B 树

B 树就是常说的“B 减树(B- 树)”,又名平衡多路(即不止两个子树)查找树,它和平衡二叉树的不同有这么几点:

  1. 平衡二叉树节点最多有两个子树,而 B 树每个节点可以有多个子树,M 阶 B 树表示该树每个节点最多有 M 个子树
  2. 平衡二叉树每个节点只有一个数据和两个指向孩子的指针,而 B 树每个中间节点有 k-1 个关键字(可以理解为数据)和 k 个子树( k介于阶数 M 和 M/2 之间,M/2 ⬆️向上取整)
  3. B 树的所有叶子节点都在同一层,并且叶子节点只有关键字,指向孩子的指针为 null

和平衡二叉树相同的点在于:B 树的节点数据大小也是按照左小右大,子树与节点的大小比较决定了子树指针所处位置。

看着概念可能有点难理解,来看看图对比下平衡二叉树和 B 树。

对比平衡二叉树和 B 树

首先是节点, 平衡二叉树的节点如下图所示,每个节点有一个数据和最多两个子树:

B 树中的每个节点由两部分组成:

  1. 关键字(可以理解为数据)
  2. 指向孩子节点的指针

B 树的节点如下图所示,每个节点可以有不只一个数据,同时拥有数据数加一个子树,同时每个节点左子树的数据比当前节点都小、右子树的数据都比当前节点的数据大:

上图是为了方便读者理解 B 树每个节点的内容,实际绘制图形还是以圆表示每个节点。

了解了节点的差异后,来看看 B 树的定义,一棵 B 树必须满足以下条件:

  1. 若根结点不是终端结点,则至少有2棵子树
  2. 除根节点以外的所有非叶结点至少有 M/2 ⬆️棵子树,至多有 M 个子树(关键字数为子树减一)
  3. 所有的叶子结点都位于同一层

用一张图对比平衡二叉树和 B 树:

可以看到,B 树的每个节点可以表示的信息更多,因此整个树更加“矮胖”,这在从磁盘中查找数据(先读取到内存、后查找)的过程中,可以减少磁盘 IO 的次数,从而提升查找速度

B 树中如何查找数据

因为 B 树的子树大小排序规则,因此在 B 树中查找数据时,一般需要这样:

  1. 从根节点开始,如果查找的数据比根节点小,就去左子树找,否则去右子树
  2. 和子树的多个关键字进行比较,找到它所处的范围,然后去范围对应的子树中继续查找
  3. 以此循环,直到找到或者到叶子节点还没找到为止

B 树如何保证平衡

我们知道,平衡的树之所以能够加快查找速度,是因为在添加、删除的时候做了某些操作以保证平衡。

平衡二叉树的平衡条件是:左右子树的高度差不大于 1;而 B 树的平衡条件则有三点:

  1. 叶子节点都在同一层
  2. 每个节点的关键字数为子树个数减一(子树个数 k 介于树的阶 M 和M的二分之一之间)
  3. 子树的关键字保证左小右大的顺序

也就是说,一棵 3 阶的 B 树(即节点最多有三个子树),每个节点的关键字数最少为 1,最多为 2,如果要添加数据的子树的关键字数已经是最多,就需要拆分节点,调整树的结构

网上找到一张很不错的动图,我们来根据它分析下 B 树添加元素时如何保证平衡。

这个图用以表示往 4 阶 B 树中依次插入下面这组数据的过程:

6 10 4 14 5 11 15 3 2 12 1 7 8 8 6 3 6 21 5 15 15 6 32 23 45 65 7 8 6 5 4

建议放大图查看。

由于我比较懒,我们来根据前几步分析下 B 树的添加流程:

  1. 首先明确:4 阶 B 树表示每个节点最多有 4 个子树、3 个关键字,最少有 2 个子树、一个关键字
  2. 添加 6,第一个节点,没什么好说的
  3. 添加 10,根节点最多能放三个关键字,按顺序添到根节点中
  4. 添加 4,还能放到根节点中
  5. 添加 14,这时超出了关键字最大限制,需要把 14添加为子树,同时为了保证“所有叶子节点在同一层”,就需要拆几个关键字作为子树:

    拆为

    这个拆的过程比较复杂,首先要确定根节点保留几个关键字,由于“非叶子节点的根节点至少有 2 棵子树”的限制,那就至少需要两个关键字分出去,又因为“子树数是关键字数+1”,如果根节点有两个关键字,就得有三个子树,无法满足,所以只好把除 6 以外的三个关键字都拆为子树。

谁和谁在一个子树上呢,根据“左子树比关键字小、右子树比关键字大”的规律,4 在左子树,10 和 14 在右子树。

继续添加 :

  1. 添加 5,放到 4 所在的子树上
  2. 添加 11,放在 10 和 14 所在的右子树上
  3. 添加 15,按大小应该放到 10、11 和 14所在的子树上,但因为超过了关键字数限制,又得拆分

    因为“根节点必须都在同一层”,因此我们不能给现有的左右子树添加子树,只能添加给 6 了;但是如果 6 有三个子树,就必须得有 2 个关键字,提升谁做关键字好呢,这得看谁做 6 中间的子树,因为右子树的所有关键字都得比父节点的关键字大,所以这个提升的关键字只能比未来右子树中的关键字都小,那就只有 10 和 11 可以考虑了。

提升 10 吧,没有比它小的做子树,那就只能提升 11 了:

再添加元素也是类似的逻辑:

  1. 首先考虑要插入的子树是否已经超出了关键字数的限制
  2. 超出的话,如果要插入的位置是叶子节点,就只能拆一个关键字添加到要插入位置的父节点
  3. 如果非叶子节点,就得从其他子树拆子树给新插入的元素做孩子

删除也是一样的,要考虑删除孩子后,父节点是否还满足子树 k 介于 M/2 和 M 的条件,不满足就得从别的节点拆子树甚至修改相关子树结构来保持平衡。

总之添加、删除的过程很复杂,要考虑的条件很多,具体实现就不细追究了,这里我们有个基本认识即可。

正是这个复杂的保持平衡操作,使得平衡后的 B 树能够发挥出磁盘中快速查找的作用。

使用场景

文件系统和数据库系统中常用的B/B+ 树,他通过对每个节点存储个数的扩展,使得对连续的数据能够进行较快的定位和访问,能够有效减少查找时间,提高存储的空间局部性从而减少IO操作。他广泛用于文件系统及数据库中,如:

  • Windows:HPFS 文件系统
  • Mac:HFS,HFS+ 文件系统
  • Linux:ResiserFS,XFS,Ext3FS,JFS 文件系统
  • 数据库:ORACLE,MYSQL,SQLSERVER 等中

B+ 树

了解了 B 树后再来了解下它的变形版:B+ 树,它比 B 树的查询性能更高。

一棵 B+ 树需要满足以下条件:

  1. 节点的子树数和关键字数相同(B 树是关键字数比子树数少一)
  2. 节点的关键字表示的是子树中的最大数,在子树中同样含有这个数据
  3. 叶子节点包含了全部数据,同时符合左小右大的顺序

简单概括下 B+ 树的三个特点:

  1. 关键字数和子树相同
  2. 非叶子节点仅用作索引,它的关键字和子节点有重复元素
  3. 叶子节点用指针连在一起

首先第一点不用特别介绍了,在 B 树中,节点的关键字用于在查询时确定查询区间,因此关键字数比子树数少一;而在 B+ 树中,节点的关键字代表子树的最大值,因此关键字数等于子树数。

第二点,除叶子节点外的所有节点的关键字,都在它的下一级子树中同样存在,最后所有数据都存储在叶子节点中。

根节点的最大关键字其实就表示整个 B+ 树的最大元素。

第三点,叶子节点包含了全部的数据,并且按顺序排列,B+ 树使用一个链表将它们排列起来,这样在查询时效率更快。

由于 B+ 树的中间节点不含有实际数据,只有子树的最大数据和子树指针,因此磁盘页中可以容纳更多节点元素,也就是说同样数据情况下,B+ 树会 B 树更加“矮胖”,因此查询效率更快。

B+ 树的查找必会查到叶子节点,更加稳定。

有时候需要查询某个范围内的数据,由于 B+ 树的叶子节点是一个有序链表,只需在叶子节点上遍历即可,不用像 B 树那样挨个中序遍历比较大小。

B+ 树的三个优点:

  1. 层级更低,IO 次数更少
  2. 每次都需要查询到叶子节点,查询性能稳定
  3. 叶子节点形成有序链表,范围查询方便

添加过程就不深入研究了,后面用到再看吧,这里先贴一个 B+ 树动态添加元素图:

原文链接:https://juejin.im/entry/6844903613915987975

B 树、B+ 树特点及使用场景相关推荐

  1. 常见的树以及树的应用场景

    宏观角度树主要分为:有序树和无序树 无序树:严格来讲,因为无序树不便查找的特性,所以在我们日常生产过程中应用场景非常有限,所以在此不作为我们今天的讲解重点. 有序树 常见的有序树 哈夫曼树 俗称霍夫曼 ...

  2. Trie(前缀树/字典树)及其应用

    from:https://www.cnblogs.com/justinh/p/7716421.html Trie,又经常叫前缀树,字典树等等.它有很多变种,如后缀树,Radix Tree/Trie,P ...

  3. 种树:二叉树、二叉搜索树、AVL树、红黑树、哈夫曼树、B树、树与森林

    虽然今天不是植树节,但是我今天想种树. 文章目录 树,什么是树? 二叉树 定义 二叉树的创建 二叉树的前中后序遍历 前序遍历: 中序遍历 后序遍历 已知前序.中序遍历结果,还原二叉树 已知后序.中序遍 ...

  4. AVL树、splay树(伸展树)和红黑树比较

    AVL树.splay树(伸展树)和红黑树比较 一.AVL树: 优点:查找.插入和删除,最坏复杂度均为O(logN).实现操作简单 如过是随机插入或者删除,其理论上可以得到O(logN)的复杂度,但是实 ...

  5. Uva 3767 Dynamic len(set(a[L:R])) 树套树

    Dynamic len(set(a[L:R])) Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 https://uva.onlinejudge.org/in ...

  6. bzoj3110: [Zjoi2013]K大数查询 【树套树,标记永久化】

    //========================== 蒟蒻Macaulish:http://www.cnblogs.com/Macaulish/  转载要声明! //=============== ...

  7. 【计算理论】图灵机 ( 非确定性图灵机 | 非确定性图灵机指令分析 | 计算过程 | 非确定性指令出现多个分支 | 非确定性图灵机转为计算树 | 计算树 )

    文章目录 一.非确定性图灵机 二.非确定性图灵机 指令 三.非确定性图灵机 计算示例 初始状态 四.计算步骤 1 五.计算步骤 2 六.计算步骤 3 ( 出现非确定性分支 ) 七.计算步骤 3-1 ( ...

  8. [算法学习] 线段树,树状数组,数堆,笛卡尔树

    都是树的变种,用途不同 [线段树 Interval Tree] 区间管理,是一种平衡树 可看做是对一维数组的索引进行管理.一维数组不需要是排序好的 深度不超过logL 任一个区间(线段)都分成不超过2 ...

  9. python 树_Python树的概念

    1.定义 1)非线性结构,每个元素可以有多个前驱和后继. 2)树是n(n>=0)个元素的集合. n=0时,称为空树. 树只有一个特殊的没有前驱的元素,称为树的根root. 树中除了根节点外,其余 ...

  10. 数据结构和算法分析:B树 B+树 和B*树的总结

    1. 前言 动态查找树主要有:二叉查找树(Binary Search Tree),平衡二叉查找树(Balanced Binary Search Tree),红黑树(Red-Black Tree ),B ...

最新文章

  1. python 时间字符串和时间戳之间的转换
  2. vue中路径的配置使用
  3. 技能拓展笔记-React(一)
  4. 因中间件问题重重,谷歌暂停Chrome的量子安全功能
  5. VS code 快捷键常用
  6. ToolsOh第7批收录
  7. QT ubuntu下 多画面视频监控播放器rtsp播放器
  8. 基于Python的RNN文本生成写诗系统
  9. 几何能用计算机证明吗,初等几何定理的计算机证明 - 科学技术大学.ppt
  10. Android 电子签名
  11. pysam筛选reads写bam
  12. AirPods Pro好在哪
  13. Simulink三相电机仿真(2)
  14. 软件项目管理 3.5.敏捷生存期模型
  15. java pdf stamper_使用pdfstamper(Itext)将页码添加到pdf
  16. 大数据风控AI竞赛总结
  17. 简易超声波雷达的arduino实现
  18. cij期刊_核心期刊评价与文献计量学研究CJournalJLX
  19. OpenFaaS实战之六:of-watchdog(为性能而生)
  20. 在线制作"篆体印章",很酷!

热门文章

  1. 光声断层成像的傅里叶变换图像重建算法
  2. 计算机科学第一课:学习要求及技巧
  3. amos基础5-CFA验证性因素分析
  4. 验证性分析---相关
  5. 经济学中的李嘉图模型
  6. C++grammer开篇
  7. 重组人碱性成纤维细胞生长因子(附文献)
  8. LEARNING A SAT SOLVER FROM SINGLE-BIT SUPERVISION 2020-05-01
  9. Codeforces Round #252 (Div. 2)-C,D
  10. 如何使git忽略某些文件或文件夹