本文罗列了最近放出来的关于深度强化学习(Deep Reinforcement Learning,DRL)的一些论文。文章采用人工定义的方式来进行组织,按照时间的先后进行排序,越新的论文,排在越前面。希望对大家有用,同时欢迎大家提交自己阅读过的论文。

目录

•    值函数相关的文章

•    策略相关的文章

•    离散控制相关的文章

•    连续控制相关的文章

•    文本处理领域相关的文章

•    计算机视觉领域相关的文章

•    机器人领域相关的文章

•    游戏领域相关的文章

•    蒙特卡洛树搜索相关的文章

•    逆强化学习相关的文章

•    搜索优化相关的文章

•    多任务和迁移学习相关的文章

•    多智能体相关的文章

•    层次化学习相关的文章

值函数相关的文章

  • Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
  • Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
  • Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
  • Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
  • Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
  • Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
  • Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
  • Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
  • Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
  • Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
  • Value Iteration Networks, A. Tamar et al., arXiv, 2016.
  • Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
  • Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
  • Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
  • Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
  • How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
  • Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
  • Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
  • Learning Simple Algorithms from Examples, W. Zaremba et al., arXiv, 2015.
  • Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
  • Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
  • Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
  • Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
  • Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
  • Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
  • Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
  • Recurrent Reinforcement Learning: A Hybrid Approach, X. Li et al., arXiv, 2015.
  • Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
  • Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
  • Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
  • Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
  • Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
  • Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
  • Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
  • Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.

策略相关的文章

  • Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
  • Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
  • Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
  • Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
  • Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
  • Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
  • Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
  • MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
  • ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
  • Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
  • Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
  • High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
  • End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
  • Deterministic Policy Gradient Algorithms, D. Silver et al., ICML, 2015.
  • Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.

离散控制相关的文章

  • Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
  • Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
  • Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
  • Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
  • Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
  • Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
  • Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
  • Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
  • Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
  • Value Iteration Networks, A. Tamar et al., arXiv, 2016.
  • Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
  • Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
  • Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
  • Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
  • How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
  • Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
  • Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
  • Learning Simple Algorithms from Examples, W. Zaremba et al., arXiv, 2015.
  • Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
  • Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
  • Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
  • Policy Distillation, A. A. Rusu et at., ICLR, 2016.
  • Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
  • Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
  • Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
  • Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
  • Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
  • ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
  • Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
  • Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
  • Recurrent Reinforcement Learning: A Hybrid Approach, X. Li et al., arXiv, 2015.
  • Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
  • Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
  • Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
  • Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
  • Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences, H. Mei et al., arXiv, 2015.
  • Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
  • Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
  • Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
  • Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
  • Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
  • Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.

连续控制相关的文章

  • Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
  • Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
  • Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
  • Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
  • Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
  • Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
  • Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
  • Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
  • Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
  • Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
  • Learning Deep Neural Network Policies with Continuous Memory States, M. Zhang et al., arXiv, 2015.
  • High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
  • End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
  • DeepMPC: Learning Deep Latent Features for Model Predictive Control, I. Lenz, et al., RSS, 2015.
  • Deterministic Policy Gradient Algorithms, D. Silver et al., ICML, 2015.
  • Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.

文本处理领域相关的文章

  • Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
  • MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
  • Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
  • Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
  • Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
  • Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences, H. Mei et al., arXiv, 2015.

计算机视觉领域相关的文章

  • Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
  • Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
  • Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
  • Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
  • Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
  • Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
  • Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
  • Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
  • Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
  • Value Iteration Networks, A. Tamar et al., arXiv, 2016.
  • Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
  • Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
  • Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
  • Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
  • How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
  • Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
  • Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
  • Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
  • Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
  • Policy Distillation, A. A. Rusu et at., ICLR, 2016.
  • Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
  • Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
  • Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
  • Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
  • Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
  • Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
  • Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
  • Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
  • Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
  • Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
  • Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
  • High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
  • End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
  • Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
  • Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
  • Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
  • Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
  • Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
  • Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.

机器人领域相关的文章

  • Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
  • Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
  • Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
  • Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
  • Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
  • Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
  • Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
  • Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
  • Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
  • Learning Deep Neural Network Policies with Continuous Memory States, M. Zhang et al., arXiv, 2015.
  • High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
  • End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
  • DeepMPC: Learning Deep Latent Features for Model Predictive Control, I. Lenz, et al., RSS, 2015.
  • Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.

游戏领域相关的文章

  • Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
  • Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
  • Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
  • Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
  • Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
  • Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
  • Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
  • Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
  • Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
  • Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
  • Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
  • Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
  • Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
  • How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
  • Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
  • MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
  • Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
  • Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
  • Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
  • Policy Distillation, A. A. Rusu et at., ICLR, 2016.
  • Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
  • Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
  • Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
  • Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
  • Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
  • Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
  • Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
  • Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
  • Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
  • Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
  • Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
  • Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
  • Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
  • Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
  • Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
  • Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
  • Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.

蒙特卡洛树搜索相关的文章

  • Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
  • Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
  • Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.

逆强化学习相关的文章

  • Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
  • Maximum Entropy Deep Inverse Reinforcement Learning, M. Wulfmeier et al., arXiv, 2015.

多任务和迁移学习相关的文章

  • Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
  • Policy Distillation, A. A. Rusu et at., ICLR, 2016.
  • ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
  • Universal Value Function Approximators, T. Schaul et al., ICML, 2015.

搜索优化相关的文章

  • Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
  • Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
  • Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
  • Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
  • Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
  • Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.

多智能体相关的文章

  • Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
  • Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.

层次化学习相关的文章

  • Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
  • Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
  • Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.

原文链接:https://github.com/junhyukoh/deep-reinforcement-learning-papers

更多深度学习在NLP方面应用的经典论文、实践经验和最新消息,欢迎关注微信公众号“深度学习与NLP”或“DeepLearning_NLP”或扫描二维码添加关注。

纯干货-5Deep Reinforcement Learning深度强化学习_论文大集合相关推荐

  1. 深度强化学习综述论文 A Brief Survey of Deep Reinforcement Learning

    A Brief Survey of Deep Reinforcement Learning 深度强化学习的简要概述 作者: Kai Arulkumaran, Marc Peter Deisenroth ...

  2. Deep Reinforcement Learning 深度增强学习资源

    http://blog.csdn.net/songrotek/article/details/50572935 1 学习资料 增强学习课程 David Silver (有视频和ppt): http:/ ...

  3. 论文学习:Decoupling Value and Policy for Generalization in Reinforcement Learning(强化学习中泛化的解耦价值和策略)

    摘要: Standard deep reinforcement learning algorithms use a shared representation for the policy and v ...

  4. 必看!52篇深度强化学习收录论文汇总 | AAAI 2020

    所有参与投票的 CSDN 用户都参加抽奖活动 群内公布奖项,还有更多福利赠送 来源 | 深度强化学习实验室(ID:Deep-RL) 作者 | DeepRL AAAI 2020 共收到的有效论文投稿超过 ...

  5. 深度强化学习_深度学习理论与应用第8课 | 深度强化学习

    本文是博雅大数据学院"深度学习理论与应用课程"第八章的内容整理.我们将部分课程视频.课件和讲授稿进行发布.在线学习完整内容请登录www.cookdata.cn 深度强化学习是一种将 ...

  6. AAAI-2020 || 52篇深度强化学习accept论文汇总

    深度强化学习实验室报道 来源:AAAI-2020 作者:DeepRL AAAI 2020 共收到的有效论文投稿超过 8800 篇,其中 7737 篇论文进入评审环节,最终收录数量为 1591 篇,收录 ...

  7. 【重磅整理】提前看287篇ICLR-2021 深度强化学习领域论文得分汇总列表

    深度强化学习实验室 来源:ICLR2021 编辑:DeepRL [1]. What Matters for On-Policy Deep Actor-Critic Methods? A Large-S ...

  8. 【论文相关】强化学习:提前看287篇ICLR-2021 深度强化学习领域论文得分汇总列表...

    深度强化学习实验室 来源:ICLR2021 编辑:DeepRL [1]. What Matters for On-Policy Deep Actor-Critic Methods? A Large-S ...

  9. 【论文解读】深度强化学习基石论文:函数近似的策略梯度方法

     导读:这篇是1999 年Richard Sutton 在强化学习领域中的经典论文,论文证明了策略梯度定理和在用函数近似 Q 值时策略梯度定理依然成立,本论文奠定了后续以深度强化学习策略梯度方法的基石 ...

最新文章

  1. error: No resource identifier found for attribute 'showAsAction' in package 'com.ymeng.项目名字'
  2. jQuery 技术揭秘
  3. 卷组删除pv_Linux LVM(逻辑卷管理)的删除
  4. java基础提升篇:synchronized同步块和volatile同步变量
  5. linux 如何查看应用程序进程号、端口
  6. python十大必备知识_学Python必备的基础知识
  7. forEach与map
  8. 蓝桥杯-----历届试题 小数第n位
  9. 资源 | 一网打尽成语歇后语,GitHub新华字典数据库
  10. 分叉币的发展史及价值|ETH、BCH、BSV 2020-03-08
  11. springMVC-RESTful约束下dispatcher拦截对象优化
  12. 记录一次浏览器HTTPS“你的连接不是私密连接”错误NET::ERR_CERT_REVOKED
  13. 【软件测试】资深测试聊一聊,测试架构师是怎么样的,做一名成功的测试工程师......
  14. PLSQL中的存储过程
  15. eclipse导入idea项目
  16. 简单实用的电梯停电报警电路_光电报警电子电路图讲解
  17. PyQt5 制作帮助文档查看器
  18. 上号神器,穿越火线扫码登录教程
  19. 计算机音乐我还是曾经那个少年,我还是曾经那个少年
  20. 关于printf与scanf的碎碎念

热门文章

  1. 不限空间大小 会赚钱的网盘 收益模式详解
  2. 入行大数据需要学习哪些编程语言
  3. UVa 1645 - Count(递推)
  4. 十万部冷知识:“沙特”为什么能赢“阿根廷”
  5. 程序启动,遇到Process finished with exit code 1 解决方法
  6. 1000kv电子加速后的速度
  7. c语言.jpg图片转成数组_基于 C 语言开发的 GUI 框架
  8. 无图形界面Linux安装chrome实现自动化测试
  9. git撤回上一次的提交
  10. 隐藏服务器header与web软件版本信息