概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理1 Baire's Category与Banach-Steinhaus定理的证明

  • Baire's Category Theorem
  • Banach-Steinhaus定理(uniform boundedness principle)

写在前面

在随机微分方程那个系列中,我们在讨论Markov family的时候引入了Markov family的算子半群,这是一个在概率论与数理统计的理论中非常强大的分析工具。在随机分析中,算子半群可以用来分析Markov过程与Levy过程的性质,进而分析某些随机微分方程的解的构造;在统计计算的理论中,算子半群可以用来表达一种MCMC类的算法,这样就能把算法的收敛与误差分析化归为对算子半群的范数的讨论。所以我打算单独开一个系列,介绍概统中的算子半群。

Baire’s Category Theorem

Baire’s Category Theorem是泛函分析中的经典结果,我们先引入这个工具。

nowhere dense
(X,∥⋅∥)(X,\left\| \cdot \right\|)(X,∥⋅∥)是一个赋范线性空间,SSS是它的子集;
∀x∈X,ϵ>0\forall x \in X,\epsilon>0∀x∈X,ϵ>0,B(x,ϵ)={y∈X:∥y−x∥<ϵ}B(x,\epsilon)=\{y \in X:\left\| y -x \right\|<\epsilon \}B(x,ϵ)={y∈X:∥y−x∥<ϵ}被称为XXX中的open ball;
∀x∈X,ϵ>0\forall x \in X,\epsilon>0∀x∈X,ϵ>0,Bˉ(x,ϵ)={y∈X:∥y−x∥≤ϵ}\bar B(x,\epsilon)=\{y \in X:\left\| y -x \right\|\le \epsilon \}Bˉ(x,ϵ)={y∈X:∥y−x∥≤ϵ}被称为XXX中的closed ball;
称SSS nowhere dense if and only if (in short, iff) SSS的闭包(clScl SclS)不包含任何open ball,另一种表述为任意open ball BBB都有一个open ball子集B′B'B′,使得S∩B′=ϕS \cap B' = \phiS∩B′=ϕ;

Baire first category set
在拓扑空间中,能被可列个nowhere dense集合的并表示的集合被称为Baire first category set;

Baire second category set
在拓扑空间中,能被可列个nowhere dense集合或者开集的并表示的集合被称为Baire second category set,或者不是Baire first category set的集合就是Baire second category set;

Baire’s Category Theorem
Banach空间不能表示成可列个nowhere dense集合的并(也就是说Banach空间不是Baire first category set,它是Baire second category set)

证明思路
用反证法,假设XXX是Banach空间,{Sn}\{S_n\}{Sn​}是可列个nowhere dense集合,并且
X=⋃n∈NSnX = \bigcup_{n \in \mathbb{N}} S_nX=n∈N⋃​Sn​

假设B0=B(0,1)B_0=B(0,1)B0​=B(0,1),因为S1S_1S1​ nowhere dense,于是∃B1⊂B0\exists B_1 \subset B_0∃B1​⊂B0​,B1B_1B1​是open ball并且B1∩S1=ϕB_1 \cap S_1 = \phiB1​∩S1​=ϕ;我们可以假设B1B_1B1​的半径小于1/21/21/2,如果B1B_1B1​的半径大于1/21/21/2,我们总是可以找到一个更小的open ball与S1S_1S1​无交;

重复这个过程,S2S_2S2​ nowhere dense,于是存在B1B_1B1​的open ball子集B2B_2B2​使得S2S_2S2​与B2B_2B2​无交且B2B_2B2​的半径小于1/31/31/3;

对于一般情形,存在半径小于1n+2\frac{1}{n+2}n+21​的open ball Bn+1B_{n+1}Bn+1​与Sn+1S_{n+1}Sn+1​无交;

因为⋃n∈NclBn\bigcup_{n \in \mathbb{N}}cl B_n⋃n∈N​clBn​非空(为了更加严谨,这个结果需要证明),于是∃x∈clBn,∀n\exists x \in clB_n,\forall n∃x∈clBn​,∀n,那么xxx一定也是Banach空间中的点;但是BnB_nBn​与SnS_nSn​无交,于是xxx不属于任意SnS_nSn​,所以
x∉⋃n∈NSnx \notin \bigcup_{n \in \mathbb{N}} S_nx∈/​n∈N⋃​Sn​

这样我们就说明了∃x∈X,x∉⋃n∈NSn\exists x \in X, x \notin \bigcup_{n \in \mathbb{N}} S_n∃x∈X,x∈/​⋃n∈N​Sn​,这与X=⋃n∈NSnX=\bigcup_{n \in \mathbb{N}} S_nX=⋃n∈N​Sn​矛盾。

Banach-Steinhaus定理(uniform boundedness principle)

假设XXX是一个Banach空间,{An}\{A_n\}{An​}是可列个XXX上的有界线性算子,∀x∈X\forall x \in X∀x∈X,sup⁡n≥1∥Anx∥\sup_{n \ge 1} \left\| A_nx \right\|supn≥1​∥An​x∥有界,则sup⁡n≥1∥An∥\sup_{n \ge 1} \left\| A_n \right\|supn≥1​∥An​∥有界;

证明思路
定义Sn={x∈X:sup⁡k≥1∥Akx∥≤n}S_n = \{x \in X:\sup_{k \ge 1} \left\| A_kx \right\| \le n\}Sn​={x∈X:k≥1sup​∥Ak​x∥≤n}因为有界线性算子等价于连续线性算子,所以AnA_nAn​连续,因此SnS_nSn​是闭集;并且
X=⋃n≥1SnX = \bigcup_{n \ge 1}S_nX=n≥1⋃​Sn​

根据Baire’s Category Theorem,SnS_nSn​不是Baire first category set,于是存在一个SlS_lSl​有closed ball子集Bˉ(x,r)\bar B(x,r)Bˉ(x,r),考虑y∈Xy \in Xy∈X,引入向量
z=x+r∥y∥y∈Bˉ(x,r)z = x+ \frac{r}{ \left\|y \right\|} y \in \bar B(x,r)z=x+∥y∥r​y∈Bˉ(x,r)


∥Any∥=∥∥y∥rAnz−∥y∥rAnx∥≤∥y∥r∥Anz∥+∥y∥r∥Anx∥≤2lr∥y∥\left\| A_n y \right\|= \left\| \frac{\left\|y \right\|}{ r}A_n z - \frac{\left\|y \right\|}{ r}A_n x \right\| \le \frac{\left\|y \right\|}{ r}\left\| A_n z \right\|+\frac{\left\|y \right\|}{ r}\left\| A_n x \right\| \le \frac{2l}{r}\left\| y \right\|∥An​y∥=∥∥∥∥​r∥y∥​An​z−r∥y∥​An​x∥∥∥∥​≤r∥y∥​∥An​z∥+r∥y∥​∥An​x∥≤r2l​∥y∥

因为x,z∈Bˉ(x,r)⊂Slx,z \in \bar B(x,r) \subset S_lx,z∈Bˉ(x,r)⊂Sl​,于是
sup⁡n≥1∥An∥≤2lr\sup_{n \ge 1} \left\| A_n \right\| \le \frac{2l}{r}n≥1sup​∥An​∥≤r2l​

概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理1 Baire‘s Category与Banach-Steinhaus定理的证明相关推荐

  1. 概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理2 Banach-Steinhaus定理的应用

    概率论与数理统计中的算子半群 第一讲 Banach-Steinhaus定理2 Banach-Steinhaus定理的应用 上一讲我们介绍了Banach-Steinhaus定理: Banach-Stei ...

  2. 概率与统计在计算机应用,计算机技术在概率论和数理统计中的应用

    计算机技术在概率论和数理统计中的应用 (5页) 本资源提供全文预览,点击全文预览即可全文预览,如果喜欢文档就下载吧,查找使用更方便哦! 19.90 积分 概率论与数理统计 期中论文计算机技术在概率论和 ...

  3. python在概率论与数理统计中的作用

    概率论与数理统计 一.描述性统计和统计图 1.用Pandas来计算统计量 使用 pandas的describe方法计算相关统计量,并计算身高和体重的偏度,峰度,样本的25%,50%,90%分位数 数据 ...

  4. 概率论与数理统计中的独立(独立 独立同分布 不相关)

    由均值方差的性质,Z=x−μσ2,则E(z)=0,var(z)=1由均值方差的性质,Z=\frac{x- μ}{\sqrt{σ^2}},则E(z)=0,var(z)=1由均值方差的性质,Z=σ2​x− ...

  5. 概率论与数理统计学习笔记——第14讲——大数定律(1.切比雪夫不等式及切比雪夫大数定律)

    1. 问题引入 2. 依概率收敛 3. 大数定律 4. 切比雪夫大数定律 5. 切比雪夫不等式

  6. 概率论与数理统计学习笔记——第13讲——依概率收敛的意义

    1. 问题引入--能否按照数列收敛的定义类似地定义随机变量序列的收敛性? 2. 依概率收敛的定义

  7. 概率论与数理统计学习笔记——第六讲——离散型随机变量(6.2贝努利概型和二项分布)

    1. 贝努利试验的定义 2. 0-1分布(描述贝努利试验) 2. n重贝努利试验 3. 二项分布(描述n重贝努利试验) 4. 二项分布示例1 5.  二项分布示例2

  8. 概率论与数理统计学习笔记——第7讲——连续型随机变量(2.5.5正态分布)

    1. 正态分布(高斯分布)的背景及定义 2. 正态分布(标准正态分布)的定义 3. 正态分布密度曲线的特征 4. 正态分布的位置参数μ 5. 正态分布的形状参数σ^2 6.  标准正态分布的概率计算 ...

  9. 概率论与数理统计学习笔记——第8讲——多维随机变量的概念(3.1.4联合概率密度的概念及性质)

    1. 内容回顾--二维离散型随机变量 2. 二维连续型随机变量的联合概率密度 3. 联合概率密度的性质 4. 联合概率密度求解示例

最新文章

  1. Google Test(GTest)使用方法和源码解析——模板类测试技术分析和应用
  2. access 处理多少数据_access和excel的区别
  3. tomcat设置自动监听替换class文件
  4. Android ndk之Check that/ndk/openssl/crypto/libsfk.so exists or that its path is corret
  5. 银行营业网点管理系统——implt包(CityAreaDaoImpl )
  6. jmeter的java测试框架_性能测试学习之路 (四)jmeter 脚本开发实战(JDBC JMS 接口脚本 轻量级接口自动化测试框架)...
  7. php qq邮箱发送邮件报错_PHP实现发送邮件(二)
  8. python经典程序实例-Python3经典100例(③)
  9. 计算机在旅游管理方面的应用,谈旅游管理信息系统的设计与应用
  10. 【python--爬虫】彼岸图网高清壁纸爬虫
  11. 北京师范大学计算机学院 姚力,姚力(北京师范大学信息科学与技术学院院长)_百度百科...
  12. 为了下半年的「双 11」,阿里的「赚钱机器」开始冲刺
  13. python人像录制加声音_Python自动化测试入门必读
  14. 什么是拼多多上货助手?拼多多上货助手有哪些功能?详细介绍
  15. linux键盘模拟程序,linux下模拟键盘的几种方法
  16. inurl+:php?id,实操:SQL注入国外xx网站
  17. [linux] linux shuf 和 mac gshuf
  18. 高等教育心理学:教师职业心理(完) 不是特别重要
  19. 3年收10亿,普陀山悄悄改名重启IPO
  20. 人生重开模拟器怎么刷到神秘的小盒子

热门文章

  1. Leetcode 206. 反转链表 解题思路及C++实现
  2. Leetcode 107. 二叉树的层次遍历 II 解题思路及C++实现
  3. window查看端口号使用_踩坑搭建vue说端口号被占用?
  4. Ribbon 负载均衡调用01——概述
  5. SpringMVC源码——未完待续
  6. 全局配置文件:mybatis-config.xml
  7. 计算机网络知识点4——计算机网络性能
  8. 操作系统中的零拷贝与java中的使用
  9. SDUT-2144 图结构练习——最小生成树
  10. [YTU]_2489( C++结构体之统计最高最低分)