一.题目概况

数据集:点击下载
根据给定的数据集,建立模型,二手汽车的交易价格。
来自 Ebay Kleinanzeigen 报废的二手车,数量超过 370,000,包含 20 列变量信息,为了保证 比赛的公平性,将会从中抽取 10 万条作为训练集,5 万条作为测试集 A,5 万条作为测试集 B。同时会对名称、车辆类型、变速箱、model、燃油类型、品牌、公里数、价格等信息进行 脱敏。


二.查看数据

import pandas as pd
import numpy as nppath = './data/'
## 1) 载入训练集和测试集;
Train_data = pd.read_csv(path+'train.csv', sep=' ')
Test_data = pd.read_csv(path+'testA.csv', sep=' ')
print('Train data shape:',Train_data.shape)
print('TestA data shape:',Test_data.shape)

Train_data.head()

# 三.分类/回归指标评价计算示例

## accuracy
import numpy as np
from sklearn.metrics import accuracy_score
y_pred = [0, 1, 0, 1]
y_true = [0, 1, 1, 1]
print('ACC:',accuracy_score(y_true, y_pred))
## Precision,Recall,F1-score
from sklearn import metrics
y_pred = [0, 1, 0, 0]
y_true = [0, 1, 0, 1]
print('Precision',metrics.precision_score(y_true, y_pred))
print('Recall',metrics.recall_score(y_true, y_pred))
print('F1-score:',metrics.f1_score(y_true, y_pred))
## AUC
import numpy as np
from sklearn.metrics import roc_auc_score
y_true = np.array([0, 0, 1, 1])
y_scores = np.array([0.1, 0.4, 0.35, 0.8])
print('AUC socre:',roc_auc_score(y_true, y_scores))
# coding=utf-8
import numpy as np
from sklearn import metrics# MAPE需要自己实现
def mape(y_true, y_pred):return np.mean(np.abs((y_pred - y_true) / y_true))y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0])
y_pred = np.array([1.0, 4.5, 3.8, 3.2, 3.0, 4.8, -2.2])# MSE
print('MSE:',metrics.mean_squared_error(y_true, y_pred))
# RMSE
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_true, y_pred)))
# MAE
print('MAE:',metrics.mean_absolute_error(y_true, y_pred))
# MAPE
print('MAPE:',mape(y_true, y_pred))
## R2-score
from sklearn.metrics import r2_score
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
print('R2-score:',r2_score(y_true, y_pred))

四.数据分析

4.1载入各种数据科学以及可视化库:

  • 数据科学库 pandas、numpy、scipy;
  • 可视化库 matplotlib、seabon;
  • 其他;

4.2载入数据:

  • 载入训练集和测试集;
  • 简略观察数据(head()+shape);
#coding:utf-8
#导入warnings包,利用过滤器来实现忽略警告语句。
import warnings
warnings.filterwarnings('ignore')import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msnopath = './data/'
## 1) 载入训练集和测试集;
Train_data = pd.read_csv(path+'train.csv', sep=' ')
Test_data = pd.read_csv(path+'testA.csv', sep=' ')
## 2) 简略观察数据(head()+shape)
Train_data.head().append(Train_data.tail())

Train_data.shape

4.3数据总览:

  • 通过describe()来熟悉数据的相关统计量
## 1) 通过describe()来熟悉数据的相关统计量
Train_data.describe()

  • 通过info()来熟悉数据类型
## 2) 通过info()来熟悉数据类型
Train_data.info()

4.4判断数据缺失和异常

  • 异常值检测
  • 查看每列的存在nan情况
## 1) 查看每列的存在nan情况
Train_data.isnull().sum()

# nan可视化
missing = Train_data.isnull().sum()
missing = missing[missing > 0]
missing.sort_values(inplace=True)
missing.plot.bar()


通过以上两句可以很直观的了解哪些列存在 “nan”, 并可以把nan的个数打印,主要的目的在于 nan存在的个数是否真的很大,如果很小一般选择填充,如果使用lgb等树模型可以直接空缺,让树自己去优化,但如果nan存在的过多、可以考虑删掉

# 可视化看下缺省值
msno.matrix(Train_data.sample(250))


可以发现除了notRepairedDamage 为object类型其他都为数字 这里我们把他的几个不同的值都进行显示就知道了

Train_data['notRepairedDamage'].value_counts()


可以看出来‘ - ’也为空缺值,因为很多模型对nan有直接的处理,这里我们先不做处理,先替换成nan

Train_data['notRepairedDamage'].replace('-', np.nan, inplace=True)
Train_data['notRepairedDamage'].value_counts()
Test_data['notRepairedDamage'].value_counts()
Test_data['notRepairedDamage'].replace('-', np.nan, inplace=True)

del Train_data["seller"]
del Train_data["offerType"]
del Test_data["seller"]
del Test_data["offerType"]

4.5了解预测值的分布

  • 总体分布概况(无界约翰逊分布等)
## 1) 总体分布概况(无界约翰逊分布等)
import scipy.stats as st
y = Train_data['price']
plt.figure(1); plt.title('Johnson SU')
sns.distplot(y, kde=False, fit=st.johnsonsu)
plt.figure(2); plt.title('Normal')
sns.distplot(y, kde=False, fit=st.norm)
plt.figure(3); plt.title('Log Normal')
sns.distplot(y, kde=False, fit=st.lognorm)



价格不服从正态分布,所以在进行回归之前,它必须进行转换。虽然对数变换做得很好,但最佳拟合是无界约翰逊分布

## 2) 查看skewness and kurtosis```python
sns.distplot(Train_data['price']);
print("Skewness: %f" % Train_data['price'].skew())
print("Kurtosis: %f" % Train_data['price'].kurt())

``

Train_data.skew(), Train_data.kurt()

sns.distplot(Train_data.skew(),color='blue',axlabel ='Skewness')

sns.distplot(Train_data.kurt(),color='orange',axlabel ='Kurtness')

## 3) 查看预测值的具体频数
plt.hist(Train_data['price'], orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()

  • 查看skewness and kurtosis
  • 查看预测值的具体频数

查看频数, 大于20000得值极少,其实这里也可以把这些当作特殊得值(异常值)直接用填充或者删掉

# log变换 z之后的分布较均匀,可以进行log变换进行预测,这也是预测问题常用的trick
plt.hist(np.log(Train_data['price']), orientation = 'vertical',histtype = 'bar', color ='red')
plt.show()

4.6特征分为类别特征和数字特征,并对类别特征查看unique分布

# 分离label即预测值
Y_train = Train_data['price']
# 这个区别方式适用于没有直接label coding的数据
# 这里不适用,需要人为根据实际含义来区分
# 数字特征
# numeric_features = Train_data.select_dtypes(include=[np.number])
# numeric_features.columns
# # 类型特征
# categorical_features = Train_data.select_dtypes(include=[np.object])
# categorical_features.columnsnumeric_features = ['power', 'kilometer', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13','v_14' ]categorical_features = ['name', 'model', 'brand', 'bodyType', 'fuelType', 'gearbox', 'notRepairedDamage', 'regionCode',]# 特征nunique分布
for cat_fea in categorical_features:print(cat_fea + "的特征分布如下:")print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))print(Train_data[cat_fea].value_counts())

4.7数字特征分析

  • 相关性分析
numeric_features.append('price')
## 1) 相关性分析
price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()
print(correlation['price'].sort_values(ascending = False),'\n')

f , ax = plt.subplots(figsize = (7, 7))plt.title('Correlation of Numeric Features with Price',y=1,size=16)sns.heatmap(correlation,square = True,  vmax=0.8)

del price_numeric['price']
## 2) 查看几个特征得 偏度和峰值
for col in numeric_features:print('{:15}'.format(col), 'Skewness: {:05.2f}'.format(Train_data[col].skew()) , '   ' ,'Kurtosis: {:06.2f}'.format(Train_data[col].kurt())  )

## 3) 每个数字特征得分布可视化
f = pd.melt(Train_data, value_vars=numeric_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")

## 4) 数字特征相互之间的关系可视化
sns.set()
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
plt.show()

Train_data.columns

  • 查看几个特征得 偏度和峰值
  • 每个数字特征得分布可视化
  • 数字特征相互之间的关系可视化
  • 多变量互相回归关系可视化
## 5) 多变量互相回归关系可视化
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, figsize=(24, 20))
# ['v_12', 'v_8' , 'v_0', 'power', 'v_5',  'v_2', 'v_6', 'v_1', 'v_14']
v_12_scatter_plot = pd.concat([Y_train,Train_data['v_12']],axis = 1)
sns.regplot(x='v_12',y = 'price', data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)v_8_scatter_plot = pd.concat([Y_train,Train_data['v_8']],axis = 1)
sns.regplot(x='v_8',y = 'price',data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)v_0_scatter_plot = pd.concat([Y_train,Train_data['v_0']],axis = 1)
sns.regplot(x='v_0',y = 'price',data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)power_scatter_plot = pd.concat([Y_train,Train_data['power']],axis = 1)
sns.regplot(x='power',y = 'price',data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)v_5_scatter_plot = pd.concat([Y_train,Train_data['v_5']],axis = 1)
sns.regplot(x='v_5',y = 'price',data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)v_2_scatter_plot = pd.concat([Y_train,Train_data['v_2']],axis = 1)
sns.regplot(x='v_2',y = 'price',data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)v_6_scatter_plot = pd.concat([Y_train,Train_data['v_6']],axis = 1)
sns.regplot(x='v_6',y = 'price',data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)v_1_scatter_plot = pd.concat([Y_train,Train_data['v_1']],axis = 1)
sns.regplot(x='v_1',y = 'price',data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)v_14_scatter_plot = pd.concat([Y_train,Train_data['v_14']],axis = 1)
sns.regplot(x='v_14',y = 'price',data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)v_13_scatter_plot = pd.concat([Y_train,Train_data['v_13']],axis = 1)
sns.regplot(x='v_13',y = 'price',data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)

4.8类型特征分析

  • unique分布
## 1) unique分布
for fea in categorical_features:print(Train_data[fea].nunique())

  • 类别特征箱形图可视化
## 2) 类别特征箱形图可视化# 因为 name和 regionCode的类别太稀疏了,这里我们把不稀疏的几类画一下
categorical_features = ['model','brand','bodyType','fuelType','gearbox','notRepairedDamage']
for c in categorical_features:Train_data[c] = Train_data[c].astype('category')if Train_data[c].isnull().any():Train_data[c] = Train_data[c].cat.add_categories(['MISSING'])Train_data[c] = Train_data[c].fillna('MISSING')def boxplot(x, y, **kwargs):sns.boxplot(x=x, y=y)x=plt.xticks(rotation=90)f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(boxplot, "value", "price")
```![在这里插入图片描述](https://img-blog.csdnimg.cn/613e0e1eae2b41d79963058a9c6ac3d2.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAQ0hSTuaZqA==,size_20,color_FFFFFF,t_70,g_se,x_16)- 类别特征的小提琴图可视化```python
## 3) 类别特征的小提琴图可视化
catg_list = categorical_features
target = 'price'
for catg in catg_list :sns.violinplot(x=catg, y=target, data=Train_data)plt.show()

  • 类别特征的柱形图可视化类别
categorical_features = ['model','brand','bodyType','fuelType','gearbox','notRepairedDamage']## 4) 类别特征的柱形图可视化
def bar_plot(x, y, **kwargs):sns.barplot(x=x, y=y)x=plt.xticks(rotation=90)f = pd.melt(Train_data, id_vars=['price'], value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(bar_plot, "value", "price")

  • 特征的每个类别频数可视化(count_plot)
##  5) 类别特征的每个类别频数可视化(count_plot)
def count_plot(x,  **kwargs):sns.countplot(x=x)x=plt.xticks(rotation=90)f = pd.melt(Train_data,  value_vars=categorical_features)
g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False, size=5)
g = g.map(count_plot, "value")

4.9用pandas_profiling生成数据报告

import pandas_profiling
pfr = pandas_profiling.ProfileReport(Train_data)
pfr.to_file("./example.html")

五.特征工程

常见的特征工程包括:

5.1异常处理:

import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
from operator import itemgetter%matplotlib inline
path = './data/'
## 1) 载入训练集和测试集;
train = pd.read_csv(path+'train.csv', sep=' ')
test = pd.read_csv(path+'testA.csv', sep=' ')
print(train.shape)
print(test.shape)

5.1.1通过箱线图(或 3-Sigma)分析删除异常值;

# 这里我包装了一个异常值处理的代码,可以随便调用。
def outliers_proc(data, col_name, scale=3):"""用于清洗异常值,默认用 box_plot(scale=3)进行清洗:param data: 接收 pandas 数据格式:param col_name: pandas 列名:param scale: 尺度:return:"""def box_plot_outliers(data_ser, box_scale):"""利用箱线图去除异常值:param data_ser: 接收 pandas.Series 数据格式:param box_scale: 箱线图尺度,:return:"""iqr = box_scale * (data_ser.quantile(0.75) - data_ser.quantile(0.25))val_low = data_ser.quantile(0.25) - iqrval_up = data_ser.quantile(0.75) + iqrrule_low = (data_ser < val_low)rule_up = (data_ser > val_up)return (rule_low, rule_up), (val_low, val_up)data_n = data.copy()data_series = data_n[col_name]rule, value = box_plot_outliers(data_series, box_scale=scale)index = np.arange(data_series.shape[0])[rule[0] | rule[1]]print("Delete number is: {}".format(len(index)))data_n = data_n.drop(index)data_n.reset_index(drop=True, inplace=True)print("Now column number is: {}".format(data_n.shape[0]))index_low = np.arange(data_series.shape[0])[rule[0]]outliers = data_series.iloc[index_low]print("Description of data less than the lower bound is:")print(pd.Series(outliers).describe())index_up = np.arange(data_series.shape[0])[rule[1]]outliers = data_series.iloc[index_up]print("Description of data larger than the upper bound is:")print(pd.Series(outliers).describe())fig, ax = plt.subplots(1, 2, figsize=(10, 7))sns.boxplot(y=data[col_name], data=data, palette="Set1", ax=ax[0])sns.boxplot(y=data_n[col_name], data=data_n, palette="Set1", ax=ax[1])return data_n# 我们可以删掉一些异常数据,以 power 为例。
# 这里删不删同学可以自行判断
# 但是要注意 test 的数据不能删 = = 不能掩耳盗铃是不是train = outliers_proc(train, 'power', scale=3)

5.1.2BOX-COX 转换(处理有偏分布);

5.1.3长尾截断;

5.2特征归一化/标准化:

5.2.1标准化(转换为标准正态分布);

5.2.2归一化(抓换到 [0,1] 区间);

5.2.3针对幂律分布,可以采用公式:log

# 训练集和测试集放在一起,方便构造特征
train['train']=1
test['train']=0
data = pd.concat([train, test], ignore_index=True, sort=False)
# 使用时间:data['creatDate'] - data['regDate'],反应汽车使用时间,一般来说价格与使用时间成反比
# 不过要注意,数据里有时间出错的格式,所以我们需要 errors='coerce'
data['used_time'] = (pd.to_datetime(data['creatDate'], format='%Y%m%d', errors='coerce') - pd.to_datetime(data['regDate'], format='%Y%m%d', errors='coerce')).dt.days
# 看一下空数据,有 15k 个样本的时间是有问题的,我们可以选择删除,也可以选择放着。
# 但是这里不建议删除,因为删除缺失数据占总样本量过大,7.5%
# 我们可以先放着,因为如果我们 XGBoost 之类的决策树,其本身就能处理缺失值,所以可以不用管;
data['used_time'].isnull().sum()
# 从邮编中提取城市信息,因为是德国的数据,所以参考德国的邮编,相当于加入了先验知识
data['city'] = data['regionCode'].apply(lambda x : str(x)[:-3])
# 计算某品牌的销售统计量,同学们还可以计算其他特征的统计量
# 这里要以 train 的数据计算统计量
train_gb = train.groupby("brand")
all_info = {}
for kind, kind_data in train_gb:info = {}kind_data = kind_data[kind_data['price'] > 0]info['brand_amount'] = len(kind_data)info['brand_price_max'] = kind_data.price.max()info['brand_price_median'] = kind_data.price.median()info['brand_price_min'] = kind_data.price.min()info['brand_price_sum'] = kind_data.price.sum()info['brand_price_std'] = kind_data.price.std()info['brand_price_average'] = round(kind_data.price.sum() / (len(kind_data) + 1), 2)all_info[kind] = info
brand_fe = pd.DataFrame(all_info).T.reset_index().rename(columns={"index": "brand"})
data = data.merge(brand_fe, how='left', on='brand')

5.3数据分桶:

# 数据分桶 以 power 为例
# 这时候我们的缺失值也进桶了,
# 为什么要做数据分桶呢,原因有很多,= =
# 1. 离散后稀疏向量内积乘法运算速度更快,计算结果也方便存储,容易扩展;
# 2. 离散后的特征对异常值更具鲁棒性,如 age>30 为 1 否则为 0,对于年龄为 200 的也不会对模型造成很大的干扰;
# 3. LR 属于广义线性模型,表达能力有限,经过离散化后,每个变量有单独的权重,这相当于引入了非线性,能够提升模型的表达能力,加大拟合;
# 4. 离散后特征可以进行特征交叉,提升表达能力,由 M+N 个变量编程 M*N 个变量,进一步引入非线形,提升了表达能力;
# 5. 特征离散后模型更稳定,如用户年龄区间,不会因为用户年龄长了一岁就变化# 当然还有很多原因,LightGBM 在改进 XGBoost 时就增加了数据分桶,增强了模型的泛化性bin = [i*10 for i in range(31)]
data['power_bin'] = pd.cut(data['power'], bin, labels=False)
data[['power_bin', 'power']].head()

print(data.shape)
data.columns
print(data.shape)
data.columns

# 目前的数据其实已经可以给树模型使用了,所以我们导出一下
data.to_csv('data_for_tree.csv', index=0)
# 我们可以再构造一份特征给 LR NN 之类的模型用
# 之所以分开构造是因为,不同模型对数据集的要求不同
# 我们看下数据分布:
data['power'].plot.hist()

# 我们刚刚已经对 train 进行异常值处理了,但是现在还有这么奇怪的分布是因为 test 中的 power 异常值,
# 所以我们其实刚刚 train 中的 power 异常值不删为好,可以用长尾分布截断来代替
train['power'].plot.hist()

# 我们对其取 log,在做归一化
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
data['power'] = np.log(data['power'] + 1)
data['power'] = ((data['power'] - np.min(data['power'])) / (np.max(data['power']) - np.min(data['power'])))
data['power'].plot.hist()

# km 的比较正常,应该是已经做过分桶了
data['kilometer'].plot.hist()

5.3.1等频分桶;

5.3.2分桶;

5.3.3Best-KS 分桶(类似利用基尼指数进行二分类);

5.3.4卡方分桶;

5.4缺失值处理:

5.4.1不处理(针对类似 XGBoost 等树模型);

5.4.2删除(缺失数据太多);

5.4.3插值补全,包括均值/中位数/众数/建模预测/多重插补/压缩感知补全/矩阵补全等;

5.4.4分箱,缺失值一个箱;

5.5特征构造:

5.5.1构造统计量特征,报告计数、求和、比例、标准差等;

# 除此之外 还有我们刚刚构造的统计量特征:
# 'brand_amount', 'brand_price_average', 'brand_price_max',
# 'brand_price_median', 'brand_price_min', 'brand_price_std',
# 'brand_price_sum'
# 这里不再一一举例分析了,直接做变换,
def max_min(x):return (x - np.min(x)) / (np.max(x) - np.min(x))data['brand_amount'] = ((data['brand_amount'] - np.min(data['brand_amount'])) / (np.max(data['brand_amount']) - np.min(data['brand_amount'])))
data['brand_price_average'] = ((data['brand_price_average'] - np.min(data['brand_price_average'])) / (np.max(data['brand_price_average']) - np.min(data['brand_price_average'])))
data['brand_price_max'] = ((data['brand_price_max'] - np.min(data['brand_price_max'])) / (np.max(data['brand_price_max']) - np.min(data['brand_price_max'])))
data['brand_price_median'] = ((data['brand_price_median'] - np.min(data['brand_price_median'])) /(np.max(data['brand_price_median']) - np.min(data['brand_price_median'])))
data['brand_price_min'] = ((data['brand_price_min'] - np.min(data['brand_price_min'])) / (np.max(data['brand_price_min']) - np.min(data['brand_price_min'])))
data['brand_price_std'] = ((data['brand_price_std'] - np.min(data['brand_price_std'])) / (np.max(data['brand_price_std']) - np.min(data['brand_price_std'])))
data['brand_price_sum'] = ((data['brand_price_sum'] - np.min(data['brand_price_sum'])) / (np.max(data['brand_price_sum']) - np.min(data['brand_price_sum'])))
# 对类别特征进行 OneEncoder
data = pd.get_dummies(data, columns=['model', 'brand', 'bodyType', 'fuelType','gearbox', 'notRepairedDamage', 'power_bin'])
print(data.shape)
data.columns

# 这份数据可以给 LR 用
data.to_csv('data_for_lr.csv', index=0)

5.5.2时间特征,包括相对时间和绝对时间,节假日,双休日等;

5.5.3地理信息,包括分箱,分布编码等方法;

5.5.4非线性变换,包括 log/ 平方/ 根号等;

5.5.5特征组合,特征交叉;

5.5.6仁者见仁,智者见智。

5.6特征筛选

5.6.1过滤式(filter):

先对数据进行特征选择,然后在训练学习器,常见的方法有 Relief/方差选择发/相关系数法/卡方检验法/互信息法;

# 相关性分析
print(data['power'].corr(data['price'], method='spearman'))
print(data['kilometer'].corr(data['price'], method='spearman'))
print(data['brand_amount'].corr(data['price'], method='spearman'))
print(data['brand_price_average'].corr(data['price'], method='spearman'))
print(data['brand_price_max'].corr(data['price'], method='spearman'))
print(data['brand_price_median'].corr(data['price'], method='spearman'))

# 当然也可以直接看图
data_numeric = data[['power', 'kilometer', 'brand_amount', 'brand_price_average', 'brand_price_max', 'brand_price_median']]
correlation = data_numeric.corr()f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True,  vmax=0.8)

5.6.2包裹式(wrapper):

直接把最终将要使用的学习器的性能作为特征子集的评价准则,常见方法有 LVM(Las Vegas Wrapper) ;

# k_feature 太大会很难跑,没服务器,所以提前 interrupt 了
from mlxtend.feature_selection import SequentialFeatureSelector as SFS
from sklearn.linear_model import LinearRegression
sfs = SFS(LinearRegression(),k_features=10,forward=True,floating=False,scoring = 'r2',cv = 0)
x = data.drop(['price'], axis=1)
numerical_cols = x.select_dtypes(exclude = 'object').columns
x = x[numerical_cols]
x = x.fillna(0)
y = data['price'].fillna(0)
sfs.fit(x, y)
sfs.k_feature_names_

# 画出来,可以看到边际效益
from mlxtend.plotting import plot_sequential_feature_selection as plot_sfs
import matplotlib.pyplot as plt
fig1 = plot_sfs(sfs.get_metric_dict(), kind='std_dev')
plt.grid()
plt.show()

5.6.3嵌入式(embedding):

结合过滤式和包裹式,学习器训练过程中自动进行了特征选择,常见的有 lasso 回归;

5.7降维

5.7.1PCA/ LDA/ ICA;

5.7.2特征选择也是一种降维。

【数据分析与挖掘实战】二手车价格预测1数据分析与特征构造详解(有数据集合代码)相关推荐

  1. 决策树可视化(sklearn、graphviz)——python数据分析与挖掘实战 5-2 决策树预测销售量高低

    若按照书上代码运行会出现如下报错(这是因为代码在截取数据时将属性值转为了矩阵): AttributeError: 'numpy.ndarray' object has no attribute 'co ...

  2. sklearn预测评估指标:混淆矩阵计算详解-附Python计算代码

    目录 前言 混淆矩阵 python代码 前言 很多时候需要对自己模型进行性能评估,对于一些理论上面的知识我想基本不用说明太多,关于校验模型准确度的指标主要有混淆矩阵.准确率.精确率.召回率.F1 sc ...

  3. 【算法竞赛学习】二手车交易价格预测-Task2数据分析

    二手车交易价格预测-Task2 数据分析 二. EDA-数据探索性分析 Tip:此部分为零基础入门数据挖掘的 Task2 EDA-数据探索性分析 部分,带你来了解数据,熟悉数据,和数据做朋友,欢迎大家 ...

  4. 【数据分析与挖掘实战】金融风控之贷款违约预测详解2(有代码和数据集)

    本文接着上一篇博客,如果您未阅读上篇博客,请点击[数据分析与挖掘实战]金融风控之贷款违约预测详解1(有代码和数据集) 七.建模和调参 7.1模型相关原理介绍 由于相关算法原理篇幅较长,本文推荐了一些博 ...

  5. 数据分析与挖掘实战-应用系统负载分析与磁盘容量预测

    应用系统负载分析与磁盘容量预测 背景 某大型企业为了信息化发展的需要,建设了办公自动化系统.人力资源管理系统.财务管理系统.企业信息门户系统等几大企业级应用系统.因应用系统在日常运行时,会对底层软硬件 ...

  6. 《Python数据分析与挖掘实战》第11章——应用系统负载分析与磁盘容量预测(时间序列)

    文章目录 1.背景与目标分析 2.2 数据探索 2.1 查看数据信息 2.2 数据平稳性分析 3 数据预处理 3.1 数据清洗 3.2 数据变换--属性构造 4 模型构建 4.1 确定模型-- ARM ...

  7. python二手车价格预测_天池_二手车交易价格预测数据分析

    字典 FieldDescription SaleID 交易ID,唯一编码 name 汽车交易名称,已脱敏 regDate 汽车注册日期,例如20160101,2016年01月01日 model 车型编 ...

  8. 【组队学习】【24期】河北邀请赛(二手车价格预测)

    河北邀请赛(二手车价格预测) 开源内容: https://github.com/datawhalechina/team-learning-data-mining/tree/master/SecondH ...

  9. Python二手车价格预测(二)—— 模型训练及可视化

    系列文章目录 一.Python数据分析-二手车数据获取用于机器学习二手车价格预测 二.Python二手车价格预测(一)-- 数据处理 文章目录 系列文章目录 前言 一.明确任务 二.模型训练 1.引入 ...

最新文章

  1. 当代艺术遇上虚拟现实:幻境视界打造基业VR美术馆
  2. Linux内核开发函数详解
  3. MyBaties异常之 ORA-00918: 未明确定义列
  4. 后氧传感器损坏的危害_几种快速判断氧传感器故障的简便方法
  5. tp3.2 不能提交到action方法_什么是死锁,如何避免死锁(4种方法)
  6. 句句真研—每日长难句打卡Day6
  7. 协作多智能体强化学习中的回报函数设计
  8. js获取浏览器信息以及判断是否是微信
  9. 2017年苹果开发者账号申请——账号VISA卡支付流程
  10. python索引取值_Python 从列表中取值和取索引的方法
  11. 系统框图之phy框图100M网络
  12. 那些年我们踩过的坑——Java中Date夏令时日期转换不一致问题
  13. 基于堆栈的缓冲区溢出_基于堆栈溢出问题构建搜索引擎
  14. mysql校对集_MySQL校对集问题
  15. 贪吃蛇python游戏
  16. java栅格化,UI设计要不要用栅格化布局?
  17. 忘记ISO-8859-1
  18. Failed to decode response: zlib_decode(): data error Retrying with degraded mode, check
  19. 【区块链】关于访问控制的一些思考
  20. 区块链:7 个步骤入门区块链

热门文章

  1. java jframe类_Java-GUI笔记——JFrame类
  2. npm 安装less插件_LESS - 插件
  3. 腾讯AI足球队夺冠Kaggle竞赛,绝悟强化学习方案迁移至足球队
  4. android 自定义心电图,手把手教你打造一个心电图效果View Android自定义View(示例代码)...
  5. Android自定义View——心电图,曲线图,波形图
  6. MySQL1【个人学习笔记】
  7. 车道宽度设置:一项重要却易被忽视的交通安全管理手段
  8. Delphi XE2中调用DLL窗体传递Application句柄
  9. android 电池温度传感器,android传感器
  10. 什么?-你的服务竟然被探活搞死了?