尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。这几种控制规律可以单独使用,但是更多场合是组合使用。如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。转载https://zhidao.baidu.com/question/344860979.html

比例(P)控制
单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡

对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。

**单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。**工业生产中比例控制规律使用较为普遍。

比例积分(PI)控制
比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控制作用。但是,不能最终消除余差的缺点限制了它的单独使用。克服余差的办法是在比例控制的基础上加上积分控制作用。

积分控制器的输出与输入偏差对时间的积分成正比。这里的“积分”指的是“积累”的意思。积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。所以,积分控制可以消除余差。积分控制规律又称无差控制规律。

积分时间的大小表征了积分控制作用的强弱。积分时间越小,控制作用越强;反之,控制作用越弱。

积分控制虽然能消除余差,但它存在着控制不及时的缺点。因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。这样取二者之长,互相弥补,既有比例控制作用的迅速及时,又有积分控制作用消除余差的能力。因此,比例积分控制可以实现较为理想的过程控制。

比例积分控制器是目前应用最为广泛的一种控制器,多用于工业生产中液位、压力、流量等控制系统。由于引入积分作用能消除余差,弥补了纯比例控制的缺陷,获得较好的控制质量。但是积分作用的引入,会使系统稳定性变差。对于有较大惯性滞后的控制系统,要尽量避免使用。

比例微分(PD)控制

**比例积分控制对于时间滞后的被控对象使用不够理想。**所谓“时间滞后”指的是:当被控对象受到扰动作用后,被控变量没有立即发生变化,而是有一个时间上的延迟,比如容量滞后,此时比例积分控制显得迟钝、不及时。为此,人们设想:能否根据偏差的变化趋势来做出相应的控制动作呢?犹如有经验的操作人员,即可根据偏差的大小来改变阀门的开度(比例作用),又可根据偏差变化的速度大小来预计将要出现的情况,提前进行过量控制,“防患于未然”。这就是具有“超前”控制作用的微分控制规律。微分控制器输出的大小取决于输入偏差变化的速度。

**微分输出只与偏差的变化速度有关,而与偏差的大小以及偏差是否存在与否无关。**如果偏差为一固定值,不管多大,只要不变化,则输出的变化一定为零,控制器没有任何控制作用。**微分时间越大,微分输出维持的时间就越长,因此微分作用越强;**反之则越弱。当微分时间为0时,就没有微分控制作用了。同理,微分时间的选取,也是需要根据实际情况来确定的。

微分控制作用的特点是:动作迅速,具有超前调节功能,可有效改善被控对象有较大时间滞后的控制品质;但是它不能消除余差,尤其是对于恒定偏差输入时,根本就没有控制作用。因此,不能单独使用微分控制规律。

比例和微分作用结合,比单纯的比例作用更快。尤其是对容量滞后大的对象,可以减小动偏差的幅度,节省控制时间,显著改善控制质量。

比例积分微分(PID)控制
最为理想的控制当属比例-积分-微分控制规律。它集三者之长:既有比例作用的及时迅速,又有积分作用的消除余差能力,还有微分作用的超前控制功能。

当偏差阶跃出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使偏差幅度减小,由于比例作用是持久和起主要作用的控制规律,因此可使系统比较稳定;而积分作用慢慢把余差克服掉。只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。

比例系数的调节
比例系数P的调节范围一般是:0.1–100.

如果增益值取 0.1,PID 调节器输出变化为十分之一的偏差值。如果增益值取 100, PID 调节器输出变化为一百倍的偏差值。

可见该值越大,比例产生的增益作用越大。初调时,选小一些,然后慢慢调大,直到系统波动足够小时,再该调节积分或微分系数。过大的P值会导致系统不稳定,持续振荡;过小的P值又会使系统反应迟钝。合适的值应该使系统由足够的灵敏度但又不会反应过于灵敏,一定时间的迟缓要靠积分时间来调节。

积分系数的调节
积分时间常数的定义是,偏差引起输出增长的时间。积分时间设为 1秒,则输出变化 100%所需时间为 1 秒。初调时要把积分时间设置长些,然后慢慢调小直到系统稳定为止。

微分系数的调节
微分值是偏差值的变化率。例如,如果输入偏差值线性变化,则在调节器输出侧叠加一个恒定的调节量。大部分控制系统不需要调节微分时间。因为只有时间滞后的系统才需要附加这个参数。如果画蛇添足加上这个参数反而会使系统的控制受到影响。如果通过比例、积分参数的调节还是收不到理想的控制要求,就可以调节微分时间。初调时把这个系数设小,然后慢慢调大,直到系统稳定。

PID控制器的参数整定是控制系统设计的核心内容。它是根据被 控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是 依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主 要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应 曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需 要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡, 记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。

在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。
对于温度系统:P(%)20–60,I(分)3–10,D(分)0.5–3
对于流量系统:P(%)40–100,I(分)0.1–1
对于压力系统:P(%)30–70,I(分)0.4–3
对于液位系统:P(%)20–80,I(分)1–5

参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低

微分时间常数(derivative time constant)
是微分调节器或者PID调节器中微分作用强弱的整定参数。
电子单元仪表的PID调节器的微分时间一般在0.6~300s的范围变化。
微分时间能减少过渡过程动态偏差和缩短调节时间。

PID参数整定法(1)相关推荐

  1. 针对具有纯滞后环节的一阶惯性系统PID参数整定(衰减曲线法)

    假定被控系统的传递函数为: 一.建立开环结构图,观察系统对阶跃输入信号的跟随性. 由图二可知:开环系统的的上升时间很长,并且输出到达不了给定值,下面对该系统进行PID参数整定,进行PID控制. 图1 ...

  2. 我的四轴专用PID参数整定方法及原理

    给四轴调了好久的PID,总算是调好了,现分享PID参数整定的心得给大家,还请大家喷的时候手下留情. 首先说明一下,这篇文章的主旨并不是直接教你怎么调,而是告诉你这么调有什么道理,还要告诉大家为什么'只 ...

  3. PID算法详解(2)---PID参数整定

    简易工程法整定PID参数--归一参数整定法         除了上面讲的一般的扩充临界比例度法而外,Roberts P.D在1974年 提出一种简化扩充临界比例度整定法.由于该方法只需整定一个参数即 ...

  4. 基于遗传算法的PID参数整定研究(三)

    基于遗传算法的PID参数整定研究 在获得对象模型的基础上设计PID参数时常用的原理,经典的有经验试凑法.临界比例度法.极点配置原理.零极点相消原理.幅相裕度法等:现代的则往往借助于计算机,利用最优化方 ...

  5. 【控制理论】——控制系统分类PID算法简介PID参数整定PID上位机通信协议

    目录 ​ 前言 一.PID算法 1.控制系统分类&参数&信号 2.PID算法简介 二.PID参数整定 三.PID上位机通信协议 1.数据帧&协议调试 2.协议代码实现 拓展: ...

  6. 基于入门级粒子群算法的PID参数整定(MATLAB2016b-simulink)(超详细01)

    PID算法作为工业或日常生活中常用的控制算法,想必大家都不陌生,依靠误差反馈来消除误差,关于PID的原理部分相比看这篇博客的同学应该都十分清楚,有不清楚的同学可以百度或知网搜索.PID算法的应用程度很 ...

  7. 我的四轴专用PID参数整定方法及原理---超长文慎入(转)

    给四轴调了好久的PID,总算是调好了,现分享PID参数整定的心得给大家,还请大家喷的时候手下留情. 首先说明一下,这篇文章的主旨并不是直接教你怎么调,而是告诉你这么调有什么道理,还要告诉大家为什么'只 ...

  8. 基于遗传算法的PID参数整定研究(七)

    基于遗传算法的PID参数整定研究 在前述深入了解PID参数的含义.基于常规人工的PID参数整定.以及所运用的遗传算法的介绍与应用后,紧接着进入应用遗传算法的PID参数整定,实现了Simulink仿真与 ...

  9. 自动控制原理PID参数整定的Matlab实现

      以一道题为例介绍调节PID控制器系数的方法,有:试凑法(Trial-and-Error Method).齐格勒-尼科尔斯校正规则(Ziegler and Nichols First Method. ...

  10. matlab求系统根轨迹代码_根轨迹法、PID参数整定和matlab指令计算

    收获 (1)理解根轨迹的概念及其在控制系统设计中的作用: (2)手绘根轨迹草图,以及如何使用极端及绘制根轨迹: (3)熟悉在反馈控制系统中应用广泛的关键部件:PID控制器: (4)理解根轨迹在参数设计 ...

最新文章

  1. tomcat高并发的配置
  2. Python-Day3-数据类型
  3. 04. 字符串合并与拆分写法小结
  4. 实战并发编程 - 10Guarded Suspension模式在BlockingQueue源码中应用
  5. 【PHP】多线程请求 curl_multi_init()
  6. scrapy去重原理,scrapy_redis去重原理和布隆过滤器的使用
  7. centos7 django mysql_CentOS7操作系统下快速安装MySQL5.7
  8. PCA主成分分析+SVM实现人脸识别
  9. 只做macd二次金叉_【教你一招】MACD低位二次金叉
  10. 搭建Hexo博客(一)-创建Hexo环境
  11. Android Serializable与Parcelable原理与区别
  12. Fedora 17 Beta is declared GOLD.
  13. Hbase shell练习题
  14. golang 数据一   (字符串、数组和数组指针)
  15. JAVA的引用类型变量(C/C++中叫指针)
  16. pandas入门(3)
  17. win10网络显示已连接到服务器异常,w10 网络连接配置异常如何修复
  18. windbg 常用调试命令总结
  19. 使用hicanu组装hifi基因组的方法介绍
  20. Arduino - 驱动HC-SR501 人体红外感应模块

热门文章

  1. 家里wifi网速越来越慢_家里WIFI越用越卡?教你3个小方法,彻底解决网速慢、不稳定等问题...
  2. html5 css3左侧多级菜单,modernizr.custom.js制作html5 CSS3多级层叠侧边菜单导航栏
  3. fit函数 model_深度学习与Tensorflow学习笔记2 ——回调函数callbacks和Tensorboard
  4. 如何打开mysql的批处理宫娥能_如何在MySQL中进行批处理插入
  5. 操作系统之虚拟存储管理
  6. 275. H-Index II 递增排序后的论文引用量
  7. VS2015 新Web项目(C#6)出现CS1617错误的解决
  8. 第二章课后习题2-5
  9. smarty基本语法之判断,循环语句
  10. android AVD详解