文章目录

  • 1. Separable Differentiable Equations
  • 2. Linear Equations
    • First-order linear equation
      • Solution of the homogeneous equation
      • Solution of the inhomogeneous equation
        • An alternate solution -- Variation of parameters
      • Theorem -- Structure of the Solution
  • 3. Exact Differential Equations
    • Definition
    • Theorem
    • Solving Exact Differential Equation
      • Integrating Factors
      • Separable Equations
    • Homogenous Equations
      • Solve Homogenous Equations

1. Separable Differentiable Equations

dydt=g(t)h(y)ordydt=g(t)f(y)\frac{dy}{dt} = \frac{g(t)}{h(y)} \\ or \\ \frac{dy}{dt} = g(t)f(y) dtdy​=h(y)g(t)​ordtdy​=g(t)f(y)

  1. Separate the variables
    h(y)dy=g(t)dtordyf(y)=g(t)dth(y)dy = g(t)dt \\ or \\ \frac{dy}{f(y)} = g(t)dt h(y)dy=g(t)dtorf(y)dy​=g(t)dt

  2. Integrate both sides
    ∫h(y)dy=∫g(t)dtor∫dyf(y)=∫g(t)dt\int h(y)dy = \int g(t)dt \\ or \\ \int \frac{dy}{f(y)} = \int g(t)dt ∫h(y)dy=∫g(t)dtor∫f(y)dy​=∫g(t)dt

  3. Solve for the solution y(t), if possible

PS: For dyf(y)\frac{dy}{f(y)}f(y)dy​, if f(y)=0f(y)=0f(y)=0, then if f(y0)=0f(y_0)=0f(y0​)=0, y(t)=y0y(t)=y_0y(t)=y0​ is a solution.

2. Linear Equations

First-order linear equation

Form:
x′=a(t)x+f(t)x' = a(t)x + f(t) x′=a(t)x+f(t)
Homogeneous if f(t)=0f(t)=0f(t)=0, form:
x′=a(t)xx' = a(t)x x′=a(t)x
a(t),f(t)a(t), f(t)a(t),f(t) are called coefficients of the equation.

Solution of the homogeneous equation

dxx=a(t)dt⟹ln∣x∣=∫a(t)dt+C∣x∣=e∫a(t)dt+C=eCe∫a(t)dt\frac{dx}{x} = a(t)dt \qquad \Longrightarrow \qquad ln|x| = \int a(t)dt + C \\ |x| = e^{\int a(t)dt + C} = e^C e^{\int a(t)dt} xdx​=a(t)dt⟹ln∣x∣=∫a(t)dt+C∣x∣=e∫a(t)dt+C=eCe∫a(t)dt

Let AAA be a constant, which can be either >0, <0 or =0
x(t)=Ae∫a(t)dtx(t) = Ae^{\int a(t)dt} x(t)=Ae∫a(t)dt

Solution of the inhomogeneous equation

The equation
x′=ax+fx' = ax + f x′=ax+f

  1. Rewrite the equation as
    x′−ax=fx' - ax = f x′−ax=f

  2. Multiply by the integrating factor
    u(t)=e−∫a(t)dtu(t) = e^{-\int a(t)dt} u(t)=e−∫a(t)dt
    So that the equation becomes
    (ux)′=u(x′−ax)=uf(ux)' = u(x' - ax) =uf (ux)′=u(x′−ax)=uf

  3. Integrate this equation
    u(t)x(t)=∫u(t)f(t)dt+Cu(t)x(t) = \int u(t)f(t)dt + C u(t)x(t)=∫u(t)f(t)dt+C

  4. Solve for x(t)

An alternate solution – Variation of parameters

The equation
y′=ay+fy' = ay + f y′=ay+f

  1. Get a partialicular solution to the homogeneous equation yh′=ayhy_h' = ay_hyh′​=ayh​
    yh(t)=e∫a(t)dty_h(t) = e^{\int a(t)dt} yh​(t)=e∫a(t)dt

  2. Substitute y=vyhy = vy_hy=vyh​ into the inhomogeneous equation to find v, or remember that
    v′=fyhv' = \frac{f}{y_h} v′=yh​f​
    And solve vvv

  3. Write the v into the general solution y=vyhy = vy_hy=vyh​

Theorem – Structure of the Solution

Every solution to the inhomogeneous equation is of the form
y(t)=yp(t)+Ayh(t)y(t) = y_p(t) + Ay_h(t) y(t)=yp​(t)+Ayh​(t)
Where AAA is an arbitrary constant,

ypy_pyp​ is a partialicular solution to the inhomogeneous equation y′=a(t)y+f(t)y' = a(t)y + f(t)y′=a(t)y+f(t),

and yhy_hyh​ is a partialicular solution to the associated homogeneous equation y′=a(t)yy' = a(t)yy′=a(t)y.

3. Exact Differential Equations

Definition

The differential of a continuously differentiable function F is the differential form
dF=∂F∂xdx+∂F∂ydydF= \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy dF=∂x∂F​dx+∂y∂F​dy
A differential form is said to be exact if it is the differential of a continuously differentiable function.

Theorem

Let ω=P(x,y)dx+Q(x,y)dy\omega = P(x,y)dx + Q(x,y)dyω=P(x,y)dx+Q(x,y)dy be a differential form where both P and Q are continuous and differentiable

(a) if ω\omegaω is exact, then
∂P∂y=∂Q∂x\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x} ∂y∂P​=∂x∂Q​
(b) if (a) is true in a rectangle R, then ω\omegaω is exact in R

Solving Exact Differential Equation

If the equation P(x,y)dx+Q(x,y)dy=0P(x, y)dx + Q(x, y)dy = 0P(x,y)dx+Q(x,y)dy=0 is exact, the solution is given by F(x,y)=CF(x, y) = CF(x,y)=C, where F is found by

  1. Solve ∂F∂x=P\frac{\partial F}{\partial x} = P∂x∂F​=P by integration:
    F(x,y)=∫P(x,y)dx+ϕ(y)F(x, y) = \int P(x, y)dx + \phi (y) F(x,y)=∫P(x,y)dx+ϕ(y)

  2. Solve ∂F∂y=Q\frac{\partial F}{\partial y} = Q∂y∂F​=Q
    ∂F∂y=∂∂y∫P(x,y)dx+ϕ′(y)=Q(x,y)\frac{\partial F}{\partial y} = \frac{\partial}{\partial y} \int P(x, y)dx + \phi'(y) = Q(x, y) ∂y∂F​=∂y∂​∫P(x,y)dx+ϕ′(y)=Q(x,y)

Integrating Factors

The form Pdx+QdyPdx + QdyPdx+Qdy has an integrating factor depending on one of the variables under the following conditions.

  • If
    h=1Q(∂P∂y−∂Q∂x)h = \frac{1}{Q} \left(\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} \right) h=Q1​(∂y∂P​−∂x∂Q​)
    is a function of x only, then μ(x)=e∫h(x)dx\mu (x) = e^{\int h(x)dx}μ(x)=e∫h(x)dx is an integrating factor.

  • If
    g=1P(∂P∂y−∂Q∂x)g = \frac{1}{P} (\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x}) g=P1​(∂y∂P​−∂x∂Q​)
    is a function of y only, then μ(y)=e−∫g(y)dy\mu(y) = e^{-\int g(y)dy}μ(y)=e−∫g(y)dy is an integrating factor.

Separable Equations

If the equation has the form
P(x)dx+Q(y)dy=0P(x)dx + Q(y)dy = 0 P(x)dx+Q(y)dy=0
The solution is given by
F(x,y)=∫P(X)dx+∫Q(y)dy=CF(x, y) = \int P(X)dx + \int Q(y)dy = C F(x,y)=∫P(X)dx+∫Q(y)dy=C

Homogenous Equations

A function G(x, y) is homogenous of degree n if
G(tx,ty)=tnG(x,y)G(tx, ty) = t^nG(x, y) G(tx,ty)=tnG(x,y)
A differential equation Pdx+Qdy=0Pdx + Qdy = 0Pdx+Qdy=0 is said to be homogenous if both of the coefficients P and Q are homogeneous of the same degree

Solve Homogenous Equations

Substitute y = xv

Then P(x,y)dx+Q(x,y)dy=0P(x, y)dx + Q(x, y)dy = 0P(x,y)dx+Q(x,y)dy=0 turns into P(x,xv)dx+Q(x,xv)(vdx+xdv)=0P(x, xv)dx + Q(x, xv)(vdx + xdv) = 0P(x,xv)dx+Q(x,xv)(vdx+xdv)=0
P(x,xv)=xnP(1,v)Q(x,xv)=xnQ(1,v)P(x, xv) = x^nP(1, v)\\ Q(x, xv) = x^nQ(1, v) P(x,xv)=xnP(1,v)Q(x,xv)=xnQ(1,v)
Dividing xnx^nxn, and collecting terms
(P(1,v)+vQ(1,v))dx+xQ(1,v)dv=0(P(1, v) + vQ(1, v))dx + xQ(1, v)dv = 0 (P(1,v)+vQ(1,v))dx+xQ(1,v)dv=0
The integrating factor is
1x(P(1,v)+vQ(1,v))\frac{1}{x(P(1, v) + vQ(1, v))} x(P(1,v)+vQ(1,v))1​
Separate variables, and solve the equation
dxx+Q(1,v)dvP(1,v)+vQ(1,v)=0\frac{dx}{x} + \frac{Q(1, v)dv}{P(1, v) + vQ(1, v)} = 0 xdx​+P(1,v)+vQ(1,v)Q(1,v)dv​=0

一阶线性常微分方程解法总结 Summary of Solving First Order Linear Ordinary Differential Equation (ODE)相关推荐

  1. lesson3 一阶线性常微分方程解法

  2. 常微分方程(Ordinary Differential Equation I)

    常微分方程 微分方程基本概念 一阶常微分方程 可分离变量方程 变量替换法 一阶线性微分方程 恰当方程 积分因子法 等角轨线族 一阶隐式微分方程 解的存在和唯一性定理 解的存在和唯一性定理 解的延拓 解 ...

  3. Neural Ordinary Differential Equation 神经常微分方程(Neural ODEs)

      用微分方程的视角来看待和理解神经网络是一种新的视角,该观点最早出现在2016年鄂维南院士的一篇proposal里:A Proposal on Machine Learning via Dynami ...

  4. 常微分方程(Ordinary differential equation)

    在数学中,常微分方程(ODE)是一个微分方程,它包含有一个或多个自变量的函数以及这些函数的导数.常微分方程中的"常"与偏微分方程中的"偏"相对,后者可能涉及多个 ...

  5. 常微分方程(2):一阶线性微分方程

    二 .一阶线性微分方程 形式 ()时,方程称为一阶线性微分方程,记作 (2)不恒等于时,方程称为一阶非齐次线性微分方程,记作 .解法 (1)先解 可分离变量 的通解为 (2)常数变易: 设是的解,则 ...

  6. 一阶微分方程的物理意义_一阶线性偏微分方程特征线解法.pdf

    引 言 • <数学物理方程>是数学领域偏微分方程 方向的最基本的入门课程. • 偏微分方程理论 主要研究具有实际背景的 偏微分方程或偏微分方程组.是数学的基 础学科之一. 第 1页 二.& ...

  7. 基于线性常微分方程的我国某省艾滋病传播的数学模型建立和预测分析

    基于线性常微分方程的我国某省艾滋病传播的数学模型建立和预测分析 如有错误,欢迎指正!转载需注明出处和作者信息!©️Sylvan Ding 摘要 艾滋病(AIDS)又称获得性免疫缺陷综合征,由人类免疫缺 ...

  8. 第四讲 一阶线性ODE换元法

    一,一阶线性ODE通常只有两种解法: 分离变量法和积分因子法 求解其他一阶微分方程需要先用换元法,化成可用以上两种方法求解的方程 二,尺度变换(拉伸或压缩坐标轴的方法):,,a.b是常数 尺度变换的好 ...

  9. (6/300)一阶线性非齐次常微分方程的通解

    一阶线性非齐次常微分方程的通解 首先应该认识方程的形式: dy/dx+P(x)y=Q(x) 然后就来思考怎么去解这个方程了 我们最终希望是得到一个y=f(x)的形式,怎么解呢?先通过线性代数的知识进行 ...

最新文章

  1. WPF   --- xmln 两个重要的命名空间
  2. 云炬WEB开发笔记2-7 代理神器CharlesFiddler
  3. iOS 开发者必不可少的 75 个工具
  4. mysql 数据库 额外_Manager额外参数怎么学?mysql数据库学习
  5. 网络上常用的一些网站
  6. 五子棋项目结束总结_居家活动系列总结
  7. python图像跟踪代码_python如何实现图像外边界跟踪 python实现图像外边界跟踪代码示例...
  8. 中国法律年鉴Excel版本(1990-2021年)
  9. 如何做 ASO 优化?
  10. 微信开发 · 缓存问题
  11. php堆栈是什么意思,如何理解什么是堆栈
  12. 每天坚持收小钱,能改命!
  13. 互联网电影院新战略5G+民族电影
  14. VIVADO学习笔记之--拥塞
  15. SQL之ADD_MONTHS函数用法
  16. 记2020年元宵节-我又回来了
  17. 浅谈Servlet与JSP
  18. 把codeblock变好看
  19. 所属技术领域技术人员的知识和能力
  20. w10用计算机卸载,Win10专业版电脑里的软件如何卸载干净?

热门文章

  1. Bootstrap使用前必须在head 标签内导入bootstrap的链接,否则bootstrap无效
  2. 这个程序员火了,竟是因为给老板修了一 次U盘...
  3. 为什么明明参加了原创博主大赛活动,但是却不显示已经参加了呢?
  4. 【人人开源】人人开源fast-vue前端排除不需要展示的菜单-自用整理
  5. [工具] TreeSizeFree 查看每个文件夹的大小
  6. 亚马逊联盟和亚马逊影响者到底有什么区别?
  7. mysql全模糊_MySQL文模糊检索问题的解决方法
  8. pycharm使用anaconda
  9. 苹果微信王者荣耀哪个服务器人多,王者荣耀:QQ区玩家和微信区玩家的几大区别 你中枪了几个...
  10. Python爬虫练习(一) 爬取新笔趣阁小说(搜索+爬取)