概率论_4.1_4.2_4.3

  • 4.1 Probability Density Functions
    • Probability Distributions for Continuous Variables
  • 4.2 Cumulative Distribution Functions and Expected Values(累积分布函数与期望值)
    • The Cumulative Distribution Function
    • Using F(x) to Compute Probabilities
    • Obtaining f(x) from F(x)
    • Percentiles of a Continuous Distribution
    • Expected Values
  • 4.3 The Normal Distribution(正态分布)
    • The Standard Normal Distribution(标准正态分布)
    • Percentiles of the Standard Normal Distribution
    • zαz_{\alpha}zα​ Notation for z Critical Values
    • Nonstandard Normal Distributions
    • Percentiles of an Arbitrary Normal Distribution
    • The Normal Distribution and Discrete Populations
    • Approximating the Binomial Distribution

4.1 Probability Density Functions

A discrete random variable (rv) is one whose possible values either constitute a finite set or else can be listed in an infinite sequence (a list in which there is a first element, a second element, etc.). A random variable whose set of possible values is an entire interval of numbers is not discrete.

Probability Distributions for Continuous Variables

DEFINITION:

Let X be a continuous rv. Then a probability distribution or probability density function (pdf) of X is a function f(x) such that for any two numbers a and b with a≤ba \leq ba≤b,

P(a≤X≤b)=∫abf(x)dxP(a \leq X \leq b) = \int_{a}^{b} f(x)dx P(a≤X≤b)=∫ab​f(x)dx

That is, the probability that X takes on a value in the interval [a, b] is the area above this interval and under the graph of the density function, as illustrated in the figure below. The graph of f(x) is often referred to as the density curve.

For f(x) to be a legitimate pdf, it must satisfy the following two conditions:

  1. f(x)≥0f(x) \ge 0f(x)≥0 for all x
  2. ∫−∞∞f(x)dx=areaundertheentiregraphoff(x)=1\int_{- \infin}^{\infin} f(x)dx = area \, under \, the \, entire \, graph \, of \, f(x)=1∫−∞∞​f(x)dx=areaundertheentiregraphoff(x)=1

DEFINITION:

A continuous rv X is said to have a uniform distribution on the interval [A, B] if the pdf of X is

f(x;A,B)={1B−A,A≤x≤B0,otherwisef(x;A,B) =\begin{cases} \frac{1}{B-A}, A \leq x \leq B \\0, otherwise \end{cases} f(x;A,B)={B−A1​,A≤x≤B0,otherwise​

When X is a discrete random variable, each possible value is assigned positive probability. This is not true of a continuous random variable (that is, the second condition of the definition is satisfied) because the area under a density curve that lies above any single value is zero(当X是一个离散随机变量时,每个可能的值都被赋正概率。对于连续型随机变量(即满足定义的第二个条件),这是不成立的,因为在任意单个值之上的密度曲线下的面积是零):

P(X=c)=∫ccf(x)dx=lim⁡ϵ→∞∫c−ϵc+ϵf(x)dx=0P(X=c)=\int_{c}^{c}f(x)dx=\lim_{\epsilon \to \infty} \int_{c -\epsilon}^{c+\epsilon}f(x)dx=0 P(X=c)=∫cc​f(x)dx=ϵ→∞lim​∫c−ϵc+ϵ​f(x)dx=0

The fact that P(X=c)=0 when X is continuous has an important practical consequence: The probability that X lies in some interval between a and b does not depend on whether the lower limit a or the upper limit b is included in the probability calculation(X位于a和b之间的某个区间的概率并不取决于a的下限或b的上限是否包含在概率计算中):

P(a≤X≤b)=P(a<X<b)=P(a<X≤b)=P(a≤X<b)P(a \leq X \leq b)=P(a < X < b)=P(a < X \leq b)=P(a \leq X < b) P(a≤X≤b)=P(a<X<b)=P(a<X≤b)=P(a≤X<b)

4.2 Cumulative Distribution Functions and Expected Values(累积分布函数与期望值)

The Cumulative Distribution Function

DEFINITION:

The cumulative distribution function(cdf) F(x) for a continuous rv X is defined for every number x by

F(x)=P(X≤x)=∫−∞xf(y)dyF(x)=P(X \leq x)=\int_{- \infin}^{x}f(y)dy F(x)=P(X≤x)=∫−∞x​f(y)dy

For each x, F(x) is the area under the density curve to the left of x. This is illustrated in the figure below, where F(x) increases smoothly as x increases.

Using F(x) to Compute Probabilities

PROPOSITION:

Let X be a continuous rv with pdf f(x) and cdf F(x). Then for any number a,

P(X>a)=1−F(a)P(X > a)=1-F(a) P(X>a)=1−F(a)

and for any two numbers a and b with a < b,

P(a≤X≤b)=F(b)−F(a)P(a \leq X \leq b)=F(b)-F(a) P(a≤X≤b)=F(b)−F(a)

The figure below illustrates the second part of this proposition; the desired probability is the shaded area under the density curve between a and b, and it equals the difference between the two shaded cumulative areas. This is different from what is appropriate for a discrete integer valued random variable (e.g., binomial or Poisson): P(a ≤\leq≤ X ≤\leq≤ b) = F(b) - F(a - 1) when a and b are integers.

Obtaining f(x) from F(x)

PROPOSITION:

If X is a continuous rv with pdf f(x) and cdf F(x), then at every x at which the derivative F’(x) exists, F’(x)=f(x).

Percentiles of a Continuous Distribution

DEFINITION:

Let p be a number between 0 and 1. The (100p)th percentile of the distribution of a continuous rv X, denoted by η(p)\eta(p)η(p), is defined by

p=F(η(p))=∫−∞η(p)f(y)dyp=F(\eta(p))=\int_{- \infin}^{\eta(p)}f(y)dy p=F(η(p))=∫−∞η(p)​f(y)dy

DEFINITION:

The median of a continuous distribution, denoted by μ~\tilde{\mu}μ~​, is the 50th percentile, so μ~\tilde{\mu}μ~​ satisfies .5=F(μ~).5=F(\tilde{\mu}).5=F(μ~​). That is, half the area under the density curve is to the left of μ~\tilde{\mu}μ~​ and half is to the right of μ~\tilde{\mu}μ~​.

A continuous distribution whose pdf is symmetric—the graph of the pdf to the left of some point is a mirror image of the graph to the right of that point—has median μ~\tilde{\mu}μ~​ equal to the point of symmetry, since half the area under the curve lies to either side of this point.

Expected Values

DEFINITION:

The expected or mean value of a continuous rvX with pdf f(x) is

μX=E(X)=∫−∞∞x⋅f(x)dx\mu_X=E(X)=\int_{-\infin}^{\infin}x\cdot f(x)dx μX​=E(X)=∫−∞∞​x⋅f(x)dx

PROPOSITION:

If X is a continuous rv with pdf f(x) and h(X) is any function of X, then

E[h(X)]=μh(X)=∫−∞∞h(x)⋅f(x)dxE[h(X)]=\mu_{h(X)}=\int_{-\infin}^{\infin}h(x)\cdot f(x)dx E[h(X)]=μh(X)​=∫−∞∞​h(x)⋅f(x)dx

DEFINITION:

The variance of a continuous random variable X with pdf f(x) and mean value μ\muμ is

σX2=V(X)=∫−∞∞(x−μ)2⋅f(x)dx=E[(X−μ)2]\sigma_{X}^{2}=V(X)=\int_{-\infin}^{\infin}(x-\mu)^2\cdot f(x)dx=E[(X-\mu)^2] σX2​=V(X)=∫−∞∞​(x−μ)2⋅f(x)dx=E[(X−μ)2]

The standard deviation (SD) of X is σX=V(X)\sigma_X=\sqrt{V(X)}σX​=V(X)​.

PROPOSITION:

V(X)=E(X2)−[E(X)]2V(X)=E(X^2)-[E(X)]^2 V(X)=E(X2)−[E(X)]2

4.3 The Normal Distribution(正态分布)

DEFINITION:

A continuous rv X is said to have a normal distribution with parameters μ\muμ and σ\sigmaσ(or μ\muμ and σ2\sigma^2σ2), where −∞<μ<∞-\infin < \mu < \infin−∞<μ<∞ and 0<σ0 < \sigma0<σ, if the pdf of X is

f(x;μ,σ)=12πσe−(x−μ)2/2σ2−∞<x<∞f(x;\mu ,\sigma)= \frac{1}{\sqrt{2 \pi \sigma}}e^{-(x-\mu)^2/2\sigma^2} \,\, -\infin < x < \infin f(x;μ,σ)=2πσ​1​e−(x−μ)2/2σ2−∞<x<∞

The statement that X is normally distributed with parameters μ\muμ and σ2\sigma^2σ2 is often abbreviated X~N(μ\muμ,σ2\sigma^2σ2).

The Standard Normal Distribution(标准正态分布)

DEFINITION:

The normal distribution with parameter values μ=0\mu=0μ=0 and σ=1\sigma=1σ=1 is called the standard normal distribution. A random variable having a standard normal distribution is called a standard normal random variable(标准正态随机变量) and will be denoted by Z. The pdf of Z is

f(z;0,1)=12πe−z2/2−∞<z<∞f(z;0,1)=\frac{1}{\sqrt{2 \pi}}e^{-z^2/2} \,\, -\infin < z < \infin f(z;0,1)=2π​1​e−z2/2−∞<z<∞

The graph of f(z; 0, 1) is called the standard normal (or z) curve(标准正态曲线). Its inflection points(拐点) are at 1 and -1. The cdf of Z is P(Z≤z)=∫−∞zf(y;0,1)dyP(Z \leq z)=\int_{-\infin}^{z}f(y;0,1)dyP(Z≤z)=∫−∞z​f(y;0,1)dy which we will denote by Φ(z)\Phi(z)Φ(z).

Percentiles of the Standard Normal Distribution

For any p between 0 and 1, Appendix Table A.3 can be used to obtain the (100p)th percentile of the standard normal distribution.

zαz_{\alpha}zα​ Notation for z Critical Values

In statistical inference, we will need the values on the horizontal z axis that capture certain small tail areas under the standard normal curve.

Notation:

zαz_{\alpha}zα​ will denote the value on the z axis for which α\alphaα of the area under the z curve lies to the right of zαz_{\alpha}zα​.

The zα′sz_{\alpha}'szα′​s are usually referred to as z critical values(z临界值). Table 4.1 lists the most useful z percentiles and values.

Nonstandard Normal Distributions

When X∼N(μ,σ2)X \sim N(\mu,\sigma^2)X∼N(μ,σ2), probabilities involving X are computed by “standardizing”. The standardized variable(标准化变量) is (X−μ)/σ(X - \mu)/\sigma(X−μ)/σ. Subtracting μ\muμ shifts the mean from μ\muμ to zero, and then dividing by σ\sigmaσ scales the variable so that the standard deviation is 1 rather than σ\sigmaσ.

PROPOSITION:

If X has a normal distribution with mean and standard deviation , then

Z=X−μσZ=\frac{X-\mu}{\sigma} Z=σX−μ​

has a standard normal distribution. Thus

P(a≤X≤b)=P(a−μσ≤Z≤b−μσ)=Φ(b−μσ)−Φ(a−μσ)P(a \leq X \leq b)=P(\frac{a-\mu}{\sigma}\leq Z \leq \frac{b-\mu}{\sigma}) = \Phi(\frac{b-\mu}{\sigma})-\Phi(\frac{a-\mu}{\sigma}) P(a≤X≤b)=P(σa−μ​≤Z≤σb−μ​)=Φ(σb−μ​)−Φ(σa−μ​)

P(X≤a)=Φ(a−μσ)P(X≥b)=1−Φ(b−μσ)P(X \leq a)=\Phi(\frac{a-\mu}{\sigma}) \hspace{1cm} P(X\ge b)=1-\Phi(\frac{b-\mu}{\sigma}) P(X≤a)=Φ(σa−μ​)P(X≥b)=1−Φ(σb−μ​)

If the population distribution of a variable is (approximately) normal, then

  1. Roughly 68% of the values are within 1 SD of the mean.
  2. Roughly 95% of the values are within 2 SDs of the mean.
  3. Roughly 99.7% of the values are within 3 SDs of the mean.

Percentiles of an Arbitrary Normal Distribution

The (100p)th percentile of a normal distribution with mean μ\muμ and standard deviation σ\sigmaσ is easily related to the (100p)th percentile of the standard normal distribution.

PROPOSITION:

(100p)thpercentilefornormal(μ,σ)=μ+[(100p)thforstandardnormal]⋅σ{(100p)th \, percentile \, for \, normal \, (\mu,\sigma)}=\mu +[(100p)th \, for \, standard \, normal] \cdot \sigma (100p)thpercentilefornormal(μ,σ)=μ+[(100p)thforstandardnormal]⋅σ

The Normal Distribution and Discrete Populations

The normal distribution is often used as an approximation to the distribution of values in a discrete population(正态分布常被用作离散总体中数值分布的近似值). In such situations, extra care should be taken to ensure that probabilities are computed in an accurate manner.

The correction for discreteness of the underlying distribution(对底层分布离散性的校正) is often called a continuity correction(连续性校正). It is useful in the following application of the normal distribution to the computation of binomial probabilities.

Approximating the Binomial Distribution

PROPOSITION:

Let X be a binomial rv based on n trials with success probability p. Then if the binomial probability histogram is not too skewed, X has approximately a normal distribution with μ=np\mu=npμ=np and σ=npq\sigma=\sqrt{npq}σ=npq​. In particular, for x=a possible value of X,

P(X≤x)=B(x,n,p)≈(areaunderthenormalcurvetotheleftofx+.5)=Φ(x+.5−npnpq)P(X \leq x)=B(x,n,p) \approx (area \, under \, the \, normal \, curve \, to \, the \, left \, of \, x + .5)=\Phi(\frac{x+.5-np}{\sqrt{npq}}) P(X≤x)=B(x,n,p)≈(areaunderthenormalcurvetotheleftofx+.5)=Φ(npq​x+.5−np​)

In practice, the approximation is adequate provided that both np≥10np \ge 10np≥10 and nq≥10nq \ge 10nq≥10, since there is then enough symmetry in the underlying binomial distribution

概率论与数理统计 4 Continuous Random Variables and Probability Distributions(连续随机变量与概率分布)(上篇)相关推荐

  1. 李永乐复习全书概率论与数理统计 第一、二章 随机事件和概率、随机变量及其概率分布

    目录 第一章 随机事件和概率 1.2  概率.条件概率.独立性和五大公式 例4  设0<P(A)<1,0<P(B)<10<P(A)<1,0<P(B)<1 ...

  2. 【概率论与数理统计】猴博士 笔记 p21-23 二维连续型求边缘分布函数和密度函数,已知两个边缘密度函数求f(x,y)

    二维连续型求边缘分布函数 题型如下:给出F(x,y),让我们求F(x),F(y) 步骤: FX(x)=F(x,+∞)FY(y)=F(+∞,y)F_X(x)=F(x,+∞) \\F_Y(y)=F(+∞, ...

  3. 概率论与数理统计学习笔记——第十九讲——二元连续型随机变量,联合概率密度函数

    1. 联合概率密度函数 2. 概率密度的性质 3. 二元连续型随机变量概率分布函数求解示例

  4. 概率论与数理统计——MATLAB

    概率论与数理统计--MATLAB 1. 用MATLAB产生随机数 独立同分布的随机变量的观测值称为随机数,以下MATLAB指令都是用于产生x*y个服从对应分布的随机数. 分布名称 MATLAB指令 两 ...

  5. 【概率论与数理统计】常见分布特征函数推导过程

    相关内容: [概率论与数理统计(研究生课程)]知识点总结1(概率论基础) [概率论与数理统计(研究生课程)]知识点总结2(一维随机变量及其分布) [概率论与数理统计(研究生课程)]知识点总结3(二维随 ...

  6. 高等概率论 Chapter 5. Random Variables on a Countable Space

    Chapter 5 Random Variables on a Countable Space 南京审计大学统计学研究生第一学期课程,<高等概率论>. 欢迎大家来我的github下载源码呀 ...

  7. 概率论与数理统计(Probability Statistics I)

    Table of Contents 概率论的基本概念(The Basic Concept of Probability Theory) 随机变量及其分布(Random Variable and Its ...

  8. 概率论与数理统计常用英文词汇对照

    概率论与数理统计常用英文词汇对照 Probability Theory 概率论 Trial 试验 intersection交 union 并 frequency 频率 difference 差 add ...

  9. 《概率论与数理统计》之概率函数、概率分布函数与概率密度函数理解

    文章目录 写在前面 离散型随机变量与连续型随机变量 离散型随机变量的概率函数与概率分布函数 连续型随机变量的概率密度函数与概率分布函数 总结 REF 写在前面 如果有大一大二的新生看到这篇博文,如果你 ...

  10. 数学建模 概率论与数理统计

    概率论与数理统计 概率模型 统计模型 概率空间是概率论研究的起点 实际问题抽象为数学模型 常微方程 偏微方程 三元组(Ω,F,P)概率空间 Ω--样本空间 F--事件域 P--概率测度 研究随机现象由 ...

最新文章

  1. 三代测序技术特点比较
  2. oracle rac fail,Oracle RAC Load Balance , Fail Over测试
  3. 第四次学习记录(ROS)
  4. 零基础带你学习MySQL—查询数据库(二)
  5. mysql.sys用户权限_MySQL用户及权限小结
  6. logrotate日志轮转配置文档
  7. calendar与date区别及常用方法介绍
  8. Matlab晶闸管单相全桥电路仿真
  9. 数字化转型、智能制造、工业软件及其应用案例资源列表
  10. shark恒破解笔记4-API断点GetPrivateProfileStringA
  11. tp前后端不分离源码_Thinkphp5.0+Vue2.0前后台分离框架通使用后端源码
  12. 查询数据表中重复数据及重复次数
  13. Skipped ‘XXX.txt‘ -- Node remains in conflict 问题解决
  14. IWDG和WWDG分析
  15. android ViewPager轮播制作成品——轮播制作(六)
  16. 亚马逊 ec2 连接不上_在Amazon EC2上设置WordPress
  17. 不会PS图片怎么批量调色
  18. Octopus和Humphrey PDF解析
  19. 可微,可导,可积与连续的关系
  20. 高斯投影正、反算 代码

热门文章

  1. python+django大学教室自习室预约管理系统
  2. 台式机设成仅计算机,将台式机更改为笔记本,将笔记本电脑更改为台式机
  3. 阿卡索口语学习(Learn And Talk 0)短语及单词(二)
  4. Codeforces Gym 100015H Hidden Code(暴力)
  5. 三星s8自带测试硬件软件,屏幕素质测试 三星S8表现较好_手机评测-中关村在线...
  6. Java实现读Chuck数据
  7. 在图形用户登录界面输入正确用户名与密码后,闪了一下(即将要登录进去那一刹那),它NND给我蹦出来了!
  8. iphone7一晚上掉电50%_苹果7待机一晚掉电多少
  9. 《阴阳师》RPG游戏体验报告
  10. RTX客户端插件开发 for Delphi XE6 (一)