目录标题

  • 1.前言(闲话)
  • 2.硬件连接
  • 3.软件代码———OpenMV端
  • 4.软件代码———STM32端
  • 5.利用PC端测试数据数据是否发送接收正常
  • 6.学习补充 (代码看不懂的时候可以来看一下)
  • 7.效果展示(可以先来看效果)
  • 8.博客更新
  • 9.参考链接
  • 10.完整版代码链接

1.前言(闲话)

最近在做电磁炮,发现题目需要用到颜色跟踪,于是花了一点时间学了一下OpenMV,只学习OpenMV是远远不够的,还需要实现与单片机的通信,本以为很简单,在CSDN上找了一些代码,直接拿来修改粘贴,把代码看明白了,这些只花了几个小时,本以为自己已经弄明白了二者之间的通信,但是在后期把OpenMV端数据传输到单片机的时候却犯了难。我选择使用OLED显示传输的数据,在这里调试了许久,中间遇到了许多之前的学习漏洞,特在此写下博客记录学习经历。*


2.硬件连接

我所用到的材料如下: 四针IIC OLED,OpenMV(OV7725),STM32F103C8T6最小系统板,数据线N条(OpenMV的数据线只能用官方自带的,其他的基本都用不了),杜邦线若干。

1.OpenMV端:由图知UART_RX—P5 ------ UART_TX—P4

2.STM32端:USART_TX—PA9 -----USART_RX—PA10
3.四针OLED IIC连接:SDA—PA2-----SCL—PA1 由于使用的是模拟IIC而不是硬件IIC,可以根据个人需要修改IO口来控制SDA线和SCL线,只需要简单修改一下代码即可。
4.STM32的TX(RX)接OpenMV的RX(TX),OLED连接到STM32即可。


3.软件代码———OpenMV端

import sensor, image, time,math,pyb
from pyb import UART,LED
import json
import ustructsensor.reset()
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA)
sensor.skip_frames(time = 2000)
sensor.set_auto_gain(False) # must be turned off for color tracking
sensor.set_auto_whitebal(False) # must be turned off for color tracking
red_threshold_01=(10, 100, 127, 32, -43, 67)
clock = time.clock()uart = UART(3,115200)   #定义串口3变量
uart.init(115200, bits=8, parity=None, stop=1) # init with given parametersdef find_max(blobs):    #定义寻找色块面积最大的函数max_size=0for blob in blobs:if blob.pixels() > max_size:max_blob=blobmax_size = blob.pixels()return max_blobdef sending_data(cx,cy,cw,ch):global uart;#frame=[0x2C,18,cx%0xff,int(cx/0xff),cy%0xff,int(cy/0xff),0x5B];#data = bytearray(frame)data = ustruct.pack("<bbhhhhb",      #格式为俩个字符俩个短整型(2字节)0x2C,                      #帧头10x12,                      #帧头2int(cx), # up sample by 4   #数据1int(cy), # up sample by 4    #数据2int(cw), # up sample by 4    #数据1int(ch), # up sample by 4    #数据20x5B)uart.write(data);   #必须要传入一个字节数组while(True):clock.tick()img = sensor.snapshot()blobs = img.find_blobs([red_threshold_01])cx=0;cy=0;if blobs:max_b = find_max(blobs)#如果找到了目标颜色cx=max_b[5]cy=max_b[6]cw=max_b[2]ch=max_b[3]img.draw_rectangle(max_b[0:4]) # rectimg.draw_cross(max_b[5], max_b[6]) # cx, cyFH = bytearray([0x2C,0x12,cx,cy,cw,ch,0x5B])#sending_data(cx,cy,cw,ch)uart.write(FH)print(cx,cy,cw,ch)

bytearray([, , ,])组合uart.write()的作用与直接调用sending_data(cx,cy,cw,ch)作用是一样的


4.软件代码———STM32端

工程总共包含如下文件:main.c、iic.c、iic.h、oled.c、oled.h、uart.c、uart.h。由于OLED的代码存在版权问题,需要的可以邮箱私发。

/***** oled.h *****/

#ifndef __USART_H
#define __USART_H
#include "sys.h"
void USART1_Init(void);//串口1初始化并启动
#endif

/***** oled.c *****/

#include "uart.h"
#include "oled.h"
#include "stdio.h"static u8 Cx=0,Cy=0,Cw=0,Ch=0;void USART1_Init(void)
{//USART1_TX:PA 9   //USART1_RX:PA10GPIO_InitTypeDef GPIO_InitStructure;     //串口端口配置结构体变量USART_InitTypeDef USART_InitStructure;   //串口参数配置结构体变量NVIC_InitTypeDef NVIC_InitStructure;     //串口中断配置结构体变量RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE);    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);   //打开PA端口时钟//USART1_TX   PA9GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;                //PA9GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;         //设定IO口的输出速度为50MHzGPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;          //复用推挽输出GPIO_Init(GPIOA, &GPIO_InitStructure);                      //初始化PA9//USART1_RX      PA10GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;             //PA10GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;  //浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);                 //初始化PA10 //USART1 NVIC 配置NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0 ;  //抢占优先级0NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2;         //子优先级2NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;                                                  //IRQ通道使能NVIC_Init(&NVIC_InitStructure);                             //根据指定的参数初始化VIC寄存器//USART 初始化设置USART_InitStructure.USART_BaudRate = 115200;                  //串口波特率为115200USART_InitStructure.USART_WordLength = USART_WordLength_8b;   //字长为8位数据格式USART_InitStructure.USART_StopBits = USART_StopBits_1;        //一个停止位USART_InitStructure.USART_Parity = USART_Parity_No;           //无奇偶校验位USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;   //无硬件数据流控制USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;                    //收发模式USART_Init(USART1, &USART_InitStructure);                     //初始化串口1USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); //使能中断USART_Cmd(USART1, ENABLE);                     //使能串口1USART_ClearFlag(USART1, USART_FLAG_TC);        //清串口1发送标志}//USART1 全局中断服务函数
void USART1_IRQHandler(void)
{u8 com_data; u8 i;static u8 RxCounter1=0;static u16 RxBuffer1[10]={0};static u8 RxState = 0;    static u8 RxFlag1 = 0;if( USART_GetITStatus(USART1,USART_IT_RXNE)!=RESET)        //接收中断  {USART_ClearITPendingBit(USART1,USART_IT_RXNE);   //清除中断标志com_data = USART_ReceiveData(USART1);if(RxState==0&&com_data==0x2C)  //0x2c帧头{RxState=1;RxBuffer1[RxCounter1++]=com_data;OLED_Refresh();}else if(RxState==1&&com_data==0x12)  //0x12帧头{RxState=2;RxBuffer1[RxCounter1++]=com_data;}else if(RxState==2){RxBuffer1[RxCounter1++]=com_data;if(RxCounter1>=10||com_data == 0x5B)       //RxBuffer1接受满了,接收数据结束{RxState=3;RxFlag1=1;Cx=RxBuffer1[RxCounter1-5];Cy=RxBuffer1[RxCounter1-4];Cw=RxBuffer1[RxCounter1-3];Ch=RxBuffer1[RxCounter1-2];}}else if(RxState==3)        //检测是否接受到结束标志{if(RxBuffer1[RxCounter1-1] == 0x5B){USART_ITConfig(USART1,USART_IT_RXNE,DISABLE);//关闭DTSABLE中断if(RxFlag1){OLED_Refresh();OLED_ShowNum(0, 0,Cx,3,16,1);OLED_ShowNum(0,17,Cy,3,16,1);OLED_ShowNum(0,33,Cw,3,16,1);OLED_ShowNum(0,49,Ch,3,16,1);}RxFlag1 = 0;RxCounter1 = 0;RxState = 0;USART_ITConfig(USART1,USART_IT_RXNE,ENABLE);}else   //接收错误{RxState = 0;RxCounter1=0;for(i=0;i<10;i++){RxBuffer1[i]=0x00;      //将存放数据数组清零}}} else   //接收异常{RxState = 0;RxCounter1=0;for(i=0;i<10;i++){RxBuffer1[i]=0x00;      //将存放数据数组清零}}}}

解释:OpenMV发送数据包给STM32,STM32利用中断接收数据并把数据存放在RxBuffer1这个数组里,并且在中断中利用OLED显示cx,cy,cw,ch四个坐标。在中断中,有如下函数:

else if(RxState==2){RxBuffer1[RxCounter1++]=com_data;if(RxCounter1>=10||com_data == 0x5B)       //RxBuffer1接受满了,接收数据结束{RxState=3;RxFlag1=1;Cx=RxBuffer1[RxCounter-5];Cy=RxBuffer1[RxCounter-4];Cw=RxBuffer1[RxCounter-3];Ch=RxBuffer1[RxCounter1-2];}}

RxBuffer1是一个装有接收OpenMV数据的数组,RxCounter1起着一个计数器的作用,当RxBuffer[RxCounter1-1]存放的数据为数据包的帧位时,说明已经接收成功整个数据包,此时RxBuffer[RxCounter1-2]存放ch坐标值,RxBuffer[RxCounter1-3]存放cw坐标值,RxBuffer[RxCounter1-4]存放cy坐标值,RxBuffer[RxCounter1-5]存放cx坐标值,此后在RxState=3过程中将这四个坐标显示出来即可。
特别注意的是:STM32中断每发生一次,只会接收到一字节的数据,因此,进行七次才会接收完一整帧的数据包,这一点需要读者仔细揣摩,结合上文中说的静态变量关键字static,定义了:

u8 com_data;
u8 i;
static u8 RxCounter1=0;
static u8 RxBuffer1[10]={0};
static u8 RxState = 0;
static u8 RxFlag1 = 0;

请读者仔细揣摩为什么com_data(端口接收到的数据)、i定义的是动态的(auto),而RxBuffer1(装接收到数据的静态全局数组)、RxState(状态标志变量)、RxFlag1(接受结束标志变量)定义的确实静态的,这一点并不难理解。


5.利用PC端测试数据数据是否发送接收正常

在进行OpenMV与STM32的通信测试过程中,我使用了USB转TTL模块,将OpenMV(或STM32单片机)与PC端进行通信确保数据发出或者接收正常。
OpenMV&&PC
OpenMV_RX接模块TX
OpenMV_TX接模块RX
OpenMV_GND接模块GND
然后打开OpenMV,在大循环while(True)中使用语句:

DATA=bytearray[(1,2,3,4,5)]
uart.write(DATA)

打开PC端串口助手,注意设置一样的波特率、停止位、发送字节数等,查看串口助手是否接受到了数据。
STM32&&PC
STM32_RX接模块TX
STM32_TX接模块RX
STM32_GND接模块GND
注意:不管是STM32与PC还是OpenMV与PC还是STM32与OpenMV通信,都要将二者的GND连接在一起。
在main.c中先调用stdio头文件,大循环中使用如下语句:

while(1)
{printf("HelloWorld!");
}

打开串口助手查看是否接收到了数据。


6.学习补充 (代码看不懂的时候可以来看一下)

补充1:static关键字(静态变量)的使用

static 修饰全局函数和全局变量,只能在本源文件使用。举个例子,比如用以下语句static u8 RxBuffer[10] 定义了一个名为RxBuffer的静态数组,数组元素类型为unsigned char型。在包含Rxbuffer的源文件中,Rxbuffer相当于一个全局变量,任意地方修改RxBuffer的值,RxBuffer都会随之改变。而且包含RxBuffer的函数在多次运行后RxBuffer的值会一直保存(除非重新赋值)。在C语言学习中,利用static关键字求阶乘是一个很好的例子:

#include“stdio.h”
long fun(int n);
void main()
{int i,n;printf("input the value of n:");scanf("%d",&n);for(i=1;i<=n;i++){printf("%d! = %1d\n",i,fun(i));}
}
>long fun(int n)
{static long p=1; p=p*n;return p;
}

效果为依次输出n!(n=1,2,3…n)
这个例子中,第一次p的值为1,第二次p的值变成了p x n=1 x 2=2,这个值会一直保存,如果p没有定义为静态类型,那么在第一次运算过后p的值会重新被赋值为1,这就是auto型(不声明默认为auto型)与static型的最大区别。

总结:static关键字定义的变量是全局变量,在static所包含的函数多次运行时,该变量不会被多次初始化,只会初始化一次。

补充2:extern关键字(外部变量)的使用

程序的编译单位是源程序文件,一个源文件可以包含一个或若干个函数。在函数内定义的变量是局部变量,而在函数之外定义的变量则称为外部变量,外部变量也就是我们所讲的全局变量。它的存储方式为静态存储,其生存周期为整个程序的生存周期。全局变量可以为本文件中的其他函数所共用,它的有效范围为从定义变量的位置开始到本源文件结束。
如果整个工程由多个源文件组成,在一个源文件中想引用另外一个源文件中已经定义的外部变量,同样只需在引用变量的文件中用 extern 关键字加以声明即可。下面就来看一个多文件的示例:

/****max.c****/
#include <stdio.h>
/*外部变量声明*/
extern int g_X ;
extern int g_Y ;
int max()
{return (g_X > g_Y ? g_X : g_Y);
}
/***main.c****/
#include <stdio.h>
/*定义两个全局变量*/
int g_X=10;
int g_Y=20;
int max();
int main(void)
{int result;result = max();printf("the max value is %d\n",result);return 0;
}
运行结果为:
the max value is 20

对于多个文件的工程,都可以采用上面这种方法来操作。对于模块化的程序文件,可在其文件中预先留好外部变量的接口,也就是只采用 extern 声明变量,而不定义变量,max.c 文件中的 g_X 与 g_Y 就是如此操作的。比如想要在主函数中调用usart.c中的变量x,usart.c中有着这样的定义:static u8 x=0在usart.h中可以这样写:extern u8 x在main.c中包含usart.h头文件,这样在编译的时候就会在main.c中调用x外部变量。

总结:extern关键字是外部变量,静态类型的全局变量,可以在源文件中调用其他文件中的变量,在多文件工程中配合头文件使用。

补充3:MicroPython一些库函数的解释

1.ustruct.pack函数:
import ustruct,在ustruct中

data = ustruct.pack("<bbhhhhb",      #格式为俩个字符俩个短整型(2字节)0x2C,                      #帧头10x12,                      #帧头2int(cx), # up sample by 4   #数据1int(cy), # up sample by 4    #数据2int(cw), # up sample by 4    #数据1int(ch), # up sample by 4    #数据20x5B)

""bbhhhhb"简单来说就是要发送数据的声明,bbhhhhb共七个,代表发送七个数据,对照下面的表,可以知道七个数据按时序发送为unsigner char、unsigned char、short、short、short、short、unsigned char。0x2c为数据帧的帧头,即检测到数据流的开始,但是一个帧头可能会出现偶然性,因此设置两个帧头0x2c与0x12以便在中断中检测是否检测到了帧头以便存放有用数据。0x5b为帧尾,即数据帧结束的标志。

2.bytearray([ , , , ])函数:
用于把十六进制数据以字节形式存放到字节数组中,以便以数据帧的形式发送出去进行通信。

FH = bytearray([0x2C,0x12,cx,cy,cw,ch,0x5B])
uart,write(FH)

7.效果展示(可以先来看效果)

从上到下依次为CX,CY,CW,CH


8.博客更新

1.有朋友反馈OpenMv端找不到色块就会报错,解决方案如下:

while(True):clock.tick()img = sensor.snapshot()blobs = img.find_blobs([red_threshold_01])cx=0;cy=0;if blobs:max_b = find_max(blobs)#如果找到了目标颜色cx=max_b[5]cy=max_b[6]cw=max_b[2]ch=max_b[3]img.draw_rectangle(max_b[0:4]) # rectimg.draw_cross(max_b[5], max_b[6]) # cx, cyFH = bytearray([0x2C,0x12,cx,cy,cw,ch,0x5B])#sending_data(cx,cy,cw,ch)uart.write(FH)print(cx,cy,cw,ch)

在以上代码中,将max_b = find_max(blobs) 移到if blobs外即可


2.有朋友反馈OpenMV发送数据只能发送一个字节,也就是说大于255的数据无法直接通过代码完成,现在提供以下解决方案:在STM32端代码中依次保存大于255数字的高八位和低八位最后在组合在一起即可。
2021/9/15更新 4字节与浮点数之间的转换(参考)

#if 1
int main()
{#if 0//字符型数据分成四个字节存放在数组中float m = 23.25;unsigned char *a;a = (unsigned char *)&m;printf("0x%x \n0x%x \n0x%x \n0x%x \n",a[0],a[1],a[2],a[3]);#endif#if 1//四个字节数据合成存放在数组中unsigned char a[]={0x00,0x00,0xba,0x41};float BYTE;BYTE = *(float *)&a;printf("%f\n",BYTE);#endif
}
#endif

上述代码实现了将四个字节转换为一个浮点数的功能,同时也实现了将一个浮点数拆分为四个字节功能。在Openmv传数据时,只能传输一个字节,大于255的数无法以一字节形式发送,因此可以在Openmv端将该数据拆分成两个字节,分别发送给Stm32端,同时Stm32端对传来的数据进行合成,合成并解析为对应的数据。
另一种解决方案:python传数据的1/2,单片机在乘2即可。


9.参考链接

[1]extern外部变量参考链接
[2]星瞳科技OpenMV中文参考手册官方
[3]MicroPython函数库


10.完整版代码链接

完整版代码链接(点赞收藏免费哦)

免费啦
链接:https://pan.baidu.com/s/1rCocKyECcyssLqFs3xWlvA
提取码:hsg6


最新博客:《陀螺仪MPU6050模块输出姿态角》
最新博客:《HC-SR04超声波测距模块》
欢迎大家浏览支持!


超详细OpenMV与STM32单片机通信 (有完整版源码)相关推荐

  1. openmv和stm32串口通信完成二维码识别

    openmv和stm32串口通信完成二维码识别 文章目录 前言 一.所用的硬件: 二.openmv端 2.stm32端 总结 前言 注:我只是个大一的小白,本文只完成基本功能,希望能帮助有困惑的人(我 ...

  2. python实现STM32单片机通信

    python实现STM32单片机通信 注意事项 注意事项 Python3中的encode('unicode-escape')和encode('raw_unicode_escape')区别与联系 htt ...

  3. 单片机 stm32 差分升级 增量升级算法源码, 纯c编写跨平因为是程序源码

    单片机 stm32 差分升级 增量升级算法源码, 纯c编写跨平因为是程序源码 IAP升级 OTA升级 物联网 车联网 适用 YID:83500653978935134Deflag

  4. 单片机 stm32 差分升级 增量升级算法源码,纯c编写跨平因为是程序源码

    单片机 stm32 差分升级 增量升级算法源码,纯c编写跨平因为是程序源码 IAP升级 OTA升级 物联网 车联网 适用 现有:69500653978935134Deflag

  5. 单片机 stm32 差分升级 增量升级算法源码,提供移植 纯c编写跨平因为是程序源码

    单片机 stm32 差分升级 增量升级算法源码,提供移植 纯c编写跨平因为是程序源码 IAP升级 OTA升级 物联网 车联网 适用 YID:83500653978935134Deflag

  6. 单片机 stm32 差分升级 增量升级算法源码

    单片机 stm32 差分升级 增量升级算法源码,提供移植 纯c编写跨平因为是程序源码 IAP升级 OTA升级 物联网 车联网 适用 YID:83500653978935134Deflag

  7. Modbus RTU 51单片机从机源码与组态软件通信支持485和232串口通信,该从机源码可直接用于51系列和STC12系列单片机的

    Modbus RTU 51单片机从机源码与组态软件通信支持485和232串口通信,该从机源码可直接用于51系列和STC12系列单片机的,支持功能码01,02,03,04,05,06,0F,10等常用功 ...

  8. 基于51单片机运行RTX51 Tiny操作系统源码模板之1.LED闪烁

    什么是RTX51 Tiny: RTX51 Tiny是一种实时操作系统(RTOS),可以用它来建立多个任务(函数)同时执行的应用.能灵活的调度系统资源,像CPU和存储器,并且提供任务间的通信.RTX51 ...

  9. 超大气APP下载页双语多国语言网站源码

    介绍: 超大气APP下载页双语多国语言网站源码,自带4国语言源码,界面高端大气适合做软件下载页面! 解压下载修改下载链接,上传根目录即可使用! 网盘下载地址: http://kekewl.cc/NaX ...

最新文章

  1. 卷积核输出特征图大小的计算 深度学习
  2. Binary Gap(二进制空白)
  3. Android OpenGL ES 开发教程(20):颜色Color
  4. 20211108 微分跟踪器
  5. 题解 P5259【欧稳欧再次学车】
  6. python最优调配问题_Python实现的基于优先等级分配糖果问题算法示例
  7. 《Linux内核设计与实现》课本第十八章自学笔记——20135203齐岳
  8. rapidminer进行关联分析、分类预测、聚类分析
  9. 微信小程序项目-出租屋管理系统
  10. android 开源 音乐播放器,Android 开源在线音乐播放器
  11. CV笔记5:图像分割之最大类间方差法、自适应阈值分割(基于python-opencv实现)
  12. hex文件、bin文件、axf文件的区别
  13. 线性回归——多重共线性
  14. Wordpress关闭所有评论
  15. 哪吒2之大闹东海电影项目亮点怎么样?
  16. UY_ELI, EL社区app
  17. IOS之 UITableview的简单使用
  18. 论坛E-R图的思路及绘图,软件程序开发流程
  19. Sybil_attack (女巫攻击)
  20. 【python】7-10 将输入的字符串中的字符头尾间隔输出(PTA)

热门文章

  1. zookeeper配置文件
  2. wps拼写检查词典下载_如何从谷歌浏览器拼写词典中删除单词
  3. 欢迎进入皮皮猫的博客
  4. 60页PPT下载 |《2020年中国新基建产业报告》
  5. 作为程序员的思考与反省
  6. 雷军做程序员时写的博客,很强大!
  7. 怎么修复恢复佳能相机0字节DAT视频文件
  8. (LI论文)LIO-Mapping:Tightly Coupled 3D Lidar Inertial Odometry and Mapping
  9. 利用API实现获取城市的天气预报信息和给指定手机号码发送验证码——基于Java
  10. 商品增加库存功能,前端页面要求显示表单修改库存(二)