state.ds.strstart, hash_head);/* Find the longest match, discarding those <= prev_length.*/state.ds.prev_length = match_length, prev_match = state.ds.match_start;match_length = MIN_MATCH-1;if (hash_head != NIL && state.ds.prev_length < state.ds.max_lazy_match &&state.ds.strstart - hash_head <= MAX_DIST) {/* To simplify the code, we prevent matches with the string* of window index 0 (in particular we have to avoid a match* of the string with itself at the start of the input file).*//* Do not look for matches beyond the end of the input.* This is necessary to make deflate deterministic.*/if ((unsigned)state.ds.nice_match > state.ds.lookahead) state.ds.nice_match = (int)state.ds.lookahead;match_length = longest_match (state,hash_head);/* longest_match() sets match_start */if (match_length > state.ds.lookahead) match_length = state.ds.lookahead;/* Ignore a length 3 match if it is too distant: */if (match_length == MIN_MATCH && state.ds.strstart-state.ds.match_start > TOO_FAR){/* If prev_match is also MIN_MATCH, match_start is garbage* but we will ignore the current match anyway.*/match_length = MIN_MATCH-1;}}/* If there was a match at the previous step and the current* match is not better, output the previous match:*/if (state.ds.prev_length >= MIN_MATCH && match_length <= state.ds.prev_length) {unsigned max_insert = state.ds.strstart + state.ds.lookahead - MIN_MATCH;check_match(state,state.ds.strstart-1, prev_match, state.ds.prev_length);flush = ct_tally(state,state.ds.strstart-1-prev_match, state.ds.prev_length - MIN_MATCH);/* Insert in hash table all strings up to the end of the match.* strstart-1 and strstart are already inserted.*/state.ds.lookahead -= state.ds.prev_length-1;state.ds.prev_length -= 2;do {if (++state.ds.strstart <= max_insert) {INSERT_STRING(state.ds.strstart, hash_head);/* strstart never exceeds WSIZE-MAX_MATCH, so there are* always MIN_MATCH bytes ahead.*/}} while (--state.ds.prev_length != 0);state.ds.strstart++;match_available = 0;match_length = MIN_MATCH-1;if (flush) FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;} else if (match_available) {/* If there was no match at the previous position, output a* single literal. If there was a match but the current match* is longer, truncate the previous match to a single literal.*/if (ct_tally (state,0, state.ds.window[state.ds.strstart-1])) {FLUSH_BLOCK(state,0), state.ds.block_start = state.ds.strstart;}state.ds.strstart++;state.ds.lookahead--;} else {/* There is no previous match to compare with, wait for* the next step to decide.*/match_available = 1;state.ds.strstart++;state.ds.lookahead--;}
//        Assert(state,strstart <= isize && lookahead <= isize, "a bit too far");/* Make sure that we always have enough lookahead, except* at the end of the input file. We need MAX_MATCH bytes* for the next match, plus MIN_MATCH bytes to insert the* string following the next match.*/if (state.ds.lookahead < MIN_LOOKAHEAD) fill_window(state);}if (match_available) ct_tally (state,0, state.ds.window[state.ds.strstart-1]);return FLUSH_BLOCK(state,1); /* eof */
}int putlocal(struct zlist far *z, WRITEFUNC wfunc,void *param)
{ // Write a local header described by *z to file *f.  Return a ZE_ error code.PUTLG(LOCSIG, f);PUTSH(z->ver, f);PUTSH(z->lflg, f);PUTSH(z->how, f);PUTLG(z->tim, f);PUTLG(z->crc, f);PUTLG(z->siz, f);PUTLG(z->len, f);PUTSH(z->nam, f);PUTSH(z->ext, f);size_t res = (size_t)wfunc(param, z->iname, (unsigned int)z->nam);if (res!=z->nam) return ZE_TEMP;if (z->ext){ res = (size_t)wfunc(param, z->extra, (unsigned int)z->ext);if (res!=z->ext) return ZE_TEMP;}return ZE_OK;
}int putextended(struct zlist far *z, WRITEFUNC wfunc, void *param)
{ // Write an extended local header described by *z to file *f. Returns a ZE_ codePUTLG(EXTLOCSIG, f);PUTLG(z->crc, f);PUTLG(z->siz, f);PUTLG(z->len, f);return ZE_OK;
}int putcentral(struct zlist far *z, WRITEFUNC wfunc, void *param)
{ // Write a central header entry of *z to file *f. Returns a ZE_ code.PUTLG(CENSIG, f);PUTSH(z->vem, f);PUTSH(z->ver, f);PUTSH(z->flg, f);PUTSH(z->how, f);PUTLG(z->tim, f);PUTLG(z->crc, f);PUTLG(z->siz, f);PUTLG(z->len, f);PUTSH(z->nam, f);PUTSH(z->cext, f);PUTSH(z->com, f);PUTSH(z->dsk, f);PUTSH(z->att, f);PUTLG(z->atx, f);PUTLG(z->off, f);if ((size_t)wfunc(param, z->iname, (unsigned int)z->nam) != z->nam ||(z->cext && (size_t)wfunc(param, z->cextra, (unsigned int)z->cext) != z->cext) ||(z->com && (size_t)wfunc(param, z->comment, (unsigned int)z->com) != z->com))return ZE_TEMP;return ZE_OK;
}int putend(int n, ulg s, ulg c, extent m, char *z, WRITEFUNC wfunc, void *param)
{ // write the end of the central-directory-data to file *f.PUTLG(ENDSIG, f);PUTSH(0, f);PUTSH(0, f);PUTSH(n, f);PUTSH(n, f);PUTLG(s, f);PUTLG(c, f);PUTSH(m, f);// Write the comment, if anyif (m && wfunc(param, z, (unsigned int)m) != m) return ZE_TEMP;return ZE_OK;
}const ulg crc_table[256] = {0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,0x2d02ef8dL
};#define CRC32(c, b) (crc_table[((int)(c) ^ (b)) & 0xff] ^ ((c) >> 8))
#define DO1(buf)  crc = CRC32(crc, *buf++)
#define DO2(buf)  DO1(buf); DO1(buf)
#define DO4(buf)  DO2(buf); DO2(buf)
#define DO8(buf)  DO4(buf); DO4(buf)ulg crc32(ulg crc, const uch *buf, extent len)
{ if (buf==NULL) return 0L;crc = crc ^ 0xffffffffL;while (len >= 8) {DO8(buf); len -= 8;}if (len) do {DO1(buf);} while (--len);return crc ^ 0xffffffffL;  // (instead of ~c for 64-bit machines)
}void update_keys(unsigned long *keys, char c)
{ keys[0] = CRC32(keys[0],c);keys[1] += keys[0] & 0xFF;keys[1] = keys[1]*134775813L +1;keys[2] = CRC32(keys[2], keys[1] >> 24);
}
char decrypt_byte(unsigned long *keys)
{ unsigned temp = ((unsigned)keys[2] & 0xffff) | 2;return (char)(((temp * (temp ^ 1)) >> 8) & 0xff);
}
char zencode(unsigned long *keys, char c)
{ int t=decrypt_byte(keys);update_keys(keys,c);return (char)(t^c);
}bool HasZipSuffix(const TCHAR *fn)
{ const TCHAR *ext = fn+_tcslen(fn);while (ext>fn && *ext!='.') ext--;if (ext==fn && *ext!='.') return false;if (_tcsicmp(ext,_T(".Z"))==0) return true;if (_tcsicmp(ext,_T(".zip"))==0) return true;if (_tcsicmp(ext,_T(".zoo"))==0) return true;if (_tcsicmp(ext,_T(".arc"))==0) return true;if (_tcsicmp(ext,_T(".lzh"))==0) return true;if (_tcsicmp(ext,_T(".arj"))==0) return true;if (_tcsicmp(ext,_T(".gz"))==0) return true;if (_tcsicmp(ext,_T(".tgz"))==0) return true;return false;
}lutime_t filetime2timet(const FILETIME ft)
{ __int64 i = *(__int64*)&ft;return (lutime_t)((i-116444736000000000)/10000000);
}void filetime2dosdatetime(const FILETIME ft, WORD *dosdate,WORD *dostime)
{ // date: bits 0-4 are day of month 1-31. Bits 5-8 are month 1..12. Bits 9-15 are year-1980// time: bits 0-4 are seconds/2, bits 5-10 are minute 0..59. Bits 11-15 are hour 0..23SYSTEMTIME st; FileTimeToSystemTime(&ft,&st); *dosdate = (WORD)(((st.wYear-1980)&0x7f) << 9);*dosdate |= (WORD)((st.wMonth&0xf) << 5);*dosdate |= (WORD)((st.wDay&0x1f));*dostime = (WORD)((st.wHour&0x1f) << 11);*dostime |= (WORD)((st.wMinute&0x3f) << 5);*dostime |= (WORD)((st.wSecond*2)&0x1f);
}ZRESULT GetFileInfo(HANDLE hf, ulg *attr, long *size, iztimes *times, ulg *timestamp)
{ // The handle must be a handle to a file// The date and time is returned in a long with the date most significant to allow// unsigned integer comparison of absolute times. The attributes have two// high bytes unix attr, and two low bytes a mapping of that to DOS attr.//struct stat s; int res=stat(fn,&s); if (res!=0) return false;// translate windows file attributes into zip ones.BY_HANDLE_FILE_INFORMATION bhi; BOOL res=GetFileInformationByHandle(hf,&bhi);if (!res) return ZR_NOFILE;DWORD fa=bhi.dwFileAttributes; ulg a=0;// Zip uses the lower word for its interpretation of windows stuffif (fa&FILE_ATTRIBUTE_READONLY) a|=0x01;if (fa&FILE_ATTRIBUTE_HIDDEN)   a|=0x02;if (fa&FILE_ATTRIBUTE_SYSTEM)   a|=0x04;if (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x10;if (fa&FILE_ATTRIBUTE_ARCHIVE)  a|=0x20;// It uses the upper word for standard unix attr, which we manually constructif (fa&FILE_ATTRIBUTE_DIRECTORY)a|=0x40000000;  // directoryelse a|=0x80000000;  // normal filea|=0x01000000;      // readableif (fa&FILE_ATTRIBUTE_READONLY) {} else a|=0x00800000; // writeable// now just a small heuristic to check if it's an executable:DWORD red, hsize=GetFileSize(hf,NULL); if (hsize>40){ SetFilePointer(hf,0,NULL,FILE_BEGIN); unsigned short magic; ReadFile(hf,&magic,sizeof(magic),&red,NULL);SetFilePointer(hf,36,NULL,FILE_BEGIN); unsigned long hpos;  ReadFile(hf,&hpos,sizeof(hpos),&red,NULL);if (magic==0x54AD && hsize>hpos+4+20+28){ SetFilePointer(hf,hpos,NULL,FILE_BEGIN); unsigned long signature; ReadFile(hf,&signature,sizeof(signature),&red,NULL);if (signature==IMAGE_DOS_SIGNATURE || signature==IMAGE_OS2_SIGNATURE|| signature==IMAGE_OS2_SIGNATURE_LE || signature==IMAGE_NT_SIGNATURE){ a |= 0x00400000; // executable}}}//if (attr!=NULL) *attr = a;if (size!=NULL) *size = hsize;if (times!=NULL){ // lutime_t is 32bit number of seconds elapsed since 0:0:0GMT, Jan1, 1970.// but FILETIME is 64bit number of 100-nanosecs since Jan1, 1601times->atime = filetime2timet(bhi.ftLastAccessTime);times->mtime = filetime2timet(bhi.ftLastWriteTime);times->ctime = filetime2timet(bhi.ftCreationTime);}if (timestamp!=NULL){ WORD dosdate,dostime;filetime2dosdatetime(bhi.ftLastWriteTime,&dosdate,&dostime);*timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);}return ZR_OK;
}class TZip
{ public:TZip(const char *pwd) : hfout(0),mustclosehfout(false),hmapout(0),zfis(0),obuf(0),hfin(0),writ(0),oerr(false),hasputcen(false),ooffset(0),encwriting(false),encbuf(0),password(0), state(0) {if (pwd!=0 && *pwd!=0) {password=new char[strlen(pwd)+1]; strcpy(password,pwd);}}~TZip() {if (state!=0) delete state; state=0; if (encbuf!=0) delete[] encbuf; encbuf=0; if (password!=0) delete[] password; password=0;}// These variables say about the file we're writing into// We can write to pipe, file-by-handle, file-by-name, memory-to-memmapfilechar *password;           // keep a copy of the passwordHANDLE hfout;             // if valid, we'll write here (for files or pipes)bool mustclosehfout;      // if true, we are responsible for closing hfoutHANDLE hmapout;           // otherwise, we'll write here (for memmap)unsigned ooffset;         // for hfout, this is where the pointer was initiallyZRESULT oerr;             // did a write operation give rise to an error?unsigned writ;            // how far have we written. This is maintained by Add, not write(), to avoid confusion over seeksbool ocanseek;            // can we seek?char *obuf;               // this is where we've locked mmap to view.unsigned int opos;        // current pos in the mmapunsigned int mapsize;     // the size of the map we createdbool hasputcen;           // have we yet placed the central directory?bool encwriting;          // if true, then we'll encrypt stuff using 'keys' before we write it to diskunsigned long keys[3];    // keys are initialised inside Add()char *encbuf;             // if encrypting, then this is a temporary workspace for encrypting the dataunsigned int encbufsize;  // (to be used and resized inside write(), and deleted in the destructor)//TZipFileInfo *zfis;       // each file gets added onto this list, for writing the table at the endTState *state;            // we use just one state object per zip, because it's big (500k)ZRESULT Create(void *z,unsigned int len,DWORD flags);static unsigned sflush(void *param,const char *buf, unsigned *size);static unsigned swrite(void *param,const char *buf, unsigned size);unsigned int write(const char *buf,unsigned int size);bool oseek(unsigned int pos);ZRESULT GetMemory(void **pbuf, unsigned long *plen);ZRESULT Close();// some variables to do with the file currently being read:// I haven't done it object-orientedly here, just put them all// together, since OO didn't seem to make the design any clearer.ulg attr; iztimes times; ulg timestamp;  // all open_* methods set thesebool iseekable; long isize,ired;         // size is not set until close() on pipsulg crc;                                 // crc is not set until close(). iwrit is cumulativeHANDLE hfin; bool selfclosehf;           // for input files and pipesconst char *bufin; unsigned int lenin,posin; // for memory// and a variable for what we've done with the input: (i.e. compressed it!)ulg csize;                               // compressed size, set by the compression routines// and this is used by some of the compression routineschar buf[16384];ZRESULT open_file(const TCHAR *fn);ZRESULT open_handle(HANDLE hf,unsigned int len);ZRESULT open_mem(void *src,unsigned int len);ZRESULT open_dir();static unsigned sread(TState &s,char *buf,unsigned size);unsigned read(char *buf, unsigned size);ZRESULT iclose();ZRESULT ideflate(TZipFileInfo *zfi);ZRESULT istore();ZRESULT Add(const TCHAR *odstzn, void *src,unsigned int len, DWORD flags);ZRESULT AddCentral();};ZRESULT TZip::Create(void *z,unsigned int len,DWORD flags)
{ if (hfout!=0 || hmapout!=0 || obuf!=0 || writ!=0 || oerr!=ZR_OK || hasputcen) return ZR_NOTINITED;//if (flags==ZIP_HANDLE){ HANDLE hf = (HANDLE)z;hfout=hf; mustclosehfout=false;
#ifdef DuplicateHandleBOOL res = DuplicateHandle(GetCurrentProcess(),hf,GetCurrentProcess(),&hfout,0,FALSE,DUPLICATE_SAME_ACCESS);if (res) mustclosehandle=true;
#endif// now we have hfout. Either we duplicated the handle and we close it ourselves// (while the caller closes h themselves), or we couldn't duplicate it.DWORD res = SetFilePointer(hfout,0,0,FILE_CURRENT);ocanseek = (res!=0xFFFFFFFF);if (ocanseek) ooffset=res; else ooffset=0;return ZR_OK;}else if (flags==ZIP_FILENAME){ const TCHAR *fn = (const TCHAR*)z;hfout = CreateFile(fn,GENERIC_WRITE,0,NULL,CREATE_ALWAYS,FILE_ATTRIBUTE_NORMAL,NULL);if (hfout==INVALID_HANDLE_VALUE) {hfout=0; return ZR_NOFILE;}ocanseek=true;ooffset=0;mustclosehfout=true;return ZR_OK;}else if (flags==ZIP_MEMORY){ unsigned int size = len;if (size==0) return ZR_MEMSIZE;if (z!=0) obuf=(char*)z;else{ hmapout = CreateFileMapping(INVALID_HANDLE_VALUE,NULL,PAGE_READWRITE,0,size,NULL);if (hmapout==NULL) return ZR_NOALLOC;obuf = (char*)MapViewOfFile(hmapout,FILE_MAP_ALL_ACCESS,0,0,size);if (obuf==0) {CloseHandle(hmapout); hmapout=0; return ZR_NOALLOC;}}ocanseek=true;opos=0; mapsize=size;return ZR_OK;}else return ZR_ARGS;
}unsigned TZip::sflush(void *param,const char *buf, unsigned *size)
{ // staticif (*size==0) return 0;TZip *zip = (TZip*)param;unsigned int writ = zip->write(buf,*size);if (writ!=0) *size=0;return writ;
}
unsigned TZip::swrite(void *param,const char *buf, unsigned size)
{ // staticif (size==0) return 0;TZip *zip=(TZip*)param; return zip->write(buf,size);
}
unsigned int TZip::write(const char *buf,unsigned int size)
{ const char *srcbuf=buf;if (encwriting){ if (encbuf!=0 && encbufsize<size) {delete[] encbuf; encbuf=0;}if (encbuf==0) {encbuf=new char[size*2]; encbufsize=size;}memcpy(encbuf,buf,size);for (unsigned int i=0; i<size; i++) encbuf[i]=zencode(keys,encbuf[i]);srcbuf=encbuf;}if (obuf!=0){ if (opos+size>=mapsize) {oerr=ZR_MEMSIZE; return 0;}memcpy(obuf+opos, srcbuf, size);opos+=size;return size;}else if (hfout!=0){ DWORD writ; WriteFile(hfout,srcbuf,size,&writ,NULL);return writ;}oerr=ZR_NOTINITED; return 0;
}bool TZip::oseek(unsigned int pos)
{ if (!ocanseek) {oerr=ZR_SEEK; return false;}if (obuf!=0){ if (pos>=mapsize) {oerr=ZR_MEMSIZE; return false;}opos=pos;return true;}else if (hfout!=0){ SetFilePointer(hfout,pos+ooffset,NULL,FILE_BEGIN);return true;}oerr=ZR_NOTINITED; return 0;
}ZRESULT TZip::GetMemory(void **pbuf, unsigned long *plen)
{ // When the user calls GetMemory, they're presumably at the end// of all their adding. In any case, we have to add the central// directory now, otherwise the memory we tell them won't be complete.if (!hasputcen) AddCentral(); hasputcen=true;if (pbuf!=NULL) *pbuf=(void*)obuf;if (plen!=NULL) *plen=writ;if (obuf==NULL) return ZR_NOTMMAP;return ZR_OK;
}ZRESULT TZip::Close()
{ // if the directory hadn't already been added through a call to GetMemory,// then we do it nowZRESULT res=ZR_OK; if (!hasputcen) res=AddCentral(); hasputcen=true;if (obuf!=0 && hmapout!=0) UnmapViewOfFile(obuf); obuf=0;if (hmapout!=0) CloseHandle(hmapout); hmapout=0;if (hfout!=0 && mustclosehfout) CloseHandle(hfout); hfout=0; mustclosehfout=false;return res;
}ZRESULT TZip::open_file(const TCHAR *fn)
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;if (fn==0) return ZR_ARGS;HANDLE hf = CreateFile(fn,GENERIC_READ,FILE_SHARE_READ,NULL,OPEN_EXISTING,0,NULL);if (hf==INVALID_HANDLE_VALUE) return ZR_NOFILE;ZRESULT res = open_handle(hf,0);if (res!=ZR_OK) {CloseHandle(hf); return res;}selfclosehf=true;return ZR_OK;
}
ZRESULT TZip::open_handle(HANDLE hf,unsigned int len)
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;if (hf==0 || hf==INVALID_HANDLE_VALUE) return ZR_ARGS;DWORD res = SetFilePointer(hfout,0,0,FILE_CURRENT);if (res!=0xFFFFFFFF){ ZRESULT res = GetFileInfo(hf,&attr,&isize,&times,&timestamp);if (res!=ZR_OK) return res;SetFilePointer(hf,0,NULL,FILE_BEGIN); // because GetFileInfo will have screwed it upiseekable=true; hfin=hf;return ZR_OK;}else{ attr= 0x80000000;      // just a normal fileisize = -1;            // can't know size until at the endif (len!=0) isize=len; // unless we were told explicitly!iseekable=false;SYSTEMTIME st; GetLocalTime(&st);FILETIME ft;   SystemTimeToFileTime(&st,&ft);WORD dosdate,dostime; filetime2dosdatetime(ft,&dosdate,&dostime);times.atime = filetime2timet(ft);times.mtime = times.atime;times.ctime = times.atime;timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);hfin=hf;return ZR_OK;}
}
ZRESULT TZip::open_mem(void *src,unsigned int len)
{ hfin=0; bufin=(const char*)src; selfclosehf=false; crc=CRCVAL_INITIAL; ired=0; csize=0; ired=0;lenin=len; posin=0;if (src==0 || len==0) return ZR_ARGS;attr= 0x80000000; // just a normal fileisize = len;iseekable=true;SYSTEMTIME st; GetLocalTime(&st);FILETIME ft;   SystemTimeToFileTime(&st,&ft);WORD dosdate,dostime; filetime2dosdatetime(ft,&dosdate,&dostime);times.atime = filetime2timet(ft);times.mtime = times.atime;times.ctime = times.atime;timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);return ZR_OK;
}
ZRESULT TZip::open_dir()
{ hfin=0; bufin=0; selfclosehf=false; crc=CRCVAL_INITIAL; isize=0; csize=0; ired=0;attr= 0x41C00010; // a readable writable directory, and again directoryisize = 0;iseekable=false;SYSTEMTIME st; GetLocalTime(&st);FILETIME ft;   SystemTimeToFileTime(&st,&ft);WORD dosdate,dostime; filetime2dosdatetime(ft,&dosdate,&dostime);times.atime = filetime2timet(ft);times.mtime = times.atime;times.ctime = times.atime;timestamp = (WORD)dostime | (((DWORD)dosdate)<<16);return ZR_OK;
}unsigned TZip::sread(TState &s,char *buf,unsigned size)
{ // staticTZip *zip = (TZip*)s.param;return zip->read(buf,size);
}unsigned TZip::read(char *buf, unsigned size)
{ if (bufin!=0){ if (posin>=lenin) return 0; // end of inputulg red = lenin-posin;if (red>size) red=size;memcpy(buf, bufin+posin, red);posin += red;ired += red;crc = crc32(crc, (uch*)buf, red);return red;}else if (hfin!=0){ DWORD red;BOOL ok = ReadFile(hfin,buf,size,&red,NULL);if (!ok) return 0;ired += red;crc = crc32(crc, (uch*)buf, red);return red;}else {oerr=ZR_NOTINITED; return 0;}
}ZRESULT TZip::iclose()
{ if (selfclosehf && hfin!=0) CloseHandle(hfin); hfin=0;bool mismatch = (isize!=-1 && isize!=ired);isize=ired; // and crc has been being updated anywayif (mismatch) return ZR_MISSIZE;else return ZR_OK;
}ZRESULT TZip::ideflate(TZipFileInfo *zfi)
{ if (state==0) state=new TState();// It's a very big object! 500k! We allocate it on the heap, because PocketPC's// stack breaks if we try to put it all on the stack. It will be deleted lazilystate->err=0;state->readfunc=sread; state->flush_outbuf=sflush;state->param=this; state->level=8; state->seekable=iseekable; state->err=NULL;// the following line will make ct_init realise it has to perform the initstate->ts.static_dtree[0].dl.len = 0;// Thanks to Alvin77 for this crucial fix:state->ds.window_size=0;//  I think that covers everything that needs to be initted.//bi_init(*state,buf, sizeof(buf), TRUE); // it used to be just 1024-size, not 16384 as herect_init(*state,&zfi->att);lm_init(*state,state->level, &zfi->flg);ulg sz = deflate(*state);csize=sz;ZRESULT r=ZR_OK; if (state->err!=NULL) r=ZR_FLATE;return r;
}ZRESULT TZip::istore()
{ ulg size=0;for (;;){ unsigned int cin=read(buf,16384); if (cin<=0 || cin==(unsigned int)EOF) break;unsigned int cout = write(buf,cin); if (cout!=cin) return ZR_MISSIZE;size += cin;}csize=size;return ZR_OK;
}bool has_seeded=false;
ZRESULT TZip::Add(const TCHAR *odstzn, void *src,unsigned int len, DWORD flags)
{ if (oerr) return ZR_FAILED;if (hasputcen) return ZR_ENDED;// if we use password encryption, then every isize and csize is 12 bytes biggerint passex=0; if (password!=0 && flags!=ZIP_FOLDER) passex=12;// zip has its own notion of what its names should look like: i.e. dir/file.stuffTCHAR dstzn[MAX_PATH]; _tcscpy(dstzn,odstzn);if (*dstzn==0) return ZR_ARGS;TCHAR *d=dstzn; while (*d!=0) {if (*d=='\\') *d='/'; d++;}bool isdir = (flags==ZIP_FOLDER);bool needs_trailing_slash = (isdir && dstzn[_tcslen(dstzn)-1]!='/');int method=DEFLATE; if (isdir || HasZipSuffix(dstzn)) method=STORE;// now open whatever was our input source:ZRESULT openres;if (flags==ZIP_FILENAME) openres=open_file((const TCHAR*)src);else if (flags==ZIP_HANDLE) openres=open_handle((HANDLE)src,len);else if (flags==ZIP_MEMORY) openres=open_mem(src,len);else if (flags==ZIP_FOLDER) openres=open_dir();else return ZR_ARGS;if (openres!=ZR_OK) return openres;// A zip "entry" consists of a local header (which includes the file name),// then the compressed data, and possibly an extended local header.// Initialize the local headerTZipFileInfo zfi; zfi.nxt=NULL;strcpy(zfi.name,"");
#ifdef UNICODEWideCharToMultiByte(CP_UTF8,0,dstzn,-1,zfi.iname,MAX_PATH,0,0);
#elsestrcpy(zfi.iname,dstzn);
#endifzfi.nam=strlen(zfi.iname);if (needs_trailing_slash) {strcat(zfi.iname,"/"); zfi.nam++;}strcpy(zfi.zname,"");zfi.extra=NULL; zfi.ext=0;   // extra header to go after this compressed data, and its lengthzfi.cextra=NULL; zfi.cext=0; // extra header to go in the central end-of-zip directory, and its lengthzfi.comment=NULL; zfi.com=0; // comment, and its lengthzfi.mark = 1;zfi.dosflag = 0;zfi.att = (ush)BINARY;zfi.vem = (ush)0xB17; // 0xB00 is win32 os-code. 0x17 is 23 in decimal: zip 2.3zfi.ver = (ush)20;    // Needs PKUNZIP 2.0 to unzip itzfi.tim = timestamp;// Even though we write the header now, it will have to be rewritten, since we don't know compressed size or crc.zfi.crc = 0;            // to be updated laterzfi.flg = 8;            // 8 means 'there is an extra header'. Assume for the moment that we need it.if (password!=0 && !isdir) zfi.flg=9;  // and 1 means 'password-encrypted'zfi.lflg = zfi.flg;     // to be updated laterzfi.how = (ush)method;  // to be updated laterzfi.siz = (ulg)(method==STORE && isize>=0 ? isize+passex : 0); // to be updated laterzfi.len = (ulg)(isize);  // to be updated laterzfi.dsk = 0;zfi.atx = attr;zfi.off = writ+ooffset;         // offset within file of the start of this local record// stuff the 'times' structure into zfi.extra// nb. apparently there's a problem with PocketPC CE(zip)->CE(unzip) fails. And removing the following block fixes it up.char xloc[EB_L_UT_SIZE]; zfi.extra=xloc;  zfi.ext=EB_L_UT_SIZE;char xcen[EB_C_UT_SIZE]; zfi.cextra=xcen; zfi.cext=EB_C_UT_SIZE;xloc[0]  = 'U';xloc[1]  = 'T';xloc[2]  = EB_UT_LEN(3);       // length of data part of e.f.xloc[3]  = 0;xloc[4]  = EB_UT_FL_MTIME | EB_UT_FL_ATIME | EB_UT_FL_CTIME;xloc[5]  = (char)(times.mtime);xloc[6]  = (char)(times.mtime >> 8);xloc[7]  = (char)(times.mtime >> 16);xloc[8]  = (char)(times.mtime >> 24);xloc[9]  = (char)(times.atime);xloc[10] = (char)(times.atime >> 8);xloc[11] = (char)(times.atime >> 16);xloc[12] = (char)(times.atime >> 24);xloc[13] = (char)(times.ctime);xloc[14] = (char)(times.ctime >> 8);xloc[15] = (char)(times.ctime >> 16);xloc[16] = (char)(times.ctime >> 24);memcpy(zfi.cextra,zfi.extra,EB_C_UT_SIZE);zfi.cextra[EB_LEN] = EB_UT_LEN(1);// (1) Start by writing the local header:int r = putlocal(&zfi,swrite,this);if (r!=ZE_OK) {iclose(); return ZR_WRITE;}writ += 4 + LOCHEAD + (unsigned int)zfi.nam + (unsigned int)zfi.ext;if (oerr!=ZR_OK) {iclose(); return oerr;}// (1.5) if necessary, write the encryption headerkeys[0]=305419896L;keys[1]=591751049L;keys[2]=878082192L;for (const char *cp=password; cp!=0 && *cp!=0; cp++) update_keys(keys,*cp);// generate some random bytesif (!has_seeded) srand(GetTickCount()^(unsigned long)GetDesktopWindow());char encbuf[12]; for (int i=0; i<12; i++) encbuf[i]=(char)((rand()>>7)&0xff);encbuf[11] = (char)((zfi.tim>>8)&0xff);for (int ei=0; ei<12; ei++) encbuf[ei]=zencode(keys,encbuf[ei]);if (password!=0 && !isdir) {swrite(this,encbuf,12); writ+=12;}//(2) Write deflated/stored file to zip fileZRESULT writeres=ZR_OK;encwriting = (password!=0 && !isdir);  // an object member variable to say whether we write to disk encryptedif (!isdir && method==DEFLATE) writeres=ideflate(&zfi);else if (!isdir && method==STORE) writeres=istore();else if (isdir) csize=0;encwriting = false;iclose();writ += csize;if (oerr!=ZR_OK) return oerr;if (writeres!=ZR_OK) return ZR_WRITE;// (3) Either rewrite the local header with correct information...bool first_header_has_size_right = (zfi.siz==csize+passex);zfi.crc = crc;zfi.siz = csize+passex;zfi.len = isize;if (ocanseek && (password==0 || isdir)){ zfi.how = (ush)method;if ((zfi.flg & 1) == 0) zfi.flg &= ~8; // clear the extended local header flagzfi.lflg = zfi.flg;// rewrite the local header:if (!oseek(zfi.off-ooffset)) return ZR_SEEK;if ((r = putlocal(&zfi, swrite,this)) != ZE_OK) return ZR_WRITE;if (!oseek(writ)) return ZR_SEEK;}else{ // (4) ... or put an updated header at the endif (zfi.how != (ush) method) return ZR_NOCHANGE;if (method==STORE && !first_header_has_size_right) return ZR_NOCHANGE;if ((r = putextended(&zfi, swrite,this)) != ZE_OK) return ZR_WRITE;writ += 16L;zfi.flg = zfi.lflg; // if flg modified by inflate, for the central index}if (oerr!=ZR_OK) return oerr;// Keep a copy of the zipfileinfo, for our end-of-zip directorychar *cextra = new char[zfi.cext]; memcpy(cextra,zfi.cextra,zfi.cext); zfi.cextra=cextra;TZipFileInfo *pzfi = new TZipFileInfo; memcpy(pzfi,&zfi,sizeof(zfi));if (zfis==NULL) zfis=pzfi;else {TZipFileInfo *z=zfis; while (z->nxt!=NULL) z=z->nxt; z->nxt=pzfi;}return ZR_OK;
}ZRESULT TZip::AddCentral()
{ // write central directoryint numentries = 0;ulg pos_at_start_of_central = writ;//ulg tot_unc_size=0, tot_compressed_size=0;bool okay=true;for (TZipFileInfo *zfi=zfis; zfi!=NULL; ){ if (okay){ int res = putcentral(zfi, swrite,this);if (res!=ZE_OK) okay=false;}writ += 4 + CENHEAD + (unsigned int)zfi->nam + (unsigned int)zfi->cext + (unsigned int)zfi->com;//tot_unc_size += zfi->len;//tot_compressed_size += zfi->siz;numentries++;//TZipFileInfo *zfinext = zfi->nxt;if (zfi->cextra!=0) delete[] zfi->cextra;delete zfi;zfi = zfinext;}ulg center_size = writ - pos_at_start_of_central;if (okay){ int res = putend(numentries, center_size, pos_at_start_of_central+ooffset, 0, NULL, swrite,this);if (res!=ZE_OK) okay=false;writ += 4 + ENDHEAD + 0;}if (!okay) return ZR_WRITE;return ZR_OK;
}ZRESULT lasterrorZ=ZR_OK;unsigned int FormatZipMessageZ(ZRESULT code, char *buf,unsigned int len)
{ if (code==ZR_RECENT) code=lasterrorZ;const char *msg="unknown zip result code";switch (code){ case ZR_OK: msg="Success"; break;case ZR_NODUPH: msg="Culdn't duplicate handle"; break;case ZR_NOFILE: msg="Couldn't create/open file"; break;case ZR_NOALLOC: msg="Failed to allocate memory"; break;case ZR_WRITE: msg="Error writing to file"; break;case ZR_NOTFOUND: msg="File not found in the zipfile"; break;case ZR_MORE: msg="Still more data to unzip"; break;case ZR_CORRUPT: msg="Zipfile is corrupt or not a zipfile"; break;case ZR_READ: msg="Error reading file"; break;case ZR_ARGS: msg="Caller: faulty arguments"; break;case ZR_PARTIALUNZ: msg="Caller: the file had already been partially unzipped"; break;case ZR_NOTMMAP: msg="Caller: can only get memory of a memory zipfile"; break;case ZR_MEMSIZE: msg="Caller: not enough space allocated for memory zipfile"; break;case ZR_FAILED: msg="Caller: there was a previous error"; break;case ZR_ENDED: msg="Caller: additions to the zip have already been ended"; break;case ZR_ZMODE: msg="Caller: mixing creation and opening of zip"; break;case ZR_NOTINITED: msg="Zip-bug: internal initialisation not completed"; break;case ZR_SEEK: msg="Zip-bug: trying to seek the unseekable"; break;case ZR_MISSIZE: msg="Zip-bug: the anticipated size turned out wrong"; break;case ZR_NOCHANGE: msg="Zip-bug: tried to change mind, but not allowed"; break;case ZR_FLATE: msg="Zip-bug: an internal error during flation"; break;}unsigned int mlen=(unsigned int)strlen(msg);if (buf==0 || len==0) return mlen;unsigned int n=mlen; if (n+1>len) n=len-1;strncpy(buf,msg,n); buf[n]=0;return mlen;
}typedef struct
{ DWORD flag;TZip *zip;
} TZipHandleData;HZIP CreateZipInternal(void *z,unsigned int len,DWORD flags, const char *password)
{ TZip *zip = new TZip(password);lasterrorZ = zip->Create(z,len,flags);if (lasterrorZ!=ZR_OK) {delete zip; return 0;}TZipHandleData *han = new TZipHandleData;han->flag=2; han->zip=zip; return (HZIP)han;
}
HZIP CreateZipHandle(HANDLE h, const char *password) {return CreateZipInternal(h,0,ZIP_HANDLE,password);}
HZIP CreateZip(const TCHAR *fn, const char *password) {return CreateZipInternal((void*)fn,0,ZIP_FILENAME,password);}
HZIP CreateZip(void *z,unsigned int len, const char *password) {return CreateZipInternal(z,len,ZIP_MEMORY,password);}ZRESULT ZipAddInternal(HZIP hz,const TCHAR *dstzn, void *src,unsigned int len, DWORD flags)
{ if (hz==0) {lasterrorZ=ZR_ARGS;return ZR_ARGS;}TZipHandleData *han = (TZipHandleData*)hz;if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;}TZip *zip = han->zip;lasterrorZ = zip->Add(dstzn,src,len,flags);return lasterrorZ;
}
ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, const TCHAR *fn) {return ZipAddInternal(hz,dstzn,(void*)fn,0,ZIP_FILENAME);}
ZRESULT ZipAdd(HZIP hz,const TCHAR *dstzn, void *src,unsigned int len) {return ZipAddInternal(hz,dstzn,src,len,ZIP_MEMORY);}
ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h) {return ZipAddInternal(hz,dstzn,h,0,ZIP_HANDLE);}
ZRESULT ZipAddHandle(HZIP hz,const TCHAR *dstzn, HANDLE h, unsigned int len) {return ZipAddInternal(hz,dstzn,h,len,ZIP_HANDLE);}
ZRESULT ZipAddFolder(HZIP hz,const TCHAR *dstzn) {return ZipAddInternal(hz,dstzn,0,0,ZIP_FOLDER);}ZRESULT ZipGetMemory(HZIP hz, void **buf, unsigned long *len)
{ if (hz==0) {if (buf!=0) *buf=0; if (len!=0) *len=0; lasterrorZ=ZR_ARGS;return ZR_ARGS;}TZipHandleData *han = (TZipHandleData*)hz;if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;}TZip *zip = han->zip;lasterrorZ = zip->GetMemory(buf,len);return lasterrorZ;
}ZRESULT CloseZipZ(HZIP hz)
{ if (hz==0) {lasterrorZ=ZR_ARGS;return ZR_ARGS;}TZipHandleData *han = (TZipHandleData*)hz;if (han->flag!=2) {lasterrorZ=ZR_ZMODE;return ZR_ZMODE;}TZip *zip = han->zip;lasterrorZ = zip->Close();delete zip;delete han;return lasterrorZ;
}bool IsZipHandleZ(HZIP hz)
{ if (hz==0) return false;TZipHandleData *han = (TZipHandleData*)hz;return (han->flag==2);
}

unzip.h头文件

#ifndef _unzip_H
#define _unzip_H// UNZIPPING functions -- for unzipping.
// This file is a repackaged form of extracts from the zlib code available
// at www.gzip.org/zlib, by Jean-Loup Gailly and Mark Adler. The original
// copyright notice may be found in unzip.cpp. The repackaging was done
// by Lucian Wischik to simplify and extend its use in Windows/C++. Also
// encryption and unicode filenames have been added.#ifndef _zip_H
DECLARE_HANDLE(HZIP);
#endif
// An HZIP identifies a zip file that has been openedtypedef DWORD ZRESULT;
// return codes from any of the zip functions. Listed later.typedef struct
{ int index;                 // index of this file within the zipTCHAR name[MAX_PATH];      // filename within the zipDWORD attr;                // attributes, as in GetFileAttributes.FILETIME atime,ctime,mtime;// access, create, modify filetimeslong comp_size;            // sizes of item, compressed and uncompressed. Theselong unc_size;             // may be -1 if not yet known (e.g. being streamed in)
} ZIPENTRY;HZIP OpenZip(const TCHAR *fn, const char *password);
HZIP OpenZip(void *z,unsigned int len, const char *password);
HZIP OpenZipHandle(HANDLE h, const char *password);
// OpenZip - opens a zip file and returns a handle with which you can
// subsequently examine its contents. You can open a zip file from:
// from a pipe:             OpenZipHandle(hpipe_read,0);
// from a file (by handle): OpenZipHandle(hfile,0);
// from a file (by name):   OpenZip("c:\\test.zip","password");
// from a memory block:     OpenZip(bufstart, buflen,0);
// If the file is opened through a pipe, then items may only be
// accessed in increasing order, and an item may only be unzipped once,
// although GetZipItem can be called immediately before and after unzipping
// it. If it's opened in any other way, then full random access is possible.
// Note: pipe input is not yet implemented.
// Note: zip passwords are ascii, not unicode.
// Note: for windows-ce, you cannot close the handle until after CloseZip.
// but for real windows, the zip makes its own copy of your handle, so you
// can close yours anytime.ZRESULT GetZipItem(HZIP hz, int index, ZIPENTRY *ze);
// GetZipItem - call this to get information about an item in the zip.
// If index is -1 and the file wasn't opened through a pipe,
// then it returns information about the whole zipfile
// (and in particular ze.index returns the number of index items).
// Note: the item might be a directory (ze.attr & FILE_ATTRIBUTE_DIRECTORY)
// See below for notes on what happens when you unzip such an item.
// Note: if you are opening the zip through a pipe, then random access
// is not possible and GetZipItem(-1) fails and you can't discover the number
// of items except by calling GetZipItem on each one of them in turn,
// starting at 0, until eventually the call fails. Also, in the event that
// you are opening through a pipe and the zip was itself created into a pipe,
// then then comp_size and sometimes unc_size as well may not be known until
// after the item has been unzipped.ZRESULT FindZipItem(HZIP hz, const TCHAR *name, bool ic, int *index, ZIPENTRY *ze);
// FindZipItem - finds an item by name. ic means 'insensitive to case'.
// It returns the index of the item, and returns information about it.
// If nothing was found, then index is set to -1 and the function returns
// an error code.ZRESULT UnzipItem(HZIP hz, int index, const TCHAR *fn);
ZRESULT UnzipItem(HZIP hz, int index, void *z,unsigned int len);
ZRESULT UnzipItemHandle(HZIP hz, int index, HANDLE h);
// UnzipItem - given an index to an item, unzips it. You can unzip to:
// to a pipe:             UnzipItemHandle(hz,i, hpipe_write);
// to a file (by handle): UnzipItemHandle(hz,i, hfile);
// to a file (by name):   UnzipItem(hz,i, ze.name);
// to a memory block:     UnzipItem(hz,i, buf,buflen);
// In the final case, if the buffer isn't large enough to hold it all,
// then the return code indicates that more is yet to come. If it was
// large enough, and you want to know precisely how big, GetZipItem.
// Note: zip files are normally stored with relative pathnames. If you
// unzip with ZIP_FILENAME a relative pathname then the item gets created
// relative to the current directory - it first ensures that all necessary
// subdirectories have been created. Also, the item may itself be a directory.
// If you unzip a directory with ZIP_FILENAME, then the directory gets created.
// If you unzip it to a handle or a memory block, then nothing gets created
// and it emits 0 bytes.
ZRESULT SetUnzipBaseDir(HZIP hz, const TCHAR *dir);
// if unzipping to a filename, and it's a relative filename, then it will be relative to here.
// (defaults to current-directory).ZRESULT CloseZip(HZIP hz);
// CloseZip - the zip handle must be closed with this function.unsigned int FormatZipMessage(ZRESULT code, TCHAR *buf,unsigned int len);
// FormatZipMessage - given an error code, formats it as a string.
// It returns the length of the error message. If buf/len points
// to a real buffer, then it also writes as much as possible into there.// These are the result codes:
#define ZR_OK         0x00000000     // nb. the pseudo-code zr-recent is never returned,
#define ZR_RECENT     0x00000001     // but can be passed to FormatZipMessage.
// The following come from general system stuff (e.g. files not openable)
#define ZR_GENMASK    0x0000FF00
#define ZR_NODUPH     0x00000100     // couldn't duplicate the handle
#define ZR_NOFILE     0x00000200     // couldn't create/open the file
#define ZR_NOALLOC    0x00000300     // failed to allocate some resource
#define ZR_WRITE      0x00000400     // a general error writing to the file
#define ZR_NOTFOUND   0x00000500     // couldn't find that file in the zip
#define ZR_MORE       0x00000600     // there's still more data to be unzipped
#define ZR_CORRUPT    0x00000700     // the zipfile is corrupt or not a zipfile
#define ZR_READ       0x00000800     // a general error reading the file
#define ZR_PASSWORD   0x00001000     // we didn't get the right password to unzip the file
// The following come from mistakes on the part of the caller
#define ZR_CALLERMASK 0x00FF0000
#define ZR_ARGS       0x00010000     // general mistake with the arguments
#define ZR_NOTMMAP    0x00020000     // tried to ZipGetMemory, but that only works on mmap zipfiles, which yours wasn't
#define ZR_MEMSIZE    0x00030000     // the memory size is too small
#define ZR_FAILED     0x00040000     // the thing was already failed when you called this function
#define ZR_ENDED      0x00050000     // the zip creation has already been closed
#define ZR_MISSIZE    0x00060000     // the indicated input file size turned out mistaken
#define ZR_PARTIALUNZ 0x00070000     // the file had already been partially unzipped
#define ZR_ZMODE      0x00080000     // tried to mix creating/opening a zip
// The following come from bugs within the zip library itself
#define ZR_BUGMASK    0xFF000000
#define ZR_NOTINITED  0x01000000     // initialisation didn't work
#define ZR_SEEK       0x02000000     // trying to seek in an unseekable file
#define ZR_NOCHANGE   0x04000000     // changed its mind on storage, but not allowed
#define ZR_FLATE      0x05000000     // an internal error in the de/inflation code// e.g.
//
// SetCurrentDirectory("c:\\docs\\stuff");
// HZIP hz = OpenZip("c:\\stuff.zip",0);
// ZIPENTRY ze; GetZipItem(hz,-1,&ze); int numitems=ze.index;
// for (int i=0; i<numitems; i++)
// { GetZipItem(hz,i,&ze);
//   UnzipItem(hz,i,ze.name);
// }
// CloseZip(hz);
//
//
// HRSRC hrsrc = FindResource(hInstance,MAKEINTRESOURCE(1),RT_RCDATA);
// HANDLE hglob = LoadResource(hInstance,hrsrc);
// void *zipbuf=LockResource(hglob);
// unsigned int ziplen=SizeofResource(hInstance,hrsrc);
// HZIP hz = OpenZip(zipbuf, ziplen, 0);
//   - unzip to a membuffer -
// ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze);
// char *ibuf = new char[ze.unc_size];
// UnzipItem(hz,i, ibuf, ze.unc_size);
// delete[] ibuf;
//   - unzip to a fixed membuff -
// ZIPENTRY ze; int i; FindZipItem(hz,"file.dat",true,&i,&ze);
// char ibuf[1024]; ZRESULT zr=ZR_MORE; unsigned long totsize=0;
// while (zr==ZR_MORE)
// { zr = UnzipItem(hz,i, ibuf,1024);
//   unsigned long bufsize=1024; if (zr==ZR_OK) bufsize=ze.unc_size-totsize;
//   totsize+=bufsize;
// }
//   - unzip to a pipe -
// HANDLE hwrite; HANDLE hthread=CreateWavReaderThread(&hwrite);
// int i; ZIPENTRY ze; FindZipItem(hz,"sound.wav",true,&i,&ze);
// UnzipItemHandle(hz,i, hwrite);
// CloseHandle(hwrite);
// WaitForSingleObject(hthread,INFINITE);
// CloseHandle(hwrite); CloseHandle(hthread);
//   - finished -
// CloseZip(hz);
// // note: no need to free resources obtained through Find/Load/LockResource
//
//
// SetCurrentDirectory("c:\\docs\\pipedzipstuff");
// HANDLE hread,hwrite; CreatePipe(&hread,&hwrite,0,0);
// CreateZipWriterThread(hwrite);
// HZIP hz = OpenZipHandle(hread,0);
// for (int i=0; ; i++)
// { ZIPENTRY ze;
//   ZRESULT zr=GetZipItem(hz,i,&ze); if (zr!=ZR_OK) break; // no more
//   UnzipItem(hz,i, ze.name);
// }
// CloseZip(hz);
//
//// Now we indulge in a little skullduggery so that the code works whether
// the user has included just zip or both zip and unzip.
// Idea: if header files for both zip and unzip are present, then presumably
// the cpp files for zip and unzip are both present, so we will call
// one or the other of them based on a dynamic choice. If the header file
// for only one is present, then we will bind to that particular one.
ZRESULT CloseZipU(HZIP hz);
unsigned int FormatZipMessageU(ZRESULT code, TCHAR *buf,unsigned int len);
bool IsZipHandleU(HZIP hz);
#ifdef _zip_H
#undef CloseZip
#define CloseZip(hz) (IsZipHandleU(hz)?CloseZipU(hz):CloseZipZ(hz))
#else
#define CloseZip CloseZipU
#define FormatZipMessage FormatZipMessageU
#endif#endif // _unzip_H

使用方法

 HZIP hz = CreateZip(L"simple.zip",0);ZipAdd(hz,L"ax_29_win7.7z",  L"ax_29_win7.7z");ZipAdd(hz,L"ax_29_win10.7z",  L"ax_29_win10.7z");CloseZip(hz);

总结起来就是创建zip,引入相关文件,关闭zip,释放内存。

C++ zip压缩库使用相关推荐

  1. Hadoop SequnceFile.Writer 压缩模式及压缩库浅析

    2019独角兽企业重金招聘Python工程师标准>>> 先说明SequnceFile的压缩类型(Compression Type)分为三种NONE,RECORD,BLOCK,通过配置 ...

  2. 应用zip压缩的javascript以及Egret H5游戏实战

    代码地址如下: http://www.demodashi.com/demo/11039.html 主要起因是策划对最快进入登录界面有硬性要求(3秒),那么最开始加载的文件越小越好.对H5的游戏程序进行 ...

  3. c#zip压缩解压缩全解

    全栈工程师开发手册 (作者:栾鹏) c#教程全解 c#实现文件或文件夹的zip格式的压缩解压缩. 需要引入ICSharpCode.SharpZipLib.dll链接库,下载 测试代码 static v ...

  4. linux下gz和tar.gz、zip压缩解压

    文章目录 说明 分享 tar.gz 常用命令 gz 常用命令 zip 常用命令 总结 说明 本博客每周五更新一次. 日常数据处理中,经常需要压缩数据文件,减小传输带宽,方便分享和存储,整理gz.tar ...

  5. java 分卷压缩_Apache Commons Compress介绍-Zip压缩解压

    Zip格式应该是最出名的压缩格式之一了,zlib.gzip这些辈分很老的库大家应该都用过,甚至大部分其他格式的压缩库,都可以处理zip格式.Commons Compress当然也少补了对zip格式的支 ...

  6. Node zip压缩和解压缩

    NodeJS 文件(夹)压缩/解压方案(zip/unzip)-Linux上zip相关命令 Use adm-zip adm-zip支持archive和unarchive一个或多个文件或者整个文件夹的功能 ...

  7. android下zip压缩文件加密解密的完美解决方案,Android之zip文件加密解压及进度条的实现...

    zip文件的解压可以使用java的zip库,但是没有实现对加密文件的解压功能,这里可以使用zip4j来实现.具体可以参看该文<Android下zip压缩文件加密解密的完美解决方案 http:// ...

  8. 3D游戏3D素材资源zip压缩解决方案

    3D游戏3D素材资源zip压缩解决方案 近期使用Laya开发了个3D游戏,遇到了这样的问题,3D素材资源加载很慢.前端工程师都知道,影响网络加载速度的因素除了下载文件体积之外还有一个就是http请求过 ...

  9. Java 的zip压缩和解压缩

    Java 的zip压缩和解压缩 好久没有来这写东西了,今天中秋节,有个东西想拿出来分享,一来是工作中遇到的问题,一来是和csdn问候一下,下面就分享一个Java中的zip压缩技术,代码实现比较简单,代 ...

最新文章

  1. 数据结构——四大查找算法(工作必备)
  2. jieba分词的使用
  3. 《强化学习周刊》第40期:PMIC多智能体强化学习、Lazy-MDPs、CTDS
  4. 配置dialog无标题的几种方法
  5. vim 对文件进行加密
  6. Python:Django开发函数笔记:
  7. C#容量超出了最大容量。
  8. 实现页面弹框背景虚化效果
  9. (27)FPGA面试题动态时序模拟
  10. 1 Oracle数据库环境搭建
  11. zk可实现分布式锁,Redis也可实现,之间有什么区别?
  12. Java_8排序(冒泡排序和选择排序)
  13. java某校在积极推行无人监考,结构化面试题:高校无人监考你怎么看?
  14. maven安装oracle驱动,maven 安装 Oracle 驱动 ojdbc14.jar
  15. C++ 万年历 查找年、月、日、星期数以及节日等信息
  16. 使用PHP的http请求客户端guzzle如何添加请求头
  17. 提高元认知能力时刻掌握方向舵主动控制生命航向
  18. SQL13 从titles表获取按照title进行分组
  19. Android锁屏状态下点亮屏幕并弹窗提醒
  20. JSON学习(一)——了解JSON

热门文章

  1. 30G 超大数据文件,如何用一周时间导入生产数据库?
  2. eclipse上的.properties文件中文编辑显示问题
  3. 关于Calendar用法的一些总结
  4. Springboot的web开发-静态资源
  5. hdu 3123(GCC)数论
  6. Unix Tutorial Four
  7. idea 和 maven学习
  8. linux打包/解压-tar
  9. MVC 自定义属性验证登录
  10. iOS 应用程序的生命周期浅析