一、主要技术指标:
1.频率:    30.275MHz
2.调制方式:调频
3  频偏:    5KHz
5.通信方式:同频单工
6.电源电压:9.6V 10%(镍镉充电电池8节,负极接地。有些机型是6节)
7.消耗电流:
  静噪守候:10mA以下
  接  收:150mA以下
  近程发射:
  远程发射:0.7A以下
8.载频输出功率:2w
9.接收灵敏度:1.0uV以下(信噪比12dB以上)
1 0.静噪灵敏度:0.5uV
11.中频频率:455 KHz
12.音频不失真功率:大于200 nlw
1 3.体积:125 x 55 x 30 mm
14.重量:

 二、  工作原理
    整机由接收和发射两部分组成,两部分除天线和阻抗匹配电路外,其它电路都是相互独立的。

1、接收机
    由天线接收到的高频无线电信号经L1,L2,c1,c2,c4组成的低通滤波器滤除频带以外的干扰信号,经c6送至D1,D2和L3组成选频电路,这个选频电路谐振频率为30.275MHz,选出对讲机发来的载频信号,而滤除其它干扰电波.经c7送到N1和N2组成的联级高频信号放大电路进行高频放大,这种联级高频信号放大电路具有增益高,工作稳定,无须使用中和电容等优点,N1组成共射电路,N2接成共基电路,共射电路具有增益高的优点,而共基电路具有工作稳定的特点,经N1,N2放大后的高频信号由L4,c9,T1,c12组成双调谐回路再次选频后经c16送入ICl(MC3361)的16脚内部混频级进行混频.
  N3和CRY1,L5等元件组成本机振荡器,L5和相应的回路电容谐振于10.243MHz的三次谐波上,即10.24333x3=30.730MHz,它比发射频率30.275MHz(10.0917的三倍频,即10.0917MHzx3=30.275MHz)高出一个中频455kHz(即30.730—30.275=0.455MHz),本振信号也送到Icl的第1脚,在Icl内部进行混频。
  Ic1(Mc3361)是窄带调频接收专用集成电路,其内部包含振荡器,混频器,高增益的限幅中频放大器,鉴频器和有源滤波器,静噪触发电路及音频放大电路。它的限幅灵敏度为2uV,它是整机的主要增益级,中放增益可达65dB。
  在Ic1内部混频得到的455kHz中频信号由Icl的3脚输出,由陶瓷滤波器cRFl选出中频信号,而滤除其它谐波分量,选出的中频信号由Icl的5脚输入,在Icl内部进行高增益的中频放大,最后经鉴频器解调出音频信号,由Icl的9脚输出。
    从第9脚输出的信号一路由c30,R1 3和c32组成去加重电路去加重和滤波后经电位器VRl送入Ic2进行音频功放后推动喇叭发声,另一路则由电位器VR2送入Icl内部的有源滤波器选频放大后由Icl的11脚输出,经D3,D4进行倍压检波,控制其内部的静噪触发电路,在13脚输出一个控制电平,控制N4,N5的导通和截止,使IC2的电源受控,达到静噪目的。我们知道,调频接收机的灵敏度很高,在没有收到信号时,喇叭中将会发出极强的噪声,而一旦收到信号,它的信噪比却很高,噪声的主要频谱是分布在1 0—25kHz范围之间,音频信号的频谱范围则在100—3000Hz之间,我们可以采用一个特殊的滤波器选出这一噪声信号,经检波变成直流分量,再通过一个电子开关电路就可以控制一个电路工作,达到静噪目的,这样在接收机没有收到信号时,喇叭将寂静一片,以消除讨厌的噪声,一旦收到对讲机发来的信号,又能自动打开放大电路进行联络。同时,设置静噪电路还可以达到省电目的。
     N11组成稳压电源,稳压输出取决于Dzl的值,Dzl选用6.2V,稳压输出约为5.6V,N11同时又是收发转换的开关三极管,N9则是发射部分的电源开关管,当sw_PTT开关按下时,D6导通,N11截止,收信机失去电压而停止工作,N9由于是偏故而导通,电源经N9向Ic3供电,发射机前级得到电源而开始工作。所以这种收发转换电路也称为电子PTT开关,这是其它业余对讲机中所没有的新电路。它的优点是可以用微动开关来控制大电流,使电路工作更可靠。发射级的N7,N6虽然也接在公用的电源回路上,但守侯状态时,由于它得不到基极激励而截止,所以对讲机在守侯时,发射部分是不工作的。
    
    2、发射机
    发射部分由话音放大器,主振级,缓冲放大级,推动级和末级功率放大级组成。
    话音信号由N1 3,N14组成的两级音频放大器放大,经c74,c71,c70,L1 3组成高频滤波器滤除高频分量,防止振荡器的高频信号干扰话放级的工作,同时也将话音信号进行预加重,经c70送到变容二极管Dc以实现调频。
    主振级由N1 5,cRY2及外围元件组成,其振荡频率主要取决于cRY2的工作频率,在本电路中,cRY2选10.0917MHz(因10.0917x3=30.275MHz),它的三倍频信号由T5,C64选频回路选频(即发射频率30.275MHz),并由T5藕合至缓冲放大级。
    载频信号经N1 0组成缓冲放大器进行放大,T4和槽路电容c61也谐振在三次倍频上(即发射频率30.275MHz),以滤除其它谐波分量,N7是推动放大级,为功放级提供足够的推动电流,经c55,c51,L8,选频和匹配藕合至末级功率放大级N6进行功率放大,N7,N6都工作在丙类放大状态,它们的工作点分别取决于R23和R21,由于丙类放大器输出的二次谐波分量很大,必须用Lc选频电路选出基波分量,推动电路中由c55,c51,L8选频,功放电路中由C48,C47,L6组成串联谐振电路选频,最后由L1,L2,C1,C2,C4组成低通滤波器对载频信号进行选频和阻抗匹配,载频电流由天线这个换能元件变成电磁波向空中辐射出去。
    电路图中的R7,D3这个支路的作用是,在收发转换瞬间,由于收信部分电容的储能作用,收信机的工作并非立即截止,而Icl的13脚未能从高电平立即变成低电平,Ic2的工作也就未能立即停止工作,这样,在收发转换瞬间,喇叭中就会发出短暂的收发噪声,使人听起来极不舒服,因此,在电源转换至发射电路时,经R7,D3,这个支路加至Icl的12脚,使Icl的1 3脚立即变成低电平,N4,N5截止,Ic2停止工作,以消除转换噪声。

三、制作工艺与元件选用
   对讲机制作的成败,除了与理论、经验、准确的工作频率和正确的调试方法等人为因素外,还有个关键的元件的质量问题,就是其中某个元件质量欠佳,可能会使您经过几个不眠之夜的奋斗,也未必能成功,根据笔者十多个对讲机的制作心得,接收机的灵敏度与N1,N2关系最密切。N1、N2除了与它们的高频特性有关外,还有个重要的参数是它们的噪声系数,普通的s9018等廉价高频管噪声系数均较大,难以实现预期的灵敏度。
    除了N1、N2高频三极管外,CRFl陶瓷滤波器对整机的灵敏度影响也很大,应选用正品元件,最好是选用五端的陶瓷滤波器,因为它的选频特性比三端滤波器要好。高频瓷片电容要选用漏电小,热稳定性好的元件。
    除了提到的这些元件,其他元件选用普通的元件即可,业余条件下完全可以,据笔者经验,那些非主要元件对收信灵敏度影响十分轻微。
    因为ICl是专用的窄带调频接收芯片,性能一般都得到保证。质量最优的要算MOTOROLA公司的产品,如图。其次MALAYSIA生产的也不错。值得一提的是笔者拿到了数片Made in China的MC3361芯片,通过采用德国的信号发生器(频率在50MHz量程精确到10Hz,。输出分辨率可达0.01uv)等仪器对比实验,国产的产品灵敏度与MOTOROLA公司的产品基本无差别。所以ICl的性能参数完全不必多虑。
 
    电阻选用一般碳膜电阻即可,对精度也无特殊要求,1/8w,1/16W均可。
    当然,对讲机都希望体积越小越好,业余制作的也不例外,所以元件应尽可能选用超小型的元件。
    发射部分的元件也是制作成败的关键部分,其中影响最大的要算推动级和功率级的晶体管,笔者曾试验过几种管子,型号均为2sc2078,只是产地不同。早先使用的是一般的管子(从外观看,丝印不是很清晰,工艺也较差),使用9.6V电源,排除其他因素外,功率无论如何也调不到2w,发射级电流只有区区400mA多一点。以为是频率没有调在10.0917的三次谐波上,可能为四次或五次谐波,后用示波器和频率器校对无误,推断为功率管的质量欠佳,换上三菱生产的2sc2078,接通电源,电流猛升至近0.8A,功率计测量为2.6w。这说明末级的功率管质量好坏直接影响着功率输出,这将明显左右着对讲机的通话距离。
    此外,高频功率管是否选用频率越高越好呢?例如有些爱好者乐于采用象2SC1971,2SC1972等高达175Mt{z的VHF频段的管子,笔者不推荐使用频率过高的功率三极管,第一是因为这样的管子价格相当昂贵。第二是频率过高,电路反而容易自激,不易于调试。笔者就遇到这样的问题,在台式机中使用2sc1969,电路工作相当正常,功率也可达到8w左右,都使用了很长时间。后改为2sc1971,电路却严重自激,花了很大的功夫,采取了很多措施才能以解决,实际输出功率与2SC1969基本无异。
    除了晶体管外,石英晶体的频率一定要选用准确,频率偏差将明显影响着通话距离,调试部分我们将会说明。高频部分的线圈匝数己在电路图中标明,可在高频磁芯或中周磁芯上用φ0.17—0.35mm漆包线绕制,LI,L2线径需大些,因为它们亦是载频功率的传输回路,中频鉴频线圈用现成的455kHz(或465kHz)中周代替即可。
    其它元件没有特殊要求,阻容件的选用与接收部分一样。

转载于:https://blog.51cto.com/duijiangji/103438

30.275MHz 调频无线对讲机原理、制作与调试相关推荐

  1. 调频无线话筒的电路图

    下面的就是调频无线话筒的电路图,电路非常简洁,没有多余的器件.高频三极管V1和电容C3.C5.C6组成一个电容三点式的振荡器,对于初学者我们暂时不要去琢磨电容三点式的具体工作原理,我们只要知道这种电路 ...

  2. 海参无线呼叫服务器,简单介绍无线呼叫器原理

    无线呼叫器(病房呼叫器)是一种新型的无线电子产品,又可以将其称之为无线发射机.从技术上来说,无线呼叫器原理是十分简单的,从而使其得到了广泛的应用.按照无线调试方式的不同可以将无线呼叫器分为调频(FM) ...

  3. 2020-8-15 无线充电原理和注意事项 WCP/铁氧体

    无线充电产品 无线充电方式与标准 通过无线.无接触式的无线充电(Wireless Power Transfer:也被称为非接触供电.无接触电力传输)为内置于电子设备中的二次电池充电的方式正在迅速普及. ...

  4. 无线充电原理是什么?

    无线充电原理是通过近场感应,由无线充电设备将能量传导到充电终端设备,终端设备再将接收到的能量转化为电能存储在设备的电池中.能量的传导采用的原理是电感耦合,可以保证无外露的导电接口,不仅可以省去设备间杂 ...

  5. 无线网络原理知识总结

    无线网络原理 无线网络传输技术 WLAN的MAC层关键技术 WLAN的组建 IEEE802.11协议 WLAN的勘测与规划 WLAN的安装与部署 蓝牙技术与组网 无线MESH技术 MANET路由协议 ...

  6. 无线定位原理:TOA AOA

    无线定位原理:TOA&AOA TOA 定位方法 TOA 定位方法,主要是根据测量接收信号在基站和移动台之间的到达时间,然后转换为距离,从而进行定位.该方法至少需要三个基站,才能计算目标的位置, ...

  7. 无线对讲机术语,集群对讲机、数字对讲机术语解析

    无线对讲机术语,集群对讲机.数字对讲机术语解析 无线对讲机由于它的功能简单,操作方便,一按即说,特别是在处理突发事件上更是突显优势,深受各行各业的喜爱与追棒.无线对讲机的每本说明书上都有专业的术语,让 ...

  8. php 温度表,Wi-Fi无线温度计的制作

    背景 此文详细介绍了一款低成本WiFi无线温度计的制作方法,所有材料费用(不包含已有的WiFi网络设备和电脑)不超过50元.此温度计通过干电池供电.间歇工作,因而有很长的电池续航寿命,最长可达数周.使 ...

  9. APM的3DR无线数传的安装和调试

    APM飞控修改数传模块方法 http://www.cnblogs.com/wsine/p/4909903.html APM的3DR无线数传的安装和调试 http://tieba.baidu.com/p ...

最新文章

  1. PowerMock 简介--转载
  2. php生成cookie在哪,php程序中cookie的使用方法
  3. 如何在六个月或更短的时间内成为DevOps工程师(一)
  4. python网课视频下载-python老男孩网课22期视频教程全
  5. c+智能指针源码分析_C ++中的智能指针
  6. 批量操作权限的页面展示
  7. 对权值线段树剪枝的误解--以HDU6703为例
  8. java 视频格式转换-ffmpeg
  9. 如何在Internet Explorer中使用VARCHART XGantt控件?
  10. 谐振功率放大器的工作原理
  11. 装XP的电脑运行慢与实用解决办法
  12. 计算机三级-未来教育考试题库做完题不显示正确与否解决办法
  13. apmserv mysql_APMServ MySQL 1577错误解决方法_MySQL
  14. 好书推荐|VirtualLab Fusion入门与进阶实用教程(第二版)
  15. 向量点乘(内积)和叉乘(外积、向量积)的几何意义和作用
  16. Hello Riak
  17. 深大uooc大学生心理健康章节答案第四章
  18. Win及杀毒软件输入法豪杰注册序列号等
  19. 程控交换机是什么东东!
  20. 西门子PLC与Profinet工业以太网RFID读写器|读卡器的编程与配置说明

热门文章

  1. hibernate by example 排除某些列
  2. 技术点不亲身实验一遍,难免会被网文唬
  3. 环形缓冲区实现类(Delphi)
  4. ACM主要赛考察内容
  5. 关于jquery的ajax编码的另类解决方案,巨简便
  6. step2 . day2 Linux基础命令和常用知识汇总
  7. pyppeteer(python版puppeteer)基本使用
  8. webpack初体验
  9. RabbitMQ 交换器、持久化
  10. JavaScript中创建对象的方法