相信很多小伙伴刷题的时候面对力扣上近两千道题目,感觉无从下手,我花费半年时间整理了Github项目:leetcode刷题攻略。 里面有100多道经典算法题目刷题顺序、配有40w字的详细图解,常用算法模板总结,以及难点视频讲解,按照list一道一道刷就可以了!star支持一波吧!

518. 零钱兑换 II

链接:https://leetcode-cn.com/problems/coin-change-2/

难度:中等

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:
输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。

示例 3:
输入: amount = 10, coins = [10]
输出: 1

注意,你可以假设:

  • 0 <= amount (总金额) <= 5000
  • 1 <= coin (硬币面额) <= 5000
  • 硬币种类不超过 500 种
  • 结果符合 32 位符号整数

思路

这是一道典型的背包问题,一看到钱币数量不限,就知道这是一个完全背包。

对完全背包还不了解的同学,可以看这篇:动态规划:关于完全背包,你该了解这些!

但本题和纯完全背包不一样,纯完全背包是能否凑成总金额,而本题是要求凑成总金额的个数!

注意题目描述中是凑成总金额的硬币组合数,为什么强调是组合数呢?

例如示例一:

5 = 2 + 2 + 1

5 = 2 + 1 + 2

这是一种组合,都是 2 2 1。

如果问的是排列数,那么上面就是两种排列了。

组合不强调元素之间的顺序,排列强调元素之间的顺序。 其实这一点我们在讲解回溯算法专题的时候就讲过了哈。

那我为什么要介绍这些呢,因为这和下文讲解遍历顺序息息相关!

回归本题,动规五步曲来分析如下:

  1. 确定dp数组以及下标的含义

dp[j]:凑成总金额j的货币组合数为dp[j]

  1. 确定递推公式

dp[j] (考虑coins[i]的组合总和) 就是所有的dp[j - coins[i]](不考虑coins[i])相加。

所以递推公式:dp[j] += dp[j - coins[i]];

这个递推公式大家应该不陌生了,我在讲解01背包题目的时候在这篇动态规划:目标和!中就讲解了,求装满背包有几种方法,一般公式都是:dp[j] += dp[j - nums[i]];

  1. dp数组如何初始化

首先dp[0]一定要为1,dp[0] = 1是 递归公式的基础。

从dp[i]的含义上来讲就是,凑成总金额0的货币组合数为1。

下标非0的dp[j]初始化为0,这样累计加dp[j - coins[i]]的时候才不会影响真正的dp[j]

  1. 确定遍历顺序

本题中我们是外层for循环遍历物品(钱币),内层for遍历背包(金钱总额),还是外层for遍历背包(金钱总额),内层for循环遍历物品(钱币)呢?

我在动态规划:关于完全背包,你该了解这些!中讲解了完全背包的两个for循环的先后顺序都是可以的。

但本题就不行了!

因为纯完全背包求得是能否凑成总和,和凑成总和的元素有没有顺序没关系,即:有顺序也行,没有顺序也行!

而本题要求凑成总和的组合数,元素之间要求没有顺序。

所以纯完全背包是能凑成总结就行,不用管怎么凑的。

本题是求凑出来的方案个数,且每个方案个数是为组合数。

那么本题,两个for循环的先后顺序可就有说法了。

我们先来看 外层for循环遍历物品(钱币),内层for遍历背包(金钱总额)的情况。

代码如下:

for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包容量dp[j] += dp[j - coins[i]];}
}

假设:coins[0] = 1,coins[1] = 5。

那么就是先把1加入计算,然后再把5加入计算,得到的方法数量只有{1, 5}这种情况。而不会出现{5, 1}的情况。

所以这种遍历顺序中dp[j]里计算的是组合数!

如果把两个for交换顺序,代码如下:

for (int j = 0; j <= amount; j++) { // 遍历背包容量for (int i = 0; i < coins.size(); i++) { // 遍历物品if (j - coins[i] >= 0) dp[j] += dp[j - coins[i]];}
}

背包容量的每一个值,都是经过 1 和 5 的计算,包含了{1, 5} 和 {5, 1}两种情况。

此时dp[j]里算出来的就是排列数!

可能这里很多同学还不是很理解,建议动手把这两种方案的dp数组数值变化打印出来,对比看一看!(实践出真知)

  1. 举例推导dp数组

输入: amount = 5, coins = [1, 2, 5] ,dp状态图如下:

最后红色框dp[amount]为最终结果。

以上分析完毕,C++代码如下:

class Solution {
public:int change(int amount, vector<int>& coins) {vector<int> dp(amount + 1, 0);dp[0] = 1;for (int i = 0; i < coins.size(); i++) { // 遍历物品for (int j = coins[i]; j <= amount; j++) { // 遍历背包dp[j] += dp[j - coins[i]];}}return dp[amount];}
};

是不是发现代码如此精简,哈哈

总结

本题的递推公式,其实我们在动态规划:目标和!中就已经讲过了,而难点在于遍历顺序!

在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

可能说到排列数录友们已经有点懵了,后面Carl还会安排求排列数的题目,到时候在对比一下,大家就会发现神奇所在!

我是程序员Carl,可以找我组队刷题,也可以在B站上找到我,关注公众号代码随想录来和上万录友一起打卡学习算法,来看看,你会发现相见恨晚!

如果感觉对你有帮助,不要吝啬给一个

「代码随想录」518. 零钱兑换 II 【动态规划】力扣详解!相关推荐

  1. 【leetcode题解——动态规划之完全背包】518.零钱兑换II(python版本详解+表格+dp五部曲)

    518. 零钱兑换 II 重点: 本题求组合数,而非排列数. 例如示例: 5 = 2 + 2 + 1 5 = 2 + 1 + 2 这是一种组合,都是 2 2 1,而(2,2,1)(2,1,2)为两种排 ...

  2. 98. Leetcode 518. 零钱兑换 II (动态规划-完全背包)

    完全背包: 如果求组合数: 外层for遍历循环物品,内层for遍历循环背包容量 如果求排列数: 外层for遍历循环背包容量, 内层for遍历循环物品 步骤一.确定状态: 确定dp数组及下标含义 这里的 ...

  3. 代码随想录44——动态规划:完全背包理论基础、518零钱兑换II、377组合总和IV

    文章目录 1.完全背包理论基础 2.518零钱兑换II 2.1.题目 2.2.解答 3.377组合总和IV 3.1.题目 3.2.解答 4.组合和排列问题的便利顺序 4.1.组合问题 4.2.排列问题 ...

  4. 518. 零钱兑换 II golang动态规划

    518. 零钱兑换 II 给定不同面额的硬币和一个总金额.写出函数来计算可以凑成总金额的硬币组合数.假设每一种面额的硬币有无限个. 示例 1: 输入: amount = 5, coins = [1, ...

  5. java刷题--518零钱兑换II

    java刷题--518零钱兑换II 题目 代码 结果 题目 代码 class Solution {public int change(int amount, int[] coins) {int[] d ...

  6. leetocde 518 零钱兑换II

    前言 题目:518. 零钱兑换 II 参考:完全背包问题-大草.零钱兑换 II-力扣官方题解 提交代码 我可以理解01背包的滚动数组,但是我理解不了完全背包的滚动数组. 理解不了,便用二维数组.虽然二 ...

  7. 【必备算法】动态规划:LeetCode题(六)322. 零钱兑换,518. 零钱兑换 II

    322. 零钱兑换² 给定不同面额的硬币 coins 和一个总金额 amount.编写一个函数来计算可以凑成总金额所需的最少的硬币个数.如果没有任何一种硬币组合能组成总金额,返回 -1. 示例 1: ...

  8. leetcode:518. 零钱兑换 II

    518 零钱兑换 II 来源:力扣(LeetCode) 链接: https://leetcode.cn/problems/coin-change-2/ 给你一个整数数组 coins 表示不同面额的硬币 ...

  9. Day 44 | 完全背包理论基础 518. 零钱兑换 II 377. 组合总和 Ⅳ

    完全背包理论基础 完全背包与01背包的区别在于:完全背包同一物品可装多次,而01背包每个物品只能装一次. 因此遍历容量时,从前向后遍历即可! 关于遍历顺序,也与01背包有差别,01背包一维数组只能先遍 ...

  10. LeetCode 518. 零钱兑换 II(动态规划)

    1. 题目 给定不同面额的硬币和一个总金额. 写出函数来计算可以凑成总金额的硬币组合数. 假设每一种面额的硬币有无限个. 示例 1: 输入: amount = 5, coins = [1, 2, 5] ...

最新文章

  1. Python设计模式-适配器模式
  2. matplotlib.pyplot.scatter API
  3. vue拖动改变模板_可视化拖拽 UI 布局之拖拽篇
  4. sort,uniq,wc指令简单用法
  5. Angular 单元测试讲解
  6. There is no getter for property named 'XXX' in class 'aaa.bbb.ccc'(终极骚操作的解决方法)...
  7. 不做别人思想的“跑马场”(人民论坛)
  8. 多重共线性问题的几种解决方法
  9. CCNA2.0笔记_TCP/IP概述
  10. Beyond Compare如何展开所有子文件夹
  11. [转载]看我花式绕过校园网计费认证
  12. iOS 福利局之开发加速库分享
  13. ROS发布者(Publisher)和订阅者(Subscriber)的python编程实现(讲解超级详细)
  14. SpringCloud Alibaba 实战之《服务门户:Spring Cloud Gateway 如何把好微服务的大门》
  15. 【Free5GC】test.sh脚本测试流程
  16. android设备判断是否支持NFC功能
  17. 油气勘探开发从业务到IT的一体化解决方案(全文)
  18. 任意字符使用UE自带AES加密解密
  19. 2015计算机职称水平考试,2015计算机职称等级考试技巧汇总.doc
  20. erp5开源制造业erp电子商务模块介绍

热门文章

  1. java线程同步: synchronized详解(转)
  2. dos初始操作和全屏方法
  3. Delphi XE不生成__history目录
  4. 【UML】——为什么要使用UML
  5. Zero Sum chapter 2.3 dfs
  6. [转]WCF RIA Services
  7. Mask_rcnn openpose realsense
  8. Trusted Execution Technology (TXT) --- 启动控制策略(LCP)篇
  9. html的那些小小细节
  10. 一个简单的WeakList的实现