目前主流三代测序平台除了Oxford 家的 Nanopore,还有 Pacific Biosciences(简称 PacBio)公司的 Single Molecule Real-Time(SMRT)Sequencing。该平台的优势在于:

  • 在不会影响吞吐量和准确性的前提下,提供目前最长的 25 kb 的 Reads 长度

  • 如果不含系统误差,准确度可达 99.999%,这样高质量的 Reads 可以解析几乎所有类型变体,从头组装高质量基因组

  • 可测取富含 AT 或 GC 区域,高度重复序列,回文序列等,不会产生 GC 的较大偏差

  • 可直接测取化学修饰,在表观遗传学中有重要应用

吃个瓜,2018年11月1日,Illumina 同意以 12 亿美元现金收购 PacBio 和其三代测序技术。

但是,去年 Illumina 放弃了收购计划,摊手。

接下来,我们看看它如何巧妙地完成这样的高质量三代测序。

1 基本原理

边合成边测序,与前文我们说的 Illumina 的基本测序原理一样。

2 构建文库

将样本中的 DNA 或 RNA 分子提取后,构建如下的哑铃状分子结构:

  • 黄色,紫色:双链 DNA 分子

  • 蓝色:接头(Adapter)

将文库分子展开,一个完整的圆环出现在我们眼前:

这种结构有利于进行周而复始的滚环复制,我们后文会讲这种复制方式的好处。

将样本中所有的DNA片段都构建哑铃状分子结构,组成的集合就叫文库(SMRTbell Library),随后,它们会被放到测序芯片中。

3 测序芯片

以 RSII 测序平台为例,测序仪芯片(SMRT Cell)长这样:

放大后:

上面整齐排列着15万个直径为70纳米的测序微孔(Zero-Model Waveguides,ZMWs)。

4 上机测序

1、构建测序复合物

测序复合物:聚合酶,测序模板,测序引物

2、复合物撒入测序小孔

3、固定测序复合物

由于聚合酶加了生物素,在芯片玻璃底板有链酶亲和素。利用生物素和链酶亲和素的亲和力,包含聚合酶的测序复合物会被固定在玻璃底板。

4、构建带有荧光基团的 dNTP

在芯片溶液中含有许多游离 dNTP,所谓游离 dNTP 就是随机飘在溶液中的 dNTP。

ATGC 四种碱基的 dNTP,在磷酸基团上分别带有四种颜色的荧光基团。

5、边合成边测序

在合成时,游离的 dNTP 被固定在底板上的酶捕获,激发光会从玻璃板底部发出。

怎么保证每次测取一个碱基?

由于测序小孔直径很小,激发光的穿透能力会逐渐衰减,只能在小孔中传输很短的距离,所以只有当 dNTP 足够靠近底部,荧光基团才会被激发光照到,发出荧光。当然,其他的游离 dNTP,虽然也有可能飘到小孔底部被激发光照到,但这种情况极少。

在一个碱基合成结束后,带有荧光基团的磷酸基团会从 dNTP 上掉落,发生猝灭,不影响其他碱基的信号检测。

在发生测序的小孔有各自的 DNA 片段和测序复合物,同一时间发出不同颜色的激发光,机器会检测到如下的光信号,实际同时会得到多达几万个光点。

重复上述步骤,经过计算机分析光谱,最终我们拿到样本的测序文件。SMRT Sequencing 测序过程中,每秒读取三个碱基,一个小时可检测大约一万多碱基。

6、检测碱基甲基化

有意思的是,在 SMRT Sequencing 测序过程中,可以直接测到碱基被修饰的状态,聚合酶遇到碱基上带有甲基化的碱基,合成速度会明显变慢,而且光谱也会发生改变。

因此,SMRT Sequencing 可以检测到碱基的甲基化修饰情况。

5 测序模型

SMRT 测序有如下两种测序模式:

1、Circular Consensus Sequencing (CCS)

说这种测序模型前,就不得不提三代测序最大的缺点:碱基读取不准,错误率在12.5%,也就是说,每读取八个碱基,就会读错一个。

好在碱基读取错误是随机的,如果重新读一遍同样位置的碱基,不一定会发生同样的错误。

如果对同一个序列,多测几遍,那么这些读错的碱基就能矫正过来。

前边提到的滚环复制的优势就来了,我们可以利用测序复合物在环状文库分子循环测序同一个片段来消除错误率。

这种测序模型,复制出的 Reads叫 HiFi Reads,测序准确率 > 99%。

2、Continuous Long Read (CLR) Sequencing

这种测序的优势在于可以读取更长的 Reads。

6 其他影响因素

1、GC bias 影响

什么是 GC bias?

PCR 时,如果模板里的 G、C 碱基含量高,PCR 效率低,A、T碱 基含量高,PCR 效率高。一般测序过程,如二代测序,都会有大量的 PCR 过程。这样就会有一个问题,G、C 含量高的片段,读到的 Reads 数少。

SMRT 在测序过程中,没有 PCR 过程,因此富含 GC 含量高,含量低的 Reads 片段都会有相似的概率被测序,所以三代测序中的 GC Bias 影响小。

2、读长的限制因素
  • DNA 模板断裂,用激发光长时间照射 DNA 链时,会发生断裂,DNA 链会从酶上掉下来,测序终止。

  • 酶变性,酶被长时间照射时,酶会变性,失去聚合酶活性,测序终止。

  • 文库序列短,如果做文库序列片段大于 20~30 K ,且保证质量的文库是有技术难度的

3、测序通量

目前,主流的测序平台由三种,各有利弊,可以根据自己的课题来选择。

以 RSII 为例,将测序复合物,随机撒到 15 万个小孔中,正好有一个复合物进入到单个小孔的概率符合泊松分布。理论情况是

  • 1/3 的小孔中有一个测序复合物,正常信号

  • 1/3 的小孔什么都没有,无信号

  • 1/3 的小孔中有两个以上的测序复合物,杂乱信号

五万个小孔 * 10kb,所以一张芯片大约会产出 500M 的数据。


参考:

  1. https://www.cnbc.com/2020/01/02/illumina-abandons-1point2-billion-deal-to-buy-rival-pacific-biosciences.html

  2. https://www.youtube.com/watch?v=rUKhfITd2CA

  3. https://www.youtube.com/watch?v=NHCJ8PtYCFc&t=1s

文末友情推荐

•《2021生信学习班起航,先送福利》•《96核心384G内存的超级服务器(共享)使用权一年》

本文分享自微信公众号 - 生信科技爱好者(bioitee)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

图解三代测序(SMRT Sequencing)相关推荐

  1. 图解三代测序(Nanopore)

    一.测序原理 先介绍 Nanopore 测序中的几位主角: Reader :在自然界中,有一种可以嵌入到细胞膜中作为离子或分子通道的跨膜蛋白,具有天然的蛋白纳米孔.经过人为基因工程修饰后,得到的就是 ...

  2. 三代测序(SMRT Sequencing)

    三代测序(SMRT Sequencing) 白墨 目前主流三代测序平台除了Oxford 家的 Nanopore,还有 Pacific Biosciences(简称 PacBio)公司的 Single ...

  3. MPB:深大李猛组-基于PacBio SMRT三代测序的红树林沉积物真菌群落的研究

    为进一步提高<微生物组实验手册>稿件质量,本项目新增大众评审环节.文章在通过同行评审后,采用公众号推送方式分享全文,任何人均可在线提交修改意见.公众号格式显示略有问题,建议电脑端点击文末阅 ...

  4. 三代测序原理与数据文件简介(SMRT+Nanopore)

    三代测序原理与数据文件简介(SMRT+Nanopore) 一生雾梦 2019-12-03 20:48:42  1578  收藏 2 分类专栏: 前沿文献分析 文章标签: 三代测序(SMS) SMRT  ...

  5. 大数据时代千帆竞发,三代测序激流勇进

    大数据时代千帆竞发,三代测序激流勇进 2021-08-20 11:09 21世纪是生物的世纪,也是基因科技蓬勃发展和被广泛应用的世纪,每一代基因测序技术,无一例外地伴随着核心工具的变革和新应用场景的产 ...

  6. The advantages of SMRT sequencing

    Genome Biology于2013年7月刊发表的一篇题为<The advantages of SMRT sequencing>的综述,作者分别是大名鼎鼎的诺贝尔奖得主Richard R ...

  7. 分析方法升级三代测序辅助,优化无参转录组测序策略

    分析方法升级&三代测序辅助,优化无参转录组测序策略 无参转录组拼接升级 Corset 让"基因"概念更准确 在无参转录组项目中,利用主流软件 Trinity 进行 De n ...

  8. 三代测序数据纠错的方法、装置和计算机可读存储介质与流程

    三代测序数据纠错的方法.装置和计算机可读存储介质与流程 文档序号:15616049发布日期:2018-10-09 21:24 导航: X技术> 最新专利>计算;推算;计数设备的制造及其应用 ...

  9. 基于三代测序技术的高产糖化酶黑曲霉工业菌株基因组组装与注释及功能基因比较研究

    第一代测序技术主要是由Sanger等人发明的测序技术,他的发明第一次为人们开启了解读 生命遗传密码 的大门,Sanger本人也因此获得了诺贝尔奖.这种DNA末端终止法测序技术的 原理:主要通过在DNA ...

最新文章

  1. 顺序表-顺序表的基本操作(插入元素+删除元素)
  2. 逐!帧!揭!秘!终于能看清波士顿动力机器人的细节了
  3. MySQL删除表数据
  4. 3.将maven项目jar纳入maven仓库,Mave项目依赖另外一个Maven项目的案例
  5. 如何开启jvm日志_做了10个小实验:搞懂了JVM三大参数类型
  6. 第十二章 Shell脚本编写及常见面试题(三)
  7. jeecms添加站点
  8. VMware Workstation网络连接的三种模式
  9. ps一点通精品知识库
  10. Typora初步学习
  11. 如何实现页面广告随时上下线、过期自动下线及到时自动上线
  12. silverlight java通信_Silverlight使用JavaSocket连接jabber服务器
  13. Redis 3 配置详解
  14. 【融职培训】Web前端学习 第2章 网页重构7 浮动布局
  15. i5 10210u参数 i5 10210u相当于什么处理器
  16. DCT离散余弦变换(C语言)
  17. 远程桌面方式控制设备方案
  18. UTC时间转PST时间,区分冬夏令时
  19. markdown css样式
  20. 百度地图ak申请指南

热门文章

  1. APACHE+PHP+MySQL 绿色版安装教程
  2. img标签src引入svg如何修改颜色
  3. arris sbr-ac1900p/sbr-ac3200p梅林固件
  4. mysql根据成绩排名次_用mysql语句 实现按成绩 排名次
  5. 原创壁纸小程序独立后台(1.3.5版本介绍)
  6. iOS拍照和录制视频 摄像头使用
  7. 经典8个数据分析模型
  8. 微信小程序基于百度云实现图文识别(胎教级教程)
  9. Function与函数
  10. 基于重构误差的同构图分类模型