Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization

文章目录

  • Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization
    • Problem Formulation
    • Proposed Criterion and Main Results
      • Vectorization
      • Performance Measure Optimization
      • Closed-Form Expression:
      • Derive Forward Additive ECC
      • Forward Additive ECC Iterative Algorithm
      • Inverse Compositional ECC Iterative Algorithm

对齐的目的是找到两张图像像素点坐标间的对应关系,对于手持设备,首先假设两张图像间为简单的仿射变换,可以通过求解两张图像间的仿射变换矩阵,实现对齐图像的目的。作者导出ECC这个算法的两个核心思想,一个来源与作者本人的另一篇论文《An Enhanced Correlation-Based Method for Stereo Correspondence with Sub-Pixel Accuracy》中对增强相关系数的与残差之间的等同关系,一个来源与Takeo Kanade在其论文《An Iterative Image Registration Technique with an Application to Stereo Vision》中提出的Forward Additive迭代思想。

Problem Formulation

假设有一对图像,图像间仅存在像素点坐标间的畸变,记其中一帧图像为参考帧IrI_{r}Ir​,对应的像素坐标记为x=[xr,yr]t\mathbf{x}=[x_{r},y_{r}]^{t}x=[xr​,yr​]t,另一帧图像为畸变帧IwI_{w}Iw​,对应的像素坐标记为y=[xw,yw]t\mathbf{y}=[x_{w},y_{w}]^{t}y=[xw​,yw​]t,对齐的目的是找到x\mathbf{x}x与y\mathbf{y}y之间的对应关系ϕ\phiϕ,即y=ϕ(x;p)\mathbf{y}=\phi(\mathbf{x};p)y=ϕ(x;p),其中p=[p1,......,pN]T\mathbf{p}=[p_{1},......,p_{N}]^{T}p=[p1​,......,pN​]T为NNN维的参数向量,因此可以将对齐问题看作是一个参数估计问题:
Ir(x)=Iw(ϕ(x;p))(1)I_{r}(\mathbf{x})=I_{w}(\phi(\mathbf{x};\mathbf{p}))\tag{1} Ir​(x)=Iw​(ϕ(x;p))(1)
将参数p\mathbf{p}p的优化问题,定义为参考帧与畸变帧经过畸变矫正的结果之间的差值的最小化问题:
min⁡p,αE(p,α)=min⁡p,α∑x∈T∣Ir(x)−Ψ(Iw(ϕ(x;p)),α)∣p(2)\min _{\mathbf{p}, \boldsymbol{\alpha}} E(\mathbf{p}, \boldsymbol{\alpha})=\min _{\mathbf{p}, \boldsymbol{\alpha}} \sum_{\mathbf{x} \in \mathcal{T}}\left|I_{r}(\mathbf{x})-\Psi\left(I_{w}(\boldsymbol{\phi}(\mathbf{x} ; \mathbf{p})), \boldsymbol{\alpha}\right)\right|^{p}\tag{2} p,αmin​E(p,α)=p,αmin​x∈T∑​∣Ir​(x)−Ψ(Iw​(ϕ(x;p)),α)∣p(2)
其中Ψ(I,α)\Psi(I,\alpha)Ψ(I,α)为简单的亮度转换,目的是降低由图像亮度变化带来的图像间的不相关性。

Proposed Criterion and Main Results

Vectorization

记参考图像与目标图像间的目标对齐区域的中心坐标数为KKK个,对齐区域的亮度值分别构成参考向量iw(p)i_{w}(p)iw​(p)、畸变向量iri_rir​,分别为:
ir=[Ir(x1)Ir(x2)⋯Ir(xK)]tiw(p)=[Iw(y1(p))Iw(y2(p))⋯Iw(yK(p))]t(3)\begin{aligned} \mathbf{i}_{r} &=\left[I_{r}\left(\mathbf{x}_{1}\right) I_{r}\left(\mathbf{x}_{2}\right) \cdots I_{r}\left(\mathbf{x}_{K}\right)\right]^{t} \\ \mathbf{i}_{w}(\mathbf{p}) &=\left[I_{w}\left(\mathbf{y}_{1}(\mathbf{p})\right) I_{w}\left(\mathbf{y}_{2}(\mathbf{p})\right) \cdots I_{w}\left(\mathbf{y}_{K}(\mathbf{p})\right)\right]^{t} \end{aligned}\tag{3} ir​iw​(p)​=[Ir​(x1​)Ir​(x2​)⋯Ir​(xK​)]t=[Iw​(y1​(p))Iw​(y2​(p))⋯Iw​(yK​(p))]t​(3)
iˉr\bar{i}_{r}iˉr​、iˉw(p)\bar{i}_{w}(p)iˉw​(p)分别为对应的零均值向量(column-zero–mean versions),用ECC作为参数ppp的性能评价指标:
EECC(p)=∥iˉr∥iˉr∥−iˉw(p)∥iˉw(p)∥∥2(4)E_{ECC}(p)=\left \|\frac{\bar{i}_{r}}{\left \| \bar{i}_{r} \right \| } - \frac{\bar{i}_{w}(p)}{\left \| \bar{i}_{w}(p) \right \| } \right \|^{2}\tag{4} EECC​(p)=∥∥∥∥​∥iˉr​∥iˉr​​−∥iˉw​(p)∥iˉw​(p)​∥∥∥∥​2(4)
可以看出增益及亮度整体抬升不影响评价指标

Performance Measure Optimization

在本文作者的另外一篇论文《An Enhanced Correlation-Based Method for Stereo Correspondence with Sub-Pixel Accuracy》中证明了对公式(4)的最小化等同于对下式增强相关系数(Enhanced Correction Coefficient)的最大化:
ρ(p)=iˉrTiˉw(p)∥iˉr∥∥iˉw(p)∥=i^rTiˉw(p)∥iˉw(p)∥(5)\rho(p)=\frac{\bar{i}_{r}^{T}\bar{i}_{w}(p)}{\left \| \bar{i}_{r} \right \| \left \| \bar{i}_{w}(p) \right \|} =\hat{i}_{r}^{T}\frac{\bar{i}_{w}(p)}{\left \| \bar{i}_{w}(p) \right \| }\tag{5} ρ(p)=∥iˉr​∥∥iˉw​(p)∥iˉrT​iˉw​(p)​=i^rT​∥iˉw​(p)∥iˉw​(p)​(5)
其中i^r=iˉr∥iˉr∥\hat{i}_{r}=\frac{\bar{i}_{r}}{\left \| \bar{i}_{r} \right \| }i^r​=∥iˉr​∥iˉr​​,由于不对参考帧做畸变矫正,此向量恒定;由于∥iˉw(p)∥\left \| \bar{i}_{w}(p) \right \|∥iˉw​(p)∥的存在,即使iˉw(p)\bar{i}_{w}(p)iˉw​(p)相对于参数ppp线性,目标函数ρ(p)\rho(p)ρ(p)相当于参数ppp依旧非线性,将参数向量ppp做如下表示:
p=p~+△pp=\tilde{p}+\bigtriangleup p p=p~​+△p
p~:\tilde{p}:p~​:nominal parameter vector;△p:\bigtriangleup p:△p:perturbations vector
这里的三个参数向量即是表示对参数向量ppp的近似过程,也表示后续参数向量的迭代求解方式
对图像在x-y坐标系下进行一个简单的一阶泰勒展开,可以将畸变帧做如下近似:
Iw(y)≈Iw(y~)+[∇yIw(y~)]∂ϕ(x;p~)∂pΔp(6)I_{w}(\mathbf{y}) \approx I_{w}(\tilde{\mathbf{y}})+\left[\nabla_{\mathbf{y}} I_{w}(\tilde{\mathbf{y}})\right] \frac{\partial \phi(\mathbf{x} ; \tilde{\mathbf{p}})}{\partial \mathbf{p}} \Delta \mathbf{p}\tag{6} Iw​(y)≈Iw​(y~​)+[∇y​Iw​(y~​)]∂p∂ϕ(x;p~​)​Δp(6)
其中[▽YIw(Y~)][\bigtriangledown_{Y}I_{w}(\tilde{Y} ) ][▽Y​Iw​(Y~)]为一个2×K2×K2×K的梯度矩阵;∂ϕ(X;p~)∂p\frac{\partial \phi(X;\tilde{p} )}{\partial p }∂p∂ϕ(X;p~​)​为一个2×N2×N2×N的Jacobian矩阵。同样,将以上线性近似应用于全部目标区域,可得:
iw(p)≈iw(p~)+G(p~)△p(7)i_{w}(p)\approx i_{w}(\tilde{p} )+G(\tilde{p})\bigtriangleup p\tag{7} iw​(p)≈iw​(p~​)+G(p~​)△p(7)
其中G(p~)G(\tilde{p})G(p~​)为K×NK×NK×N的Jacobian矩阵(Jacobian matrix of the warped intensity vector with respect to the parameters)
假设畸变模型为:
ϕ(X;p)=[ϕ1(X;p)ϕ2(X;p)T](8)\phi(X;p)=\begin{bmatrix} \phi_{1}(X;p) &\phi_{2}(X;p)^{T}\tag{8} \end{bmatrix} ϕ(X;p)=[ϕ1​(X;p)​ϕ2​(X;p)T​](8)
可用以下公式确定K×NK×NK×N的Jacobian矩阵:
G(p~)k,n=∑i=12(∂Iw(Y)∂Yi∣Y=Yk(p~)×∂ϕi(Xk;p)∂pn∣p=p~)(9)G(\tilde{p} )_{k,n}=\sum_{i=1}^{2}(\frac{\partial I_w(Y)}{\partial Y_{i}}|_{Y=Y_{k}(\tilde{p})}× \frac{\partial \phi_{i}(X_{k};p)}{\partial p_{n}}|_{p=\tilde{p}})\tag{9} G(p~​)k,n​=i=1∑2​(∂Yi​∂Iw​(Y)​∣Y=Yk​(p~​)​×∂pn​∂ϕi​(Xk​;p)​∣p=p~​​)(9)
其中YYY为像素坐标,包含Yi、Y2Y_{i}、Y_{2}Yi​、Y2​,将式(7)带入式(5),得到新的增强相关系数的表达式:
ρ(p)≈ρ(△p∣p~)=i^rTiˉw(p~)+Gˉ(p~)△p∥iˉw(p~)+Gˉ(p~)△p∥(10)\rho(p)\approx \rho(\bigtriangleup p|\tilde{p})=\hat{i}_{r}^{T}\frac{\bar{i}_{w}(\tilde{p})+\bar{G}(\tilde{p})\bigtriangleup p}{\left \| \bar{i}_{w}(\tilde{p})+\bar{G}(\tilde{p})\bigtriangleup p \right \| }\tag{10} ρ(p)≈ρ(△p∣p~​)=i^rT​∥∥​iˉw​(p~​)+Gˉ(p~​)△p∥∥​iˉw​(p~​)+Gˉ(p~​)△p​(10)
其中Gˉ(p~)\bar{G}(\tilde{p})Gˉ(p~​)、iˉw(p~)\bar{i}_{w}(\tilde{p})iˉw​(p~​)分别对应G(p~)G(\tilde{p})G(p~​)、iw(p~)i_{w}(\tilde{p})iw​(p~​)的零均值向量。为了表达的简洁,之后的推导将省略参数向量p~\tilde{p}p~​,将式(10)直接做如下表达:
ρ(Δp∣p~)=i^rTi‾w+i^rTGˉΔp∥i‾w∥2+2i‾wTGˉΔp+ΔpTGˉTGˉΔp(11)\rho(\Delta p \mid \tilde{p})=\frac{\hat{{i}}_{r}^{T} \overline{{i}}_{w}+\hat{{i}}_{r}^{T} \bar{G} \Delta {p}}{\sqrt{\left\|\overline{{i}}_{w}\right\|^{2}+2 \overline{{i}}_{w}^{T} \bar{G} \Delta {p}+\Delta {p}^{T} \bar{G}^{T} \bar{G} \Delta {p}}}\tag{11} ρ(Δp∣p~​)=∥∥​iw​∥∥​2+2iwT​GˉΔp+ΔpTGˉTGˉΔp​i^rT​iw​+i^rT​GˉΔp​(11)

Closed-Form Expression:

考虑如下标量函数:
f(x)=u+utxv+2vtx+xtQx(12)f(\mathbf{x})=\frac{u+\mathbf{u}^{t} \mathbf{x}}{\sqrt{v+2 \mathbf{v}^{t} \mathbf{x}+\mathbf{x}^{t} Q \mathbf{x}}}\tag{12} f(x)=v+2vtx+xtQx​u+utx​(12)
其中u,vu,vu,v为标量;u,v\mathbf{u,v}u,v是长度为NNN的向量;QQQ是正定阵,如果满足v>vtQ−1vv>\mathbf{v}^{t} Q^{-1} \mathbf{v}v>vtQ−1v,则可以分情况确定函数f(x)f(x)f(x)是极大值。
1.当u>utQ−1vu>\mathbf{u}^{t} Q^{-1} \mathbf{v}u>utQ−1v时,f(x)f(x)f(x)的最大值如下:
max⁡xf(x)=(u−utQ−1v)2v−vtQ−1v+utQ−1u;x=Q−1{v−vtQ−1vu−utQ−1vu−v}(14、15)\max _{\mathbf{x}} f(\mathbf{x})=\sqrt{\frac{\left(u-\mathbf{u}^{t} Q^{-1} \mathbf{v}\right)^{2}}{v-\mathbf{v}^{t} Q^{-1} \mathbf{v}}+\mathbf{u}^{t} Q^{-1} \mathbf{u}};\mathbf{x}=Q^{-1}\left\{\frac{v-\mathbf{v}^{t} Q^{-1} \mathbf{v}}{u-\mathbf{u}^{t} Q^{-1} \mathbf{v}} \mathbf{u}-\mathbf{v}\right\}\tag{14、15} xmax​f(x)=v−vtQ−1v(u−utQ−1v)2​+utQ−1u​;x=Q−1{u−utQ−1vv−vtQ−1v​u−v}(14、15)
2.当u≤utQ−1vu \leq \mathbf{u}^{t} Q^{-1} \mathbf{v}u≤utQ−1v时,f(x)f(x)f(x)的上确界如下:
sup⁡xf(x)=utQ−1u;x=Q−1{λu−v};λ>0(16、17)\sup _{\mathbf{x}} f(\mathbf{x})=\sqrt{\mathbf{u}^{t} Q^{-1} \mathbf{u}};\mathbf{x}=Q^{-1}\{\lambda \mathbf{u}-\mathbf{v}\};\lambda>0 \tag{16、17} xsup​f(x)=utQ−1u​;x=Q−1{λu−v};λ>0(16、17)

Derive Forward Additive ECC

首先给出正交投影矩阵PG=Gˉ(GˉtGˉ)−1GˉtP_{G}=\bar{G}\left(\bar{G}^{t} \bar{G}\right)^{-1} \bar{G}^{t}PG​=Gˉ(GˉtGˉ)−1Gˉt,因此,以下不等式成立:
∥i‾w∥2=∥PGi‾w∥2+∥[I−PG]i‾w∥2≥∥PGi‾w∥2=i‾wtPGi‾w(18)\left\|\overline{\mathbf{i}}_{w}\right\|^{2}=\left\|P_{G} \overline{\mathbf{i}}_{w}\right\|^{2}+\left\|\left[I-P_{G}\right] \overline{\mathbf{i}}_{w}\right\|^{2} \geq\left\|P_{G} \overline{\mathbf{i}}_{w}\right\|^{2}=\overline{\mathbf{i}}_{w}^{t} P_{G} \overline{\mathbf{i}}_{w}\tag{18} ∥∥​iw​∥∥​2=∥∥​PG​iw​∥∥​2+∥∥​[I−PG​]iw​∥∥​2≥∥∥​PG​iw​∥∥​2=iwt​PG​iw​(18)
其中III为单位阵,当且仅当[I−PG]i‾w=0\left[I-P_{G}\right] \overline{\mathbf{i}}_{w}=0[I−PG​]iw​=0时等式成立,而[I−PG]i‾w≠0\left[I-P_{G}\right] \overline{\mathbf{i}}_{w}≠0[I−PG​]iw​​=0,所以不等式(18)严格成立。又有式(18)形如式(13),式(11)形如式(12),即将式(15)带入式(11)可解得△p\bigtriangleup p△p:
Δp=(GˉtGˉ)−1Gˉt{∥i‾w∥2−i‾wtPGi‾wi^rti‾w−i^rtPGi‾w−i‾w}(19)\Delta \mathbf{p}=\left(\bar{G}^{t} \bar{G}\right)^{-1} \bar{G}^{t}\left\{\frac{\left\|\overline{\mathbf{i}}_{w}\right\|^{2}-\overline{\mathbf{i}}_{w}^{t} P_{G} \overline{\mathbf{i}}_{w}}{\hat{\mathbf{i}}_{r}^{t} \overline{\mathbf{i}}_{w}-\hat{\mathbf{i}}_{r}^{t} P_{G} \overline{\mathbf{i}}_{w}}-\overline{\mathbf{i}}_{w}\right\}\tag{19} Δp=(GˉtGˉ)−1Gˉt{i^rt​iw​−i^rt​PG​iw​∥∥​iw​∥∥​2−iwt​PG​iw​​−iw​}(19)
当i^rti‾w>i^rtPGi‾w\hat{\mathbf{i}}_{r}^{t} \overline{\mathbf{i}}_{w}>\hat{\mathbf{i}}_{r}^{t} P_{G} \overline{\mathbf{i}}_{w}i^rt​iw​>i^rt​PG​iw​时,根据式(17),λ>0\lambda>0λ>0,既有:
Δp=(GˉtGˉ)−1Gˉt{λi^r−i‾w}(20)\Delta \mathbf{p}=\left(\bar{G}^{t} \bar{G}\right)^{-1} \bar{G}^{t}\left\{\lambda \hat{\mathbf{i}}_{r}-\overline{\mathbf{i}}_{w}\right\}\tag{20} Δp=(GˉtGˉ)−1Gˉt{λi^r​−iw​}(20)
当i^rti‾w≤i^rtPGi‾w\hat{\mathbf{i}}_{r}^{t} \overline{\mathbf{i}}_{w} \leq \hat{\mathbf{i}}_{r}^{t} P_{G} \overline{\mathbf{i}}_{w}i^rt​iw​≤i^rt​PG​iw​时,为保证ρ(Δp∣p~)>ρ(0∣p~)\rho(\Delta \mathbf{p} \mid \tilde{\mathbf{p}})>\rho(0 \mid \tilde{\mathbf{p}})ρ(Δp∣p~​)>ρ(0∣p~​)根据文中Lemma 1,确定λ\lambdaλ的取值:
λ1=iwtPGi‾wi^rtPGi^r,λ2=i^rtPGi‾w−i^rti‾wi^rtPGi^r,λ≥max⁡{λ1,λ2}(21)\lambda_{1}=\sqrt{\frac{\mathbf{i}_{w}^{t} P_{G} \overline{\mathbf{i}}_{w}}{\hat{\mathbf{i}}_{r}^{t} P_{G} \hat{\mathbf{i}}_{r}}}, \quad \lambda_{2}=\frac{\hat{\mathbf{i}}_{r}^{t} P_{G} \overline{\mathbf{i}}_{w}-\hat{\mathbf{i}}_{r}^{t} \overline{\mathbf{i}}_{w}}{\hat{\mathbf{i}}_{r}^{t} P_{G} \hat{\mathbf{i}}_{r}},\quad \lambda \geq \max \left\{\lambda_{1}, \lambda_{2}\right\}\tag{21} λ1​=i^rt​PG​i^r​iwt​PG​iw​​​,λ2​=i^rt​PG​i^r​i^rt​PG​iw​−i^rt​iw​​,λ≥max{λ1​,λ2​}(21)
将式(20)带入是(11),得到关于λ\lambdaλ的表达式:
ρ(Δp∣p~)=f(λ)=(i^rti‾w−i^rtPGi‾w)+λi^rtPGi^r(∥i‾w∥2−i‾wtPGi‾w)+λ2i^rtPGi^r(22)\rho(\Delta p \mid \tilde{p})=f(\lambda)=\frac{\left(\hat{\mathbf{i}}_{r}^{t} \overline{\mathbf{i}}_{w}-\hat{\mathbf{i}}_{r}^{t} P_{G} \overline{\mathbf{i}}_{w}\right)+\lambda \hat{\mathbf{i}}_{r}^{t} P_{G} \hat{\mathbf{i}}_{r}}{\sqrt{\left(\left\|\overline{\mathbf{i}}_{w}\right\|^{2}-\overline{\mathbf{i}}_{w}^{t} P_{G} \overline{\mathbf{i}}_{w}\right)+\lambda^{2} \hat{\mathbf{i}}_{r}^{t} P_{G} \hat{\mathbf{i}}_{r}}}\tag{22} ρ(Δp∣p~​)=f(λ)=(∥∥​iw​∥∥​2−iwt​PG​iw​)+λ2i^rt​PG​i^r​​(i^rt​iw​−i^rt​PG​iw​)+λi^rt​PG​i^r​​(22)
简单计算式(22)关于λ\lambdaλ的导数,可知f(λ)f(\lambda)f(λ)单调增
1.当λ≥λ2\lambda\ge \lambda_{2}λ≥λ2​时,$f(\lambda)\geq$0

2.当λ=λ1\lambda = \lambda_{1}λ=λ1​时,f(λ1)=i^rti‾w−i^rtPGi‾w+(i‾wtPGi‾w)(i^rtPGi^r)∥i‾w∥≥ρ(0∣p~)f\left(\lambda_{1}\right)=\frac{\left.\hat{\mathbf{i}}_{r}^{t} \overline{\mathbf{i}}_{w}-\hat{\mathbf{i}}_{r}^{t} P_{G} \overline{\mathbf{i}}_{w}+\sqrt{\left(\overline{\mathbf{i}}_{w}^{t} P_{G} \overline{\mathbf{i}}_{w}\right)\left(\hat{\mathbf{i}}_{r}^{t} P_{G} \hat{\mathbf{i}}_{r}\right.}\right)}{\left\|\overline{\mathbf{i}}_{w}\right\|} \geq \rho(0 \mid \tilde{\mathbf{p}})f(λ1​)=∥iw​∥i^rt​iw​−i^rt​PG​iw​+(iwt​PG​iw​)(i^rt​PG​i^r​​)​≥ρ(0∣p~​)

即当λ≥max⁡{λ1,λ2}\lambda \geq \max \left\{\lambda_{1}, \lambda_{2}\right\}λ≥max{λ1​,λ2​}时f(λ)>0f(\lambda)>0f(λ)>0,Δp\Delta pΔp总会带来相关系数的增大,即是ρ(p~+Δp)>ρ(p~)\rho(\tilde{p}+\Delta{p})>\rho(\tilde{p})ρ(p~​+Δp)>ρ(p~​),可以通过迭代求解ΔP\Delta{P}ΔP实现对参数ppp的优化

Forward Additive ECC Iterative Algorithm

S0.用参考帧IrI_{r}Ir​计算i^r\hat{i}_{r}i^r​;初始化参数向量p0p_{0}p0​;给定迭代次数TTT;给定$\varepsilon ;;;j=1$

S1.用ϕ(X;pj−1)\phi(X;p_{j-1})ϕ(X;pj−1​)对畸变帧IwI_{w}Iw​做畸变矫正,并用矫正后的结果计算i^w(pj−1)\hat{i}_{w}(p_{j-1})i^w​(pj−1​)

S2.用公式(9)计算Jacobin矩阵

S3.根据式(19、20、21)计算Δpj\Delta{p_{j}}Δpj​

S4.更新参数向量:pj=pj−1+Δpj,j=j+1p_{j}=p_{j-1}+\Delta p_{j},j=j+1pj​=pj−1​+Δpj​,j=j+1

S5.当∥Δpj∥≥ε\left \| \Delta p_{j} \right \|\ge \varepsilon∥Δpj​∥≥ε 时,停止迭代

Inverse Compositional ECC Iterative Algorithm

FA_ECC需要计算到GtGG^{t}GGtG,算法复杂度为O(KN2)O(KN^{2})O(KN2),除此之外的算法复杂度为O(KN)O(KN)O(KN)。可以通过变换Ir,IwI_{r},I_{}wIr​,I​w的位置来将GtGG^{t}GGtG的计算次数降为1,用参考帧IrI_{r}Ir​计算Jacobin矩阵,此矩阵恒定,不需要再次计算

图像对齐:Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization相关推荐

  1. 图像对齐(image alignment)

    1.图像对齐的步骤 已知图像A和B,图像对齐的步骤: 提取图像A和B的特征 匹配图像A和B中的特征 求解图像A和B的对齐矩阵 2  使用最小二乘求解对齐矩阵的问题 使用最小二乘求解对齐矩阵容易受到ou ...

  2. 重磅直播 | 图像对齐算法

    点击上方"3D视觉工坊",选择"星标" 干货第一时间送达 大家好,本公众号现已开启线上视频公开课,主讲人通过B站直播间,对3D视觉领域相关知识点进行讲解,并在微 ...

  3. opencv图像对齐与图像相减python

    1.问题背景: 给一张图片和模板图片(如下图),需要用传统机器视觉的方法来提取他们不一样的特征(也就是划痕部分),并把划痕转为二值化 1.1 才开始使用基于灰度的方法: 因为划痕和旁边背景颜色比较接近 ...

  4. 基于RGB-D图像的视觉里程计连续尺度空间直接图像对齐 (ICRA 2021)

    点击上方"3D视觉工坊",选择"星标" 干货第一时间送达 作者丨paopaoslam 来源丨泡泡机器人SLAM 标题:Continuous Scale-Spac ...

  5. 图像对齐深度学习算法调研

    参考博客: 旷视 R TALK:图像对齐及其应用 单应性Homograph估计:从传统算法到深度学习 1. 传统算法 大致流程: 提取特征点 特征匹配 RANSAC 排除错误匹配 求解单应性(Homo ...

  6. 精彩回顾|《图像对齐算法》

    点击上方"3D视觉工坊",选择"星标" 干货第一时间送达 大家好,本公众号现已开启线上视频公开课,主讲人通过B站直播间,对3D视觉领域相关知识点进行讲解,并在微 ...

  7. DL之FAN:FAN人脸对齐网络(Face Alignment depth Network)的论文简介、案例应用之详细攻略

    DL之FAN:FAN人脸对齐网络(Face Alignment depth Network)的论文简介.案例应用之详细攻略 目录 FAN人脸对齐网络(Face Alignment depth Netw ...

  8. OpenCV实现图像对齐ECC算法(附完整代码)

    OpenCV实现图像对齐ECC算法 OpenCV实现图像对齐ECC算法 OpenCV实现图像对齐ECC算法 #include <opencv2/imgcodecs.hpp> #includ ...

  9. 响应式图像对齐中心引导3

    本文翻译自:Responsive image align center bootstrap 3 I do a catalog using Bootstrap 3. When displayed on ...

最新文章

  1. iOS 动画之CoreAnimation(CALayer)
  2. JDK1.8快速入门
  3. RabbitMQ消息重复消费问题
  4. 外挂学习之路(14)--- 游戏中的二叉树
  5. OpenBase关于一致性,可用性,分区容错性(CAP)分析
  6. 何小鹏:从工程师思维到用户思维,这是互联网造车将带来的变革
  7. 大数据分析优劣势有哪些
  8. win7计算机里没有网络图标,Win7网络图标不见了?找回网络图标的方法
  9. Android上Excel编辑器,Excel表格编辑器下载-Excel表格编辑器appv1.1.02 最新版-腾牛安卓网...
  10. Facebook like 按钮的语言设置
  11. HTML中为什么点击按钮没有反应
  12. 2020-05-09 工作中英语单词积累
  13. 管理者和企业如何做好员工管理?
  14. 除智联招聘,还有哪些靠谱的招聘软件呢?
  15. Faiss 相似度搜索使用余弦相似性
  16. 批处理 窗口最小化 java_如何让批处理程序启动的时候最小化
  17. crawler爬虫抓取数据
  18. 一张图快速了解五大架构风格
  19. 边框发光样式css3,用CSS3实现发光方格边框
  20. 九龙证券|“股神”也做短线?巴菲特减仓逾八成台积电

热门文章

  1. ACM—TC 联合招新赛 Round2
  2. c# 收取邮件 解析_c#接收邮件
  3. GYM 101128H Sheldon Numbers
  4. 手机拍照技巧:全景拍摄,让手机拍出的照片妙趣横生
  5. 快递对接京东,菜鸟,顺丰过程备忘录
  6. 技术总监/技术leader 职责与工作记录 第一天
  7. android mock测试资源,Android测试基础整理篇
  8. 【动手学深度学习】06-ResNet解析
  9. Autodesk maya for Mac(三维动画制作软件)
  10. 英语中’s和s’的区别