【JAVA】虚拟机指令集

0x00 nop 什么都不做
0x01 aconst_null 将null推送至栈顶
0x02 iconst_m1 将int型-1推送至栈顶
0x03 iconst_0 将int型0推送至栈顶
0x04 iconst_1 将int型1推送至栈顶
0x05 iconst_2 将int型2推送至栈顶
0x06 iconst_3 将int型3推送至栈顶
0x07 iconst_4 将int型4推送至栈顶
0x08 iconst_5 将int型5推送至栈顶
0x09 lconst_0 将long型0推送至栈顶
0x0a lconst_1 将long型1推送至栈顶
0x0b fconst_0 将float型0推送至栈顶
0x0c fconst_1 将float型1推送至栈顶
0x0d fconst_2 将float型2推送至栈顶
0x0e dconst_0 将do le型0推送至栈顶
0x0f dconst_1 将do le型1推送至栈顶
0x10 bipush 将单字节的常量值(-128~127)推送至栈顶
0x11 sipush 将一个短整型常量值(-32768~32767)推送至栈顶
0x12 ldc 将int, float或String型常量值从常量池中推送至栈顶
0x13 ldc_w 将int, float或String型常量值从常量池中推送至栈顶(宽索引)
0x14 ldc2_w 将long或do le型常量值从常量池中推送至栈顶(宽索引)
0x15 iload 将指定的int型本地变量推送至栈顶
0x16 lload 将指定的long型本地变量推送至栈顶
0x17 fload 将指定的float型本地变量推送至栈顶
0x18 dload 将指定的do le型本地变量推送至栈顶
0x19 aload 将指定的引用类型本地变量推送至栈顶
0x1a iload_0 将第一个int型本地变量推送至栈顶
0x1b iload_1 将第二个int型本地变量推送至栈顶
0x1c iload_2 将第三个int型本地变量推送至栈顶
0x1d iload_3 将第四个int型本地变量推送至栈顶
0x1e lload_0 将第一个long型本地变量推送至栈顶
0x1f lload_1 将第二个long型本地变量推送至栈顶
0x20 lload_2 将第三个long型本地变量推送至栈顶
0x21 lload_3 将第四个long型本地变量推送至栈顶
0x22 fload_0 将第一个float型本地变量推送至栈顶
0x23 fload_1 将第二个float型本地变量推送至栈顶
0x24 fload_2 将第三个float型本地变量推送至栈顶
0x25 fload_3 将第四个float型本地变量推送至栈顶
0x26 dload_0 将第一个do le型本地变量推送至栈顶
0x27 dload_1 将第二个do le型本地变量推送至栈顶
0x28 dload_2 将第三个do le型本地变量推送至栈顶
0x29 dload_3 将第四个do le型本地变量推送至栈顶
0x2a aload_0 将第一个引用类型本地变量推送至栈顶
0x2b aload_1 将第二个引用类型本地变量推送至栈顶
0x2c aload_2 将第三个引用类型本地变量推送至栈顶
0x2d aload_3 将第四个引用类型本地变量推送至栈顶
0x2e iaload 将int型数组指定索引的值推送至栈顶
0x2f laload 将long型数组指定索引的值推送至栈顶
0x30 faload 将float型数组指定索引的值推送至栈顶
0x31 daload 将do le型数组指定索引的值推送至栈顶
0x32 aaload 将引用型数组指定索引的值推送至栈顶
0x33 baload 将boolean或byte型数组指定索引的值推送至栈顶
0x34 caload 将char型数组指定索引的值推送至栈顶
0x35 saload 将short型数组指定索引的值推送至栈顶
0x36 istore 将栈顶int型数值存入指定本地变量
0x37 lstore 将栈顶long型数值存入指定本地变量
0x38 fstore 将栈顶float型数值存入指定本地变量
0x39 dstore 将栈顶do le型数值存入指定本地变量
0x3a astore 将栈顶引用型数值存入指定本地变量
0x3b istore_0 将栈顶int型数值存入第一个本地变量
0x3c istore_1 将栈顶int型数值存入第二个本地变量
0x3d istore_2 将栈顶int型数值存入第三个本地变量
0x3e istore_3 将栈顶int型数值存入第四个本地变量
0x3f lstore_0 将栈顶long型数值存入第一个本地变量
0x40 lstore_1 将栈顶long型数值存入第二个本地变量
0x41 lstore_2 将栈顶long型数值存入第三个本地变量
0x42 lstore_3 将栈顶long型数值存入第四个本地变量
0x43 fstore_0 将栈顶float型数值存入第一个本地变量
0x44 fstore_1 将栈顶float型数值存入第二个本地变量
0x45 fstore_2 将栈顶float型数值存入第三个本地变量
0x46 fstore_3 将栈顶float型数值存入第四个本地变量
0x47 dstore_0 将栈顶do le型数值存入第一个本地变量
0x48 dstore_1 将栈顶do le型数值存入第二个本地变量
0x49 dstore_2 将栈顶do le型数值存入第三个本地变量
0x4a dstore_3 将栈顶do le型数值存入第四个本地变量
0x4b astore_0 将栈顶引用型数值存入第一个本地变量
0x4c astore_1 将栈顶引用型数值存入第二个本地变量
0x4d astore_2 将栈顶引用型数值存入第三个本地变量
0x4e astore_3 将栈顶引用型数值存入第四个本地变量
0x4f iastore 将栈顶int型数值存入指定数组的指定索引位置
0x50 lastore 将栈顶long型数值存入指定数组的指定索引位置
0x51 fastore 将栈顶float型数值存入指定数组的指定索引位置
0x52 dastore 将栈顶do le型数值存入指定数组的指定索引位置
0x53 aastore 将栈顶引用型数值存入指定数组的指定索引位置
0x54 bastore 将栈顶boolean或byte型数值存入指定数组的指定索引位置
0x55 castore 将栈顶char型数值存入指定数组的指定索引位置
0x56 sastore 将栈顶short型数值存入指定数组的指定索引位置
0x57 pop 将栈顶数值弹出 (数值不能是long或do le类型的)
0x58 pop2 将栈顶的一个(long或do le类型的)或两个数值弹出(其它)
0x59 dup 复制栈顶数值并将复制值压入栈顶
0x5a dup_x1 复制栈顶数值并将两个复制值压入栈顶
0x5b dup_x2 复制栈顶数值并将三个(或两个)复制值压入栈顶
0x5c dup2 复制栈顶一个(long或do le类型的)或两个(其它)数值并将复制值压入栈顶
0x5d dup2_x1 <待补充>
0x5e dup2_x2 <待补充>
0x5f swap 将栈最顶端的两个数值互换(数值不能是long或do le类型的)
0x60 iadd 将栈顶两int型数值相加并将结果压入栈顶
0x61 ladd 将栈顶两long型数值相加并将结果压入栈顶
0x62 fadd 将栈顶两float型数值相加并将结果压入栈顶
0x63 dadd 将栈顶两do le型数值相加并将结果压入栈顶
0x64 is 将栈顶两int型数值相减并将结果压入栈顶
0x65 ls 将栈顶两long型数值相减并将结果压入栈顶
0x66 fs 将栈顶两float型数值相减并将结果压入栈顶
0x67 ds 将栈顶两do le型数值相减并将结果压入栈顶
0x68 imul 将栈顶两int型数值相乘并将结果压入栈顶
0x69 lmul 将栈顶两long型数值相乘并将结果压入栈顶
0x6a fmul 将栈顶两float型数值相乘并将结果压入栈顶
0x6b dmul 将栈顶两do le型数值相乘并将结果压入栈顶
0x6c idiv 将栈顶两int型数值相除并将结果压入栈顶
0x6d ldiv 将栈顶两long型数值相除并将结果压入栈顶
0x6e fdiv 将栈顶两float型数值相除并将结果压入栈顶
0x6f ddiv 将栈顶两do le型数值相除并将结果压入栈顶
0x70 irem 将栈顶两int型数值作取模运算并将结果压入栈顶
0x71 lrem 将栈顶两long型数值作取模运算并将结果压入栈顶
0x72 frem 将栈顶两float型数值作取模运算并将结果压入栈顶
0x73 drem 将栈顶两do le型数值作取模运算并将结果压入栈顶
0x74 ineg 将栈顶int型数值取负并将结果压入栈顶
0x75 lneg 将栈顶long型数值取负并将结果压入栈顶
0x76 fneg 将栈顶float型数值取负并将结果压入栈顶
0x77 dneg 将栈顶do le型数值取负并将结果压入栈顶
0x78 ishl 将int型数值左移位指定位数并将结果压入栈顶
0x79 lshl 将long型数值左移位指定位数并将结果压入栈顶
0x7a ishr 将int型数值右(符号)移位指定位数并将结果压入栈顶
0x7b lshr 将long型数值右(符号)移位指定位数并将结果压入栈顶
0x7c iushr 将int型数值右(无符号)移位指定位数并将结果压入栈顶
0x7d lushr 将long型数值右(无符号)移位指定位数并将结果压入栈顶
0x7e iand 将栈顶两int型数值作“按位与”并将结果压入栈顶
0x7f land 将栈顶两long型数值作“按位与”并将结果压入栈顶
0x80 ior 将栈顶两int型数值作“按位或”并将结果压入栈顶
0x81 lor 将栈顶两long型数值作“按位或”并将结果压入栈顶
0x82 ixor 将栈顶两int型数值作“按位异或”并将结果压入栈顶
0x83 lxor 将栈顶两long型数值作“按位异或”并将结果压入栈顶
0x84 iinc 将指定int型变量增加指定值(i++, i–, i+=2)
0x85 i2l 将栈顶int型数值强制转换成long型数值并将结果压入栈顶
0x86 i2f 将栈顶int型数值强制转换成float型数值并将结果压入栈顶
0x87 i2d 将栈顶int型数值强制转换成do le型数值并将结果压入栈顶
0x88 l2i 将栈顶long型数值强制转换成int型数值并将结果压入栈顶
0x89 l2f 将栈顶long型数值强制转换成float型数值并将结果压入栈顶
0x8a l2d 将栈顶long型数值强制转换成do le型数值并将结果压入栈顶
0x8b f2i 将栈顶float型数值强制转换成int型数值并将结果压入栈顶
0x8c f2l 将栈顶float型数值强制转换成long型数值并将结果压入栈顶
0x8d f2d 将栈顶float型数值强制转换成do le型数值并将结果压入栈顶
0x8e d2i 将栈顶do le型数值强制转换成int型数值并将结果压入栈顶
0x8f d2l 将栈顶do le型数值强制转换成long型数值并将结果压入栈顶
0x90 d2f 将栈顶do le型数值强制转换成float型数值并将结果压入栈顶
0x91 i2b 将栈顶int型数值强制转换成byte型数值并将结果压入栈顶
0x92 i2c 将栈顶int型数值强制转换成char型数值并将结果压入栈顶
0x93 i2s 将栈顶int型数值强制转换成short型数值并将结果压入栈顶
0x94 lcmp 比较栈顶两long型数值大小,并将结果(1,0,-1)压入栈顶
0x95 fcmpl 比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶
0x96 fcmpg 比较栈顶两float型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶
0x97 dcmpl 比较栈顶两do le型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将-1压入栈顶
0x98 dcmpg 比较栈顶两do le型数值大小,并将结果(1,0,-1)压入栈顶;当其中一个数值为NaN时,将1压入栈顶
0x99 ifeq 当栈顶int型数值等于0时跳转
0x9a ifne 当栈顶int型数值不等于0时跳转
0x9b iflt 当栈顶int型数值小于0时跳转
0x9c ifge 当栈顶int型数值大于等于0时跳转
0x9d ifgt 当栈顶int型数值大于0时跳转
0x9e ifle 当栈顶int型数值小于等于0时跳转
0x9f if_icmpeq 比较栈顶两int型数值大小,当结果等于0时跳转
0xa0 if_icmpne 比较栈顶两int型数值大小,当结果不等于0时跳转
0xa1 if_icmplt 比较栈顶两int型数值大小,当结果小于0时跳转
0xa2 if_icmpge 比较栈顶两int型数值大小,当结果大于等于0时跳转
0xa3 if_icmpgt 比较栈顶两int型数值大小,当结果大于0时跳转
0xa4 if_icmple 比较栈顶两int型数值大小,当结果小于等于0时跳转
0xa5 if_acmpeq 比较栈顶两引用型数值,当结果相等时跳转
0xa6 if_acmpne 比较栈顶两引用型数值,当结果不相等时跳转
0xa7 goto 无条件跳转
0xa8 jsr 跳转至指定16位offset位置,并将jsr下一条指令地址压入栈顶
0xa9 ret 返回至本地变量指定的index的指令位置(一般与jsr, jsr_w联合使用)
0xaa tableswitch 用于switch条件跳转,case值连续(可变长度指令)
0xab lookupswitch 用于switch条件跳转,case值不连续(可变长度指令)
0xac ireturn 从当前方法返回int
0xad lreturn 从当前方法返回long
0xae freturn 从当前方法返回float
0xaf dreturn 从当前方法返回do le
0xb0 areturn 从当前方法返回对象引用
0xb1 return 从当前方法返回void
0xb2 getstatic 获取指定类的静态域,并将其值压入栈顶
0xb3 putstatic 为指定的类的静态域赋值
0xb4 getfield 获取指定类的实例域,并将其值压入栈顶
0xb5 putfield 为指定的类的实例域赋值
0xb6 invokevirt l 调用实例方法
0xb7 invokespecial 调用超类构造方法,实例初始化方法,私有方法
0xb8 invokestatic 调用静态方法
0xb9 invokeinterface 调用接口方法
0xba
0xbb new 创建一个对象,并将其引用值压入栈顶
0xbc newarray 创建一个指定原始类型(如int, float, char…)的数组,并将其引用值压入栈顶
0xbd anewarray 创建一个引用型(如类,接口,数组)的数组,并将其引用值压入栈顶
0xbe arraylength 获得数组的长度值并压入栈顶
0xbf athrow 将栈顶的异常抛出
0xc0 checkcast 检验类型转换,检验未通过将抛出ClassCastException
0xc1 instanceof 检验对象是否是指定的类的实例,如果是将1压入栈顶,否则将0压入栈顶
0xc2 monitorenter 获得对象的锁,用于同步方法或同步块
0xc3 monitorexit 释放对象的锁,用于同步方法或同步块
0xc4 wide <待补充>
0xc5 multianewarray 创建指定类型和指定维度的多维数组(执行该指令时,操作栈中必须包含各维度的长度值),并将其引用值压入栈顶
0xc6 ifnull 为null时跳转
0xc7 ifnonnull 不为null时跳转
0xc8 goto_w 无条件跳转(宽索引)
0xc9 jsr_w 跳转至指定32位offset位置,并将jsr_w下一条指令地址压入栈顶

JVM指令助记符

  • 变量到操作数栈:iload,iload_,lload,lload_,fload,fload_,dload,dload_,aload,aload_
  • 操作数栈到变量:istore,istore_,lstore,lstore_,fstore,fstore_,dstore,dstor_,astore,astore_
  • 常数到操作数栈:bipush,sipush,ldc,ldc_w,ldc2_w,aconst_null,iconst_ml,iconst_,lconst_,fconst_,dconst_
  • 加:iadd,ladd,fadd,dadd
  • 减:is ,ls ,fs ,ds
  • 乘:imul,lmul,fmul,dmul
  • 除:idiv,ldiv,fdiv,ddiv
  • 余数:irem,lrem,frem,drem
  • 取负:ineg,lneg,fneg,dneg
  • 移位:ishl,lshr,iushr,lshl,lshr,lushr
  • 按位或:ior,lor
  • 按位与:iand,land
  • 按位异或:ixor,lxor
  • 类型转换:i2l,i2f,i2d,l2f,l2d,f2d(放宽数值转换)
    i2b,i2c,i2s,l2i,f2i,f2l,d2i,d2l,d2f(缩窄数值转换)

  • 创建类实便:new

  • 创建新数组:newarray,anewarray,multianwarray
  • 访问类的域和类实例域:getfield,putfield,getstatic,putstatic
  • 把数据装载到操作数栈:baload,caload,saload,iaload,laload,faload,daload,aaload
  • 从操作数栈存存储到数组:bastore,castore,sastore,iastore,lastore,fastore,dastore,aastore
  • 获取数组长度:arraylength
  • 检相类实例或数组属性:instanceof,checkcast
  • 操作数栈管理:pop,pop2,dup,dup2,dup_xl,dup2_xl,dup_x2,dup2_x2,swap
  • 有条件转移:ifeq,iflt,ifle,ifne,ifgt,ifge,ifnull,ifnonnull,if_icmpeq,if_icmpene,
    if_icmplt,if_icmpgt,if_icmple,if_icmpge,if_acmpeq,if_acmpne,lcmp,fcmpl
    fcmpg,dcmpl,dcmpg
  • 复合条件转移:tableswitch,lookupswitch
  • 无条件转移:goto,goto_w,jsr,jsr_w,ret
  • 调度对象的实便方法:invokevirt l
  • 调用由接口实现的方法:invokeinterface
  • 调用需要特殊处理的实例方法:invokespecial
  • 调用命名类中的静态方法:invokestatic
  • 方法返回:ireturn,lreturn,freturn,dreturn,areturn,return
  • 异常:athrow
  • finally关键字的实现使用:jsr,jsr_w,ret

【javap】

-help
Prints out help message for javap.
-l
Prints out line and local variable tables.
-b
Ensures backward compatibility with javap in JDK 1.1.
-p lic
Shows only p lic classes and members.
-protected
Shows only protected and p lic classes and members.
-package
Shows only package, protected, and p lic classes and members. This is the default.
-private
Shows all classes and members.
-Jflag
Pass flag directly to the runtime system. Some examples:

javap -J-version  javap -J-Djava.security.manager -J-Djava.security.policy=MyPolicy MyClassName

-s
Prints internal type signatures.
-c
Prints out disassembled code, i.e., the instr tions that comprise the Java bytecodes, for each of the methods in the class. These are documented in the Java Virt l Machine Specification.
-verbose
Prints stack size, number of
locals
and
args
for methods.
-classpath path
Specifies the path javap uses to look up classes. Overrides the default or the CLASSPATH environment variable if it is set. Directories are separated by semi-colons. Thus the general format for path is:

   .;<your_path>  For example:.;C:\usrs\dac\classes;C:\tools\java\classes

-bootclasspath path
Specifies path from which to load bootstrap classes. By default, the bootstrap classes are the classes implementing the core Java platform located in jre\lib\rt.jar and several other jar files.
-extdirs dirs
Overrides location at which installed extensions are searched for. The default location for extensions is the val of java.ext.dirs.

转载于:https://www.cnblogs.com/ss0xt/p/6667182.html

【JAVA】虚拟机指令集相关推荐

  1. java 虚拟机指令集_jvm规范-jvm虚拟指令集及编译

    第六章:jvm虚拟指令集 6.1假定:"必须"的含义 对于jvm指令的一些"必须"的要求,在运行期要求javaclass的结构是满足约束的,对于不满足约束的情况 ...

  2. [三] java虚拟机 JVM字节码 指令集 bytecode 操作码 指令分类用法 助记符

    说明,本文的目的在于从宏观逻辑上介绍清楚绝大多数的字节码指令的含义以及分类 只要认真阅读本文必然能够对字节码指令集有所了解 如果需要了解清楚每一个指令的具体详尽用法,请参阅虚拟机规范 指令简介 计算机 ...

  3. Java虚拟机规范(目录)

    Java虚拟机规范 Java SE 11 Edition 介绍 Java虚拟机介绍 Java虚拟机的结构 class文件格式 数据类型 原始类型和值 引用类型和值 运行时数据区 帧 对象的表示 浮点算 ...

  4. JVM规范系列第2章:Java虚拟机结构

    本规范描述的是一种抽象化的虚拟机的行为,而不是任何一种(译者注:包括 Oracle 公司自己的 HotSpot 和 JRockit 虚拟机)被广泛使用的虚拟机实现. 记住:JVM规范是一种高度抽象行为 ...

  5. java虚拟机规范这本书怎么样_JVM规范系列开篇:为什么要读JVM规范?

    博主个人独立站点开通啦!欢迎点击访问:https://shuyi.tech 许多人知道类加载机制.JVM内存模型,但他们可能不知道什么是<Java虚拟机规范>.对于Java开发来说,< ...

  6. 翻译Java虚拟机的结构

    英文原版:  https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html 直接谷歌翻译: Java SE规范 > Java虚拟机 ...

  7. 携程面试官问我怎么划分 Java 虚拟机内存区域,相见恨晚!

    看完记得一键三连哦,微信搜索[沉默王二]关注这个沉默但有点东西的小丑. 今天的标题绝非标题党,看下面这幅截图就明白了,读者真真的留言~ 在谈 JVM 内存区域划分之前,我们先来看一下 Java 程序的 ...

  8. 膜拜!阿里内部学习的五大深入理解Java虚拟机PDF,真的强

    前言 Java是目前用户最多.使用范围最广的软件开发技术,Java的技术体系主要由支撑Java程序运行的虚拟机.提供各开发领域接口支持的Java类库.Java编程语言及许许多多的第三方Java框架(如 ...

  9. 膜拜,阿里内部都在学习的五大深入理解Java虚拟机PDF,简直强无敌

    前言 Java是目前用户最多.使用范围最广的软件开发技术,Java的技术体系主要由支撑Java程序运行的虚拟机.提供各开发领域接口支持的Java类库.Java编程语言及许许多多的第三方Java框架(如 ...

  10. Java虚拟机 和 java虚拟机下的进程

    一.什么是Java虚拟机      当你谈到Java虚拟机时,你可能是指:      1.抽象的Java虚拟机规范      2.一个具体的Java虚拟机实现      3.一个运行的Java虚拟机实 ...

最新文章

  1. 137 Single Number II 数组中除了一个数外,其他的数都出现了三次,找出这个只出现一次的数...
  2. 版本管理器命令行总结
  3. SpringBoot实现注册时头像上传与下载
  4. (转)基于openlayers实现聚类统计展示
  5. java和c语言的区别_都说C语言不会过时,但你是否还需要掌握其他语言?
  6. Source Insight中的正则表达式和快捷键
  7. 我理解的Sentinel:时间窗统计
  8. 中国天气网 城市代号
  9. 如何选择家庭私有云NAS方案?家庭NAS存储服务器的重要性
  10. android加固!渣本毕业两年经验,终局之战
  11. 谷歌浏览器如何收藏网站 谷歌浏览器收藏网站的方法步骤
  12. 马云的至暗时刻:支付宝事件、十月围城 | 阿里巴巴20年
  13. [分享源码] 美女写真图片采集源码
  14. 网站动态背景线条跟随鼠标移动,吸附鼠标效果
  15. 微软windows7正版化(算你狠)授权过期解决方案
  16. 关于eMule下载伤硬盘的话题
  17. 学习-输入正整数m,判断m是否是素数
  18. 7-13 旭旭的交友标准PTA
  19. Ratione dicta accusantium iste iste natus.
  20. 树、二叉树、满二叉树、完全二叉树概念分清

热门文章

  1. 关联分析研究思路及应用:GWASTWAS
  2. linux系统awk、sed,Linux系统 linux awk sed
  3. 王益:分布式机器学习的故事
  4. 如何使用cmd进入打印机选项_用命令添加打印机
  5. android中的横幅通知
  6. while求和java,while语句基本练习(求和思想,统计思想)
  7. 【C++入门】C++ 继承和派生
  8. 非表单元素如何使用焦点事件
  9. recover/panic
  10. 红帽--RHCE你需要知道的些事情