隐语义模型与矩阵分解

协同过滤算法的特点就是完全没有利用到物品本身或者是用户自身的属性, 仅仅利用了用户与物品的交互信息就可以实现推荐,是一个可解释性很强, 非常直观的模型, 但是也存在一些问题, 第一个就是处理稀疏矩阵的能力比较弱, 所以为了使得协同过滤更好处理稀疏矩阵问题, 增强泛化能力, 从协同过滤中衍生出矩阵分解模型(Matrix Factorization,MF)或者叫隐语义模型, 两者差不多说的一个意思, 就是在协同过滤共现矩阵的基础上, 使用更稠密的隐向量表示用户和物品, 挖掘用户和物品的隐含兴趣和隐含特征, 在一定程度上弥补协同过滤模型处理稀疏矩阵能力不足的问题。

隐语义模型

隐语义模型最早在文本领域被提出,用于找到文本的隐含语义。在2006年, 被用于推荐中, 它的核心思想是通过隐含特征(latent factor)联系用户兴趣和物品(item), 基于用户的行为找出潜在的主题和分类, 然后对item进行自动聚类,划分到不同类别/主题(用户的兴趣)。

这么说可能有点抽象,所以下面拿项亮老师《推荐系统实践》里面的那个例子看一下:

如果我们知道了用户A和用户B两个用户在豆瓣的读书列表, 从他们的阅读列表可以看出,用户A的兴趣涉及侦探小说、科普图书以及一些计算机技术书, 而用户B的兴趣比较集中在数学和机器学习方面。

  • 那么如何给A和B推荐图书呢?

    先说说协同过滤算法, 这样好对比不同:

    • 对于UserCF,首先需要找到和他们看了同样书的其他用户(兴趣相似的用户),然后给他们推荐那些用户喜欢的其他书。
    • 对于ItemCF,需要给他们推荐和他们已经看的书相似的书,比如作者B看了很多关于数据挖掘的书,可以给他推荐机器学习或者模式识别方面的书。

    而如果是隐语义模型的话, 它会先通过一些角度把用户兴趣和这些书归一下类, 当来了用户之后, 首先得到他的兴趣分类, 然后从这个分类中挑选他可能喜欢的书籍。

这里就看到了隐语义模型和协同过滤的不同, 这里说的角度其实就是这个隐含特征, 比如书籍的主要内容, 作者, 年份, 主题等都可以算隐含特征,如果这个例子还不是很清晰的话, 那么下面再举个更为具体的例子, 看看是如何通过隐含特征来划分开用户兴趣和物品的。

但是在这之前, 相信通过上面这个例子, 我们已经隐隐约约感受到了协同过滤和隐语义模型的区别了, 下面放上王喆老师《深度学习推荐系统》的一个原理图作为对比, 区别简直一目了然:

我们下面拿一个音乐评分的例子来具体看一下隐特征矩阵的含义。

假设每个用户都有自己的听歌偏好, 比如A喜欢带有小清新的, 吉他伴奏的, 王菲的歌曲,如果一首歌正好是王菲唱的, 并且是吉他伴奏的小清新, 那么就可以将这首歌推荐给这个用户。 也就是说是小清新, 吉他伴奏, 王菲这些元素连接起了用户和歌曲。 当然每个用户对不同的元素偏好不同, 每首歌包含的元素也不一样, 所以我们就希望找到下面的两个矩阵:

  1. 潜在因子—— 用户矩阵Q 这个矩阵表示不同用户对于不同元素的偏好程度, 1代表很喜欢, 0代表不喜欢, 比如下面这样:

  1. 潜在因子——音乐矩阵P 表示每种音乐含有各种元素的成分, 比如下表中, 音乐A是一个偏小清新的音乐, 含有小清新的Latent Factor的成分是0.9, 重口味的成分是0.1, 优雅成分0.2…

利用上面的这两个矩阵, 我们就能得出张三对音乐A的喜欢程度:

张三对小清新的偏好 * 音乐A含有小清新的成分 + 张三对重口味的偏好 * 音乐A含有重口味的成分 + 张三对优雅的偏好 * 音乐A含有优雅的成分…,

下面是对应的两个隐向量:

根据隐向量其实就可以得到张三对音乐A的打分,即: 0.6∗0.9+0.8∗0.1+0.1∗0.2+0.1∗0.4+0.7∗0=0.690.6 * 0.9 + 0.8 * 0.1 + 0.1 * 0.2 + 0.1 * 0.4 + 0.7 * 0 = 0.690.60.9+0.80.1+0.10.2+0.10.4+0.70=0.69 按照这个计算方式, 每个用户对每首歌其实都可以得到这样的分数, 最后就得到了我们的评分矩阵:

这里的红色表示用户没有打分,我们通过隐向量计算得到的。

上面例子中的小清晰, 重口味, 优雅这些就可以看做是隐含特征, 而通过这个隐含特征就可以把用户的兴趣和音乐的进行一个分类, 其实就是找到了每个用户每个音乐的一个隐向量表达形式(embedding的原理其实也是这样, 那里是找到每个词的隐向量表达), 这个隐向量就可以反映出用户的兴趣和物品的风格,并能将相似的物品推荐给相似的用户等。

有没有感觉到是把协同过滤算法进行了一种延伸, 把用户的相似性和物品的相似性通过了一个叫做隐向量的方式进行表达

但是, 真实的情况下我们其实是没有上面那两个矩阵的, 音乐那么多, 用户那么多, 我们没有办法去找一些隐特征去表示出这些东西, 另外一个问题就是即使能表示也不一定准, 对于每个用户或者每个物品的风格,我们每个人都有不同的看法。 所以事实上, 我们有的只有用户的评分矩阵, 也就是最后的结果, 并且一般这种矩阵长这样:

这种矩阵非常的稀疏,如果直接基于用户相似性或者物品相似性去填充这个矩阵是不太容易的, 并且很容易出现长尾问题, 所以矩阵分解就可以比较容易的解决这个问题。

矩阵分解模型其实就是在想办法基于这个评分矩阵去找到上面例子中的那两个矩阵, 也就是用户兴趣和物品的隐向量表达, 然后就把这个评分矩阵分解成Q和P两个矩阵乘积的形式, 这时候就可以基于这两个矩阵去预测某个用户对某个物品的评分了。 然后基于这个评分去进行推荐。这就是矩阵分解算法的原理。

矩阵分解算法的原理

在矩阵分解的算法框架下, 我们就可以通过分解协同过滤的共现矩阵来得到用户和物品的隐向量, 就是上面的用户矩阵Q和物品矩阵P, 这也是“矩阵分解”名字的由来。

矩阵分解算法将m×nm\times nm×n维的共享矩阵RRR分解成m×km \times km×k维的用户矩阵UUUk×nk \times nk×n维的物品矩阵VVV相乘的形式。 其中mmm是用户数量, nnn是物品数量, kkk是隐向量维度, 也就是隐含特征个数, 只不过这里的隐含特征变得不可解释了, 即我们不知道具体含义了, 要模型自己去学。kkk的大小决定了隐向量表达能力的强弱, kkk越大, 表达信息就越强, 理解起来就是把用户的兴趣和物品的分类划分的越具体。

那么如果有了用户矩阵和物品矩阵的话, 我们就知道了如果想计算用户uuu对物品iii的评分, 只需要 Preference⁡(u,i)=rui=puTqi=∑f=1Fpu,kqk,i\operatorname{Preference}(u, i)=r_{u i}=p_{u}^{T} q_{i}=\sum_{f=1}^{F} p_{u, k} q_{k,i} Preference(u,i)=rui=puTqi=f=1Fpu,kqk,i 这里的pup_upu就是用户uuu的隐向量, 就类似与上面的张三向量, 注意这是列向量, qiq_iqi是物品iii的隐向量, 就类似于上面的音乐A向量, 这个也是列向量, 所以才用了puTqip_{u}^{T} q_{i}puTqi得到了一个数, 也就是用户的最终评分, 计算过程其实和上面例子中一样。

这里的pu,kp_{u,k}pu,kqi,kq_{i,k}qi,k是模型的参数, 也正是我们想办法要计算的, pu,kp_{u,k}pu,k度量的是用户uuu的兴趣和第kkk个隐类的关系, 而qi,kq_{i,k}qi,k度量了第kkk个隐类和物品iii之间的关系。

矩阵分解算法的求解

谈到矩阵分解, 最常用的方法是特征值分解(EVD)或者奇异值分解(SVD)
参考自:从定义出发理解奇异值分解(SVD)
特征分解

对于n×n矩阵A(行列必须相同),如果A有n个线性无关的特征向量,矩阵A才可以对角化,才能进行特征分解,有些矩阵没有达到n个线性无关的特征向量是无法对角化的(这边是网上一些文章的漏洞)。若A是实对称矩阵,则有更好的性质,属于A的不同特征值的特征向量一定正交(正交一定线性无关,线性无关不一定正交)。

对于实对称矩阵A,可以特征分解
A=VDVTA=V D V^{T} A=VDVT
其中,V的列向量是A的特征向量,D是对角矩阵,对角元素是对应特征向量的A的特征值。并且V 是正交矩阵,即 VVT=IV V^{T}=IVVT=I 。这是线代书上实对称矩阵对角化的定理得来。

奇异值分解

对于一般的m ×\times× n的实矩阵A,即各个元素都是实数,如何进行矩阵的分解呢?注意到 ATAA^{T} AATA 一定是 对称矩阵,我们可以利用这个性质进一步操作。根据实对称矩阵特征分解性质,令
ATA=VDVTA^{T} A=V D V^{T} ATA=VDVT
D是对角矩阵,对角元素 λi\lambda_{i}λiATAA^{T} AATA 的特征值。由V是正交矩阵,令V的列向量为 {v1,v2,…vn}\left\{v_{1}, v_{2}, \ldots v_{n}\right\}{v1,v2,vn}, 由实对称矩阵的性质可知这些向量都是 ATAA^{T} AATA 的特征向量,并且是一组正交基底。通过这组正交 基,我们可以得到更有趣的性质,即 {Av1,Av2,…,Avn}\left\{A v_{1}, A v_{2}, \ldots, A v_{n}\right\}{Av1,Av2,,Avn} 也是一组正交基。证明如下:
Avi⋅Avj=(Avi)T(Avj)=viTATAvj=viT(λjvj)=λjvi⋅vjA v_{i} \cdot A v_{j}=\left(A v_{i}\right)^{T}\left(A v_{j}\right)=v_{i}^{T} A^{T} A v_{j}=v_{i}^{T}\left(\lambda_{j} v_{j}\right)=\lambda_{j} v_{i} \cdot v_{j} AviAvj=(Avi)T(Avj)=viTATAvj=viT(λjvj)=λjvivj
因为 {v1,v2,…vn}\left\{v_{1}, v_{2}, \ldots v_{n}\right\}{v1,v2,vn} 这些特征向量相互正交,所以 {Av1,Av2,…,Avn}\left\{A v_{1}, A v_{2}, \ldots, A v_{n}\right\}{Av1,Av2,,Avn} 也是一组正交基。

令i=j, 那么有 ∣Avi∣2=λi∣vi∣2=λi\left|A v_{i}\right|^{2}=\lambda_{i}\left|v_{i}\right|^{2}=\lambda_{i}Avi2=λivi2=λi

我们定义
ui=Avi∣Avi∣=1λxiAviσi=λi\begin{array}{c} u_{i}=\frac{A v_{i}}{\left|A v_{i}\right|}=\frac{1}{\sqrt[x]{\lambda}_{i}} A v_{i} \\ \sigma_{i}=\sqrt{\lambda_{i}} \end{array} ui=AviAvi=xλ

i1Aviσi=λi


就可以得到
Avi=σiu2A v_{i}=\sigma_{i} u_{2} Avi=σiu2
viv_{i}vi 为矩阵V的列向量, uiu_{i}ui 为矩阵U的列向量, 拼接一下此可以得到下式
AV=UΣA V=U \Sigma AV=UΣ
其中, ∑\sum 是对角矩阵,对角元素为 σi\sigma_{i}σi 。V是正交矩阵,U是通过定义得来,也是正交矩阵,由 VVT=IV V^{T}=IVVT=I ,我们可以得到奇异值分解结果
A=UΣVTA=U \Sigma V^{T} A=UΣVT

SVD和EVD的关系

上面的构造通过对 ATAA^{T} AATA 求特征分解 (EVD),(\mathrm{EVD}),(EVD), 得到了矩阵A的奇异值分解 (SVD)∘(\mathrm{SVD}) \circ(SVD) 同样,我们 可以从矩阵A的奇异值分解 (SVD) 得到 ATAA^{T} AATA 特征分解 (EVD) 。

假设 A=U∑VTA=U \sum V^{T}A=UVT 已经给定,注意到U和V都是正交矩阵,可以得到下面两式
ATA=VΣTΣVTAAT=U∑ΣTUT\begin{array}{l} A^{T} A=V \Sigma^{T} \Sigma \mathrm{V}^{T} \\ A A^{T}=U \sum \Sigma^{T} U^{T} \end{array} ATA=VΣTΣVTAAT=UΣTUT
注意等式右边中间两个对角矩阵的乘积还是对角矩阵,对角元素变为 σi2=λi\sigma_{i}{ }^{2}=\lambda_{i}σi2=λi, 因此,我们可以 到 AATA A^{T}AATATAA^{T} AATA 的特征分解 (EVD)(\mathrm{EVD})(EVD)

通过以上推导,我们可以看出,对于任意的矩阵A的奇异值分解,其右奇异向量(V的列向量)一 定为 ATAA^{T} AATA 的特征向量,左奇异向量(U的列向量)一定为 AATA A^{T}AAT 的特征向量。所以我们进行SVD 时,只需要对 AATA A^{T}AATATAA^{T} AATA 进行特征分解 (EVD),(\mathrm{EVD}),(EVD), 求出相应的U和V即可。

可以对比阅读:奇异值分解(SVD)的原理详解及推导

下面回到咱们主题:首先是EVD, 它要求分解的矩阵是方阵, 显然用户-物品矩阵不满足这个要求, 而传统的SVD分解, 会要求原始矩阵是稠密的, 而我们这里的这种矩阵一般情况下是非常稀疏的, 如果想用奇异值分解, 就必须对缺失的元素进行填充, 而一旦补全, 空间复杂度就会非常高, 且补的不一定对。 然后就是SVD分解计算复杂度非常高, 而我们的用户-物品矩阵非常大, 所以基本上无法使用。

Basic SVD

2006年的Netflix Prize之后, Simon Funk公布了一个矩阵分解算法叫做Funk-SVD, 后来被Netflix Prize的冠军Koren称为Latent Factor Model(LFM)。 Funk-SVD的思想很简单: 把求解上面两个矩阵的参数问题转换成一个最优化问题, 可以通过训练集里面的观察值利用最小化来学习用户矩阵和物品矩阵。

我们上面已经知道了, 如果有了用户矩阵和物品矩阵的话, 我们就知道了如果想计算用户uuu对物品iii的评分, 只需要 Preference⁡(u,i)=rui=puTqi=∑f=1Fpu,kqk,i\operatorname{Preference}(u, i)=r_{u i}=p_{u}^{T} q_{i}=\sum_{f=1}^{F} p_{u, k} q_{k,i} Preference(u,i)=rui=puTqi=f=1Fpu,kqk,i 而现在, 我们有真实的ru,ir_{u,i}ru,i, 但是没有puTqip_{u}^{T} q_{i}puTqi, 那么我们可以初始化一个, 随机初始化一个用户矩阵UUU和一个物品矩阵VVV, 然后不就有puTqip_{u}^{T} q_{i}puTqi了?

当然你说, 随机初始化的肯定不准啊, 但是, 有了puTqip_{u}^{T} q_{i}puTqi之后, 我们就可以计算一个猜测的r^ui\hat{r}{u i}r^ui, 即 r^ui=puTqi\hat{r}{u i}=p_{u}^{T} q_{i} r^ui=puTqi

这时候, 肯定是不准, 那么这个猜测的和真实值之间就会有一个误差: eui=rui−r^uie_{u i}=r_{u i}-\hat{r}_{u i} eui=ruir^ui

有了误差, 我们就可以计算出总的误差平方和: SSE⁡=∑u,ieui2=∑u,i(rui−∑k=1Kpu,kqk,i)2\operatorname{SSE}=\sum_{u, i} e_{u i}^{2}=\sum_{u, i}\left(r_{u i}-\sum_{k=1}^{K} p_{u,k} q_{k, i}\right)^{2} SSE=u,ieui2=u,i(ruik=1Kpu,kqk,i)2 有了损失, 我们就可以想办法进行训练, 把SSE降到最小, 那么我们的两个矩阵参数就可以算出来。所以就把这个问题转成了最优化的的问题, 而我们的目标函数就是:

min⁡q,p∑(u,i)∈K(rui−puTqi)2\min {\boldsymbol{q}^{}, \boldsymbol{p}^{}} \sum{(u, i) \in K}\left(\boldsymbol{r}{\mathrm{ui}}-p{u}^{T} q_{i}\right)^{2} minq,p(u,i)K(ruipuTqi)2

这里的KKK表示所有用户评分样本的集合。

有了目标函数, 那么我们就可以使用梯度下降算法来降低损失。 那么我们需要对目标函数求偏导, 得到梯度。 我们的目标函数如果是上面的SSE, 我们下面来推导一下最后的导数:

SSE⁡=∑u,ieui2=∑u,i(rui−∑k=1Kpu,kqk,i)2\operatorname{SSE}=\sum_{u, i} e_{u i}^{2}=\sum_{u, i}\left(r_{u i}-\sum_{k=1}^{K} p_{u,k} q_{k,i}\right)^{2} SSE=u,ieui2=u,i(ruik=1Kpu,kqk,i)2 首先我们求SSE在pu,kp_{u,k}pu,k(也就是Q矩阵的第uuukkk列)的梯度: ∂∂pu,kSSE=∂∂pu,k(eui2)=2eui∂∂pu,keui=2eui∂∂pu,k(rui−∑k=1Kpu,kqk,i)=−2euiqk,i\frac{\partial}{\partial p_{u,k}} S S E=\frac{\partial}{\partial p_{u,k}}\left(e_{u i}^{2}\right) =2e_{u i} \frac{\partial}{\partial p_{u,k}} e_{u i}=2e_{u i} \frac{\partial}{\partial p_{u,k}}\left(r_{u i}-\sum_{k=1}^{K} p_{u,k} q_{k,i}\right)=-2e_{u i} q_{k,i} pu,kSSE=pu,k(eui2)=2euipu,keui=2euipu,k(ruik=1Kpu,kqk,i)=2euiqk,i 然后求SSE在qk,iq_{k,i}qk,i处(也就是V矩阵的第kkkiii列)的梯度:

∂∂qk,iSSE=∂∂pk,i(eui2)=2eui∂∂pk,ieui=2eui∂∂pk,i(rui−∑k=1Kpu,kqk,i)=−2euipu,k\frac{\partial}{\partial q_{k,i}} S S E=\frac{\partial}{\partial p_{k,i}}\left(e_{u i}^{2}\right) =2e_{u i} \frac{\partial}{\partial p_{k,i}} e_{u i}=2e_{u i} \frac{\partial}{\partial p_{k,i}}\left(r_{u i}-\sum_{k=1}^{K} p_{u,k} q_{k,i}\right)=-2e_{u i} p_{u,k} qk,iSSE=pk,i(eui2)=2euipk,ieui=2euipk,i(ruik=1Kpu,kqk,i)=2euipu,k 为了让公式更为简单, 把前面的2给他越掉, 即可以令SSE等于: SSE⁡=12∑u,ieui2=12∑u,i(rui−∑k=1Kpukqki)2\operatorname{SSE}=\frac{1}{2} \sum_{u, i} e_{u i}^{2}=\frac{1}{2} \sum_{u, i}\left(r_{u i}-\sum_{k=1}^{K} p_{u k} q_{k i}\right)^{2} SSE=21u,ieui2=21u,i(ruik=1Kpukqki)2

这时候, 梯度就没有前面的系数了, 有了梯度, 接下来我们就可以用梯度下降算法更新梯度了: pu,k=pu,k−η(−euiqk,i)=pu,k+ηeuiqk,iqk,i=qk,i−η(−euipu,k)=qk,i+ηeuipu,kp_{u, k}=p_{u,k}-\eta (-e_{ui}q_{k,i})=p_{u,k}+\eta e_{ui}q_{k,i} \ q_{k, i}=q_{k, i}-\eta (-e_{ui}p_{u,k})=q_{k, i}+\eta e_{ui}p_{u,k} pu,k=pu,kη(euiqk,i)=pu,k+ηeuiqk,iqk,i=qk,iη(euipu,k)=qk,i+ηeuipu,k

这里的η\etaη是学习率, 控制步长用的, 但上面这个有个问题就是当参数很多的时候, 就是两个矩阵很大的时候, 往往容易陷入过拟合的困境, 这时候, 就需要在目标函数上面加上正则化的损失, 就变成了RSVD,详细可以阅读:带相似度的 RSVD 算法

但在实际中, 单纯的r^ui=puTqi\hat{r}{u i}=p{u}^{T} q_{i}r^ui=puTqi也是不够的, 还要考虑其他的一些因素, 比如一个评分系统, 有些固有的属性和用户物品无关, 而用户也有些属性和物品无关, 物品也有些属性和用户无关。 因此, Netfix Prize中提出了另一种LFM, 在原来的基础上加了偏置项, 来消除用户和物品打分的偏差, 即预测公式如下: r^ui=μ+bu+bi+puT⋅qi\hat{r}{u i}=\mu+b{u}+b_{i}+p_{u}^{T} \cdot q_{i} r^ui=μ+bu+bi+puTqi 这个预测公式加入了3项偏置μ,bu,bi\mu,b_u,b_iμ,bu,bi, 作用如下:

  • μ\muμ: 训练集中所有记录的评分的全局平均数。 在不同网站中, 因为网站定位和销售物品不同, 网站的整体评分分布也会显示差异。

    比如有的网站中用户就喜欢打高分, 有的网站中用户就喜欢打低分。 而全局平均数可以表示网站本身对用户评分的影响。

  • bub_ubu: 用户偏差系数, 可以使用用户uuu给出的所有评分的均值, 也可以当做训练参数。 这一项表示了用户的评分习惯中和物品没有关系的那种因素。

    比如有些用户比较苛刻, 对什么东西要求很高, 那么他评分就会偏低, 而有些用户比较宽容, 对什么东西都觉得不错, 那么评分就偏高

  • bib_ibi: 物品偏差系数, 可以使用物品iii收到的所有评分的均值, 也可以当做训练参数。 这一项表示了物品接受的评分中和用户没有关系的因素。

    比如有些物品本身质量就很高, 因此获得的评分相对比较高, 有的物品本身质量很差, 因此获得的评分相对较低。

加了用户和物品的打分偏差之后, 矩阵分解得到的隐向量更能反映不同用户对不同物品的“真实”态度差异, 也就更容易捕捉评价数据中有价值的信息, 从而避免推荐结果有偏。 注意此时的SSESSESSE会发生变化: SSE⁡=12∑u,ieui2+12λ∑u∣pu∣2+12λ∑i∣qi∣2+12λ∑ubu2+12λ∑ubi2=12∑u,i(rui−μ−bu−bi−∑k=1Kpukqki)2+12λ∑u∣pu∣2+12λ∑i∣qi∣2+12λ∑ubu2+12λ∑ubi2\begin{array}{l} \operatorname{SSE}=\frac{1}{2} \sum_{u, i} e_{u i}^{2}+\frac{1}{2} \lambda \sum_{u}\left|\boldsymbol{p}{u}\right|^{2}+\frac{1}{2} \lambda \sum{i}\left|\boldsymbol{q}{i}\right|^{2}+\frac{1}{2} \lambda \sum{u} \boldsymbol{b}{u}^{2}+\frac{1}{2} \lambda \sum{u} \boldsymbol{b}{i}^{2} \ =\frac{1}{2} \sum{u, i}\left(\boldsymbol{r}{u i}-\boldsymbol{\mu}-\boldsymbol{b}{u}-\boldsymbol{b}{i}-\sum{k=1}^{K} \boldsymbol{p}{u k} \boldsymbol{q}{k i}\right)^{2}+\frac{1}{2} \lambda \sum_{u}\left|\boldsymbol{p}{u}\right|^{2}+\frac{1}{2} \lambda \sum{i}\left|\boldsymbol{q}{i}\right|^{2}+\frac{\mathbf{1}}{2} \lambda \sum{u} \boldsymbol{b}{u}^{2}+\frac{1}{2} \lambda \sum{u} \boldsymbol{b}_{i}^{2} \end{array} SSE=21u,ieui2+21λupu2+21λiqi2+21λubu2+21λubi2=21u,i(ruiμbubik=1Kpukqki)2+21λupu2+21λiqi2+21λubu2+21λubi2 此时如果把bub_ububib_ibi当做训练参数的话, 那么它俩的梯度是:

∂∂buSSE=−eui+λbu∂∂biSSE=−eui+λbi\frac{\partial}{\partial b_{u}} S S E=-e_{u i}+\lambda b_{u} \ \frac{\partial}{\partial b_{i}} S S E=-e_{u i}+\lambda b_{i} buSSE=eui+λbubiSSE=eui+λbi 更新公式为: bu=bu+η(eui−λbu)bi=bi+η(eui−λbi)\begin{aligned} \boldsymbol{b}{u}&=\boldsymbol{b}{\boldsymbol{u}}+\boldsymbol{\eta}\left(\boldsymbol{e}{u i}-\lambda \boldsymbol{b}{\boldsymbol{u}}\right) \ \boldsymbol{b}{\boldsymbol{i}} &=\boldsymbol{b}{\boldsymbol{i}}+\boldsymbol{\eta}\left(\boldsymbol{e}{\boldsymbol{u} i}-\lambda \boldsymbol{b}{\boldsymbol{i}}\right) \end{aligned} bu=bu+η(euiλbu)bi=bi+η(euiλbi) 而对于pu,kp_{u,k}pu,kpk,ip_{k,i}pk,i, 导数没有变化, 更新公式也没有变化。

编程实现

我们这里用代码实现一下上面的算法来预测上一篇博客里面的那个预测Alice对物品5的评分, 看看矩阵分解到底是怎么进行预测或者是推荐的。 把之前的例子拿过来:

任务就是根据这个评分矩阵, 猜测Alice对物品5的打分。

在实现SVD之前, 先来回忆一下ItemCF和UserCF对于这个问题的做法, 首先ItemCF的做法, 根据已有的用户打分计算物品之间的相似度, 得到物品的相似度矩阵, 根据这个相似度矩阵, 选择出前K个与物品5最相似的物品, 然后基于Alice对这K个物品的得分, 猜测Alice对物品5的得分, 有一个加权的计算公式。

UserCF的做法是根据用户对其他物品的打分, 计算用户之间的相似度, 选择出与Alice最相近的K个用户, 然后基于那K个用户对物品5的打分计算出Alice对物品5的打分。 但是, 这两种方式有个问题, 就是如果矩阵非常稀疏的话, 当然这个例子是个特例, 一般矩阵都是非常稀疏的, 那么预测效果就不好, 因为两个相似用户对同一物品打分的概率以及Alice同时对两个相似物品打分的概率可能都比较小。

另外, 这两种方法显然没有考虑到全局的物品或者用户, 只是基于了最相似的例子, 很可能有偏。

那么SVD在解决这个问题上是这么做的:

  1. 首先, 它会先初始化用户矩阵P和物品矩阵Q, P的维度是[users_num, F], Q的维度是[item_nums, F], 这个F是隐向量的维度。 也就是把通过隐向量的方式把用户的兴趣和F的特点关联了起来。 初始化这两个矩阵的方式很多, 但根据经验, 随机数需要和1/sqrt(F)成正比。 下面代码中会发现。
  2. 有了两个矩阵之后, 我就可以根据用户已经打分的数据去更新参数, 这就是训练模型的过程, 方法很简单, 就是遍历用户, 对于每个用户, 遍历它打分的物品, 这样就拿到了该用户和物品的隐向量, 然后两者相乘加上偏置就是预测的评分, 这时候与真实评分有个差距, 根据上面的梯度下降就可以进行参数的更新

这样训练完之后, 我们就可以得到用户Alice和物品5的隐向量, 根据这个就可以预测Alice对物品5的打分。 下面的代码的逻辑就是上面这两步, 这里使用带有偏置项和正则项的那个SVD算法:

class SVD():def __init__(self, rating_data, F=5, alpha=0.1, lmbda=0.1, max_iter=100):self.F = F           # 这个表示隐向量的维度self.P = dict()          #  用户矩阵P  大小是[users_num, F]self.Q = dict()     # 物品矩阵Q  大小是[item_nums, F]self.bu = dict()   # 用户偏差系数self.bi = dict()    # 物品偏差系数self.mu = 0.0        # 全局偏差系数self.alpha = alpha   # 学习率self.lmbda = lmbda    # 正则项系数self.max_iter = max_iter    # 最大迭代次数self.rating_data = rating_data # 评分矩阵# 初始化矩阵P和Q, 方法很多, 一般用随机数填充, 但随机数大小有讲究, 根据经验, 随机数需要和1/sqrt(F)成正比cnt = 0    # 统计总的打分数, 初始化mu用for user, items in self.rating_data.items():self.P[user] = [random.random() / math.sqrt(self.F)  for x in range(0, F)]self.bu[user] = 0cnt += len(items) for item, rating in items.items():if item not in self.Q:self.Q[item] = [random.random() / math.sqrt(self.F) for x in range(0, F)]self.bi[item] = 0self.mu /= cnt# 有了矩阵之后, 就可以进行训练, 这里使用随机梯度下降的方式训练参数P和Qdef train(self):for step in range(self.max_iter):for user, items in self.rating_data.items():for item, rui in items.items():rhat_ui = self.predict(user, item)   # 得到预测评分# 计算误差e_ui = rui - rhat_uiself.bu[user] += self.alpha * (e_ui - self.lmbda * self.bu[user])self.bi[item] += self.alpha * (e_ui - self.lmbda * self.bi[item])# 随机梯度下降更新梯度for k in range(0, self.F):self.P[user][k] += self.alpha * (e_ui*self.Q[item][k] - self.lmbda * self.P[user][k])self.Q[item][k] += self.alpha * (e_ui*self.P[user][k] - self.lmbda * self.Q[item][k])self.alpha *= 0.1    # 每次迭代步长要逐步缩小# 预测user对item的评分, 这里没有使用向量的形式def predict(self, user, item):return sum(self.P[user][f] * self.Q[item][f] for f in range(0, self.F)) + self.bu[user] + self.bi[item] + self.mu

下面建立一个字典来存放数据, 之所以用字典, 是因为很多时候矩阵非常的稀疏, 如果用pandas的话, 会出现很多Nan的值, 反而不好处理。

import random
import math
# 定义数据集, 也就是那个表格, 注意这里我们采用字典存放数据, 因为实际情况中数据是非常稀疏的, 很少有情况是现在这样
def loadData():rating_data={1: {'A': 5, 'B': 3, 'C': 4, 'D': 4},2: {'A': 3, 'B': 1, 'C': 2, 'D': 3, 'E': 3},3: {'A': 4, 'B': 3, 'C': 4, 'D': 3, 'E': 5},4: {'A': 3, 'B': 3, 'C': 1, 'D': 5, 'E': 4},5: {'A': 1, 'B': 5, 'C': 5, 'D': 2, 'E': 1}}return rating_data# 接下来就是训练和预测
rating_data = loadData()
basicsvd = SVD(rating_data, F=10)
basicsvd.train()
for item in ['E']:print(item, basicsvd.predict(1, item))#E 3.2687212415718943

通过这个方式, 得到的预测评分是3.26, 这个和隐向量的维度, 训练次数和训练方式有关, 这里只说一下这个东西应该怎么用, 具体结果可以不用纠结。

Question

  1. 矩阵分解算法后续有哪些改进呢?针对这些改进,是为了解决什么的问题呢?

    • 正则化
    • 偏置
    • 隐式反馈
    • 对偶算法
    • 因子分解机
    • 与DNN的结合
      具体参见:推荐系统中的矩阵分解技术,还有些更新的idea,大家可以自行搜索
  2. 矩阵分解的优缺点分析

    • 优点:

      • 泛化能力强: 一定程度上解决了稀疏问题
      • 空间复杂度低: 由于用户和物品都用隐向量的形式存放, 少了用户和物品相似度矩阵, 空间复杂度由n2n^2n2降到了(n+m)∗f(n+m)*f(n+m)f
      • 更好的扩展性和灵活性:矩阵分解的最终产物是用户和物品隐向量, 这个深度学习的embedding思想不谋而合, 因此矩阵分解的结果非常便于与其他特征进行组合和拼接, 并可以与深度学习无缝结合。

但是, 矩阵分解算法依然是只用到了评分矩阵, 没有考虑到用户特征, 物品特征和上下文特征, 这使得矩阵分解丧失了利用很多有效信息的机会, 同时在缺乏用户历史行为的时候, 无法进行有效的推荐,并且可解释性很差,其隐空间中的维度无法与现实中的概念对应起来、训练速度慢,不过可以通过离线训练来弥补这个缺点。

所以为了解决这个问题, 逻辑回归模型及后续的因子分解机模型, 凭借其天然的融合不同特征的能力, 逐渐在推荐系统领域得到了更广泛的应用。

推荐系统知识梳理——矩阵分解相关推荐

  1. 推荐系统中的矩阵分解技术

    推荐系统中的矩阵分解技术 本文翻译自Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Syste ...

  2. SVD++:推荐系统的基于矩阵分解的协同过滤算法的提高

    1.背景知识 在讲SVD++之前,我还是想先回到基于物品相似的协同过滤算法.这个算法基本思想是找出一个用户有过正反馈的物品的相似的物品来给其作为推荐.其公式为: 其中 rui 表示预测用户u对物品i的 ...

  3. 推荐系统知识梳理——GBDTLR

    前言:前几天由于突发事情耽搁,没有来的及整理,今天补上.本次是datawhale组织的学习活动,具体参见:RecommendationSystemFundamentals 1. GBDT+LR简介 前 ...

  4. 推荐系统知识梳理——协同过滤

    注:本次为参加datawhale的打卡活动~详细资料在team-learning-rs 核心系列内容: 协同过滤算法: 包括基于用户的协同过滤(UserCF)和基于商品的协同过滤(ItemCF),这是 ...

  5. 自己动手写一个推荐系统,推荐系统小结,推荐系统:总体介绍、推荐算法、性能比较, 漫谈“推荐系统”, 浅谈矩阵分解在推荐系统中的应用...

    自己动手写一个推荐系统 废话: 最近朋友在学习推荐系统相关,说是实现完整的推荐系统,于是我们三不之一会有一些讨论和推导,想想索性整理出来. 在文中主要以工程中做推荐系统的流程着手,穿插一些经验之谈,并 ...

  6. 推荐系统中的矩阵分解总结

    最近学习矩阵分解,但是学了好多种类,都乱了,看了这篇文章,系统性的总结了矩阵分解,感觉很棒,故分享如下: 前言 推荐系统中最为主流与经典的技术之一是协同过滤技术(Collaborative Filte ...

  7. 推荐系统笔记:矩阵分解+基于邻居的模型

    由于其启发式性质,基于邻域的方法通常被认为与其他优化模型具有内在的不同. 尽管如此,结果表明基于邻域的方法也可以嵌入在其他优化模型的上下文中. 这是一个相当方便的框架,因为它为邻域模型与其他优化模型( ...

  8. 推荐系统中的矩阵分解演变方式

    推荐算法主要分为基于内容的算法和协同过滤. 协同过滤的两种基本方法是基于邻居的方法(基于内容/物品的协同过滤)和隐语义模型. 矩阵分解乃是实现隐语义模型的基石. 矩阵分解依据用户对物品的评分, 判断出 ...

  9. 推荐系统组队学习——矩阵分解和FM

    文章目录 一.矩阵分解 1.隐语义模型与矩阵分解 2.矩阵分解算法的原理 3.Basic SVD 4.SVD++ 5.优化方法 1.交替最小二乘原理 (ALS) 2.加权交替最小二乘(Weighted ...

最新文章

  1. Uva 10048 - Audiophobia (Floyd变形)
  2. 为什么硅谷公司对Android不感冒?
  3. 谷歌guava_Google Guava BiMaps
  4. 平安夜、圣诞节设计素材和灵感|撒糖(PNG免扣素材)
  5. cacti mysql-bin_Cacti环境搭建(LNMP环境)
  6. 我搭的神经网络不work该怎么办!看看这11条新手最容易犯的错误
  7. win10文件后缀名怎么显示_显示文件类型扩展名图文教程,win电脑系统文件修改后缀名方法...
  8. 关于计算机信息技术论文,信息技术论文
  9. AI 视频分析识别系统技术分析
  10. 卓岚APP远程采集正泰单相电子式电能表 ZLAN5144J的应用分享
  11. c语言文件读不同格式,c语言文件的读写格式
  12. C++中break与continue的用法
  13. 教师资格证面试考试详细流程来了
  14. 2021莆田六中一高考成绩查询入口,2021,我们来了 ——莆田六中2021届《青春•励志•圆梦》高三高考动员誓师大会...
  15. matlab景深合成算法,关于景深合成,你想知道的都在这儿!
  16. 树莓派sd卡格式化_利用树莓派和移动硬盘搭建下载机,常见视频网站都可下载...
  17. 解决新版chrome浏览器SameSite属性cookie拦截问题
  18. 编程修养-C语言篇(二)
  19. 批量转换灰度图并保存
  20. SpringBoot——@ConfigurationProperties注解

热门文章

  1. CQRS之旅——旅程6(我们系统的版本管理)
  2. 利用Git查看项目代码总行数
  3. Vercel反向代理做CDN,免费给网站加速隐藏源站,可绑定域名
  4. 静态资源存储 vs 对象资源存储
  5. 如何开始使用centos_如何开始使用CentOS
  6. 软件设计师 一年考几次_一年写106篇文章如何帮助我成长为设计师
  7. 128_Power BI父级排名TOPN子级动态展示
  8. 如何查看论坛付费隐藏_如何获取流量?这些引流方式你知多少?
  9. kali的burpsuite笔记
  10. Python编写的桌面图形界面程序实现更新检测和下载安装