人脸识别是靠什么技术实现的?

不同品牌机型采用的面部识别技术方案不同,面部识别效果也会不一样;目前vivo/iQOO系列手机,仅NEX双屏版采用3D人脸识别技术,其余机型均采用Face Wake面部识别,通过识别面部特征点,与录入信息进行匹配从而实现解锁。

注:3D人脸识别技术介绍:3D人脸识别技术能实现面部信息的立体捕捉,通过识别面部的立体特征,降低误识别的可能性,可带来更准确安全的识别。

谷歌人工智能写作项目:神经网络伪原创

人脸识别通过什么识别知乎

人脸识别是什么人脸识别是什么?人脸识别特指利用分析比较人脸视觉特征信息进行身份鉴别的计算机技术写作猫

人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身的生物特征来区分生物体个体。

广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。

生物特征识别技术所研究的生物特征包括人脸、指纹、手掌纹、掌型、虹膜、视网膜、静脉、声音(语音)、体形、红外温谱、耳型、气味、个人习惯(例如敲击键盘的力度和频率、签字、步态)等,相应的识别技术就有人脸识别、指纹识别、掌纹识别、虹膜识别、视网膜识别、静脉识别、语音识别(用语音识别可以进行身份识别,也可以进行语音内容的识别,只有前者属于生物特征识别技术)、体形识别、键盘敲击识别、签字识别等。

几何特征的人脸识别方法几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系(如相互之间的距离)。这些算法识别速度快,需要的内存小,但识别率较低。

基于特征脸(PCA)的人脸识别方法特征脸方法是基于KL变换的人脸识别方法,KL变换是图像压缩的一种最优正交变换。

高维的图像空间经过KL变换后得到一组新的正交基,保留其中重要的正交基,由这些基可以转成低维线性空间。

如果假设人脸在这些低维线性空间的投影具有可分性,就可以将这些投影用作识别的特征矢量,这就是特征脸方法的基本思想。这些方法需要较多的训练样本,而且完全是基于图像灰度的统计特性的。

目前有一些改进型的特征脸方法。神经网络的人脸识别方法神经网络的输入可以是降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。

这类方法同样需要较多的样本进行训练,而在许多应用中,样本数量是很有限的。

弹性图匹配的人脸识别方法弹性图匹配法在二维的空间中定义了一种对于通常的人脸变形具有一定的不变性的距离,并采用属性拓扑图来代表人脸,拓扑图的任一顶点均包含一特征向量,用来记录人脸在该顶点位置附近的信息。

该方法结合了灰度特性和几何因素,在比对时可以允许图像存在弹性形变,在克服表情变化对识别的影响方面收到了较好的效果,同时对于单个人也不再需要多个样本进行训练。

线段Hausdorff 距离(LHD) 的人脸识别方法心理学的研究表明,人类在识别轮廓图(比如漫画)的速度和准确度上丝毫不比识别灰度图差。

LHD是基于从人脸灰度图像中提取出来的线段图的,它定义的是两个线段集之间的距离,与众不同的是,LHD并不建立不同线段集之间线段的一一对应关系,因此它更能适应线段图之间的微小变化。

实验结果表明,LHD在不同光照条件下和不同姿态情况下都有非常出色的表现,但是它在大表情的情况下识别效果不好。

支持向量机(SVM) 的人脸识别方法近年来,支持向量机是统计模式识别领域的一个新的热点,它试图使得学习机在经验风险和泛化能力上达到一种妥协,从而提高学习机的性能。

支持向量机主要解决的是一个2分类问题,它的基本思想是试图把一个低维的线性不可分的问题转化成一个高维的线性可分的问题。

通常的实验结果表明SVM有较好的识别率,但是它需要大量的训练样本(每类300个),这在实际应用中往往是不现实的。而且支持向量机训练时间长,方法实现复杂,核函数的取法没有统一的理论。

银科人脸识别锁的人脸识别原理是什么?

人脸识别锁人脸识别原理!1、神经网络的人脸识别原理神经网络的输入可以有效的降低分辨率的人脸图像、局部区域的自相关函数、局部纹理的二阶矩等。这样可以使用比较多的样本进行训练,但是样本数量是很有限的。

2、弹性图匹配的人脸识别原理这种方法定义了一种对于通常的人脸变形具有一定的不变性的距离,利用属性拓扑图来代表人脸,拓扑图的任一顶点均包含一特征向量,用来记录人脸在该顶点位置附近的信息。

这种方式涵盖了灰度特性和几何因素。在进行对比的时候,图像存在弹性形变,在克服表情变化对识别的影响方面具有良好的效果,并且单个人也无需多个样本进行训练。

3、支持向量机的人脸识别原理现在人脸识别指纹锁支持向量机是统计模式识别领域一个大家非常关注的话题,可以在经验风险和泛化能力上达到一种妥协,从而提高智能锁的性能。

把一个低维的线性不可分的问题转化成一个高维的线性可分的问题。

人脸图像如何匹配和识别?

其提取人脸图像的特征数据库中存储的特征模板进行搜索匹配,通过设定一个阈值,当相似度超过这一阈值,则把匹配得到的结果输出,人脸识别就是将待识别的人脸特征与已得到人脸特征模板进行比较,根据相似程度对人脸的身份信息进行判断。

这一过程又分为两类:一类是确认,是一对一进行图像比较的过程,另一类是辨认,是一对多进行图像匹配对比的过程。

基于神经网络的人脸识别有哪些算法

上次的人脸识别仿真,我们用的是PCA和SVM方法进行人脸识别,该方法仍属于机器学习领域,未涉及神经网络的知识。这次使用的方法是基于PCA和BP神经网络对人脸识别。

其中,PCA的功能和上次一致,是用来对20张图片进行降维处理,最终产生8个主成分作为BP神经网络的输入;神经网络的输出层采用4个神经元,用来区分两个不同的人脸;本例的BP神经网络采用8-10-4的三层结构,输入层神经元数量选取8个,隐含层神经元数量选取10个,输出层神经元数量选取4个。

人脸识别的识别算法

一般来说,人脸识别系统包括图像摄取、人脸定位、图像预处理、以及人脸识别(身份确认或者身份查找)。

系统输入一般是一张或者一系列含有未确定身份的人脸图像,以及人脸数据库中的若干已知身份的人脸图象或者相应的编码,而其输出则是一系列相似度得分,表明待识别的人脸的身份。

人脸识别算法分类基于人脸特征点的识别算法(Feature-based recognition algorithms)。

基于整幅人脸图像的识别算法(Appearance-based recognition algorithms)。

基于模板的识别算法(Template-based recognition algorithms)。

利用神经网络进行识别的算法(Recognition algorithms using neural network)。

基于光照估计模型理论提出了基于Gamma灰度矫正的光照预处理方法,并且在光照估计模型的基础上,进行相应的光照补偿和光照平衡策略。

优化的形变统计校正理论基于统计形变的校正理论,优化人脸姿态;强化迭代理论强化迭代理论是对DLFA人脸检测算法的有效扩展;独创的实时特征识别理论该理论侧重于人脸实时数据的中间值处理,从而可以在识别速率和识别效能之间,达到最佳的匹配效果。

深度学习中为何可以通过叠加的RBM提取出高度抽象的特征?

首先,介绍了深度学习的原理,并总结了公共和常用的面部表情数据集。然后,介绍了基于深度学习的面部表情识别的三个步骤,并总结了图像预处理和面部表情分类的主要方法。

重点总结了目前用于提取性能良好的特征的深度学习框架以及这些方法的基本原理和优缺点。最后,指出了面部表情识别存在的问题和可能的发展趋势。

深度学习采用的模型是深度神经网络(DNN)模型,即包含多个隐藏层(又称隐层)的神经网络(NN)。

深度学习利用模型中的隐藏层,将原始输入逐层转化为浅层特征、中层特征、高层特征,直至通过特征组合达到最终的任务目标。

神经网络的研究起步较早,早期的感知器模型是神经网络最早的原型,也被称为单层神经网络(无隐藏层)。然而,感知器只能做最简单的线性分类任务,甚至不能解决简单的xOR问题。

但当网络中加入计算层后,它不仅能解决xOR问题,还能有很好的非线性分类效果。

1986年,Rumelhar和Hinton等人提出了Back Propagation(BP)算法,解决了两层神经网络需要复杂计算的问题,从而带动了业界两层神经网络研究的高潮。

定罪处斩,抄没家产,家人沦为奴婢。

小编针对问题做得详细解小编针对问题做得详细解读,希望对大家有所帮助,如果还有什么问题可以在评论区给我留言,大家可以多多和我评论,如果哪里有不对的地方,大家也可以多多和我互动交流,如果大家喜欢作者,大家也可以关注我哦,您的点赞是对我最大的帮助,谢谢大家了。

如何通过人工神经网络实现图像识别

人工神经网络(Artificial Neural Networks)(简称ANN)系统从20 世纪40 年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。

尤其是基于误差反向传播(Error Back Propagation)算法的多层前馈网络(Multiple-Layer Feedforward Network)(简称BP 网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。

目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。

这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。

一、BP 神经网络BP 网络是采用Widrow-Hoff 学习算法和非线性可微转移函数的多层网络。一个典型的BP 网络采用的是梯度下降算法,也就是Widrow-Hoff 算法所规定的。

backpropagation 就是指的为非线性多层网络计算梯度的方法。一个典型的BP 网络结构如图所示。我们将它用向量图表示如下图所示。

其中:对于第k 个模式对,输出层单元的j 的加权输入为该单元的实际输出为而隐含层单元i 的加权输入为该单元的实际输出为函数f 为可微分递减函数其算法描述如下:(1)初始化网络及学习参数,如设置网络初始权矩阵、学习因子等。

(2)提供训练模式,训练网络,直到满足学习要求。(3)前向传播过程:对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若有误差,则执行(4);否则,返回(2)。

(4)后向传播过程:a. 计算同一层单元的误差;b. 修正权值和阈值;c. 返回(2)二、 BP 网络隐层个数的选择对于含有一个隐层的三层BP 网络可以实现输入到输出的任何非线性映射。

增加网络隐层数可以降低误差,提高精度,但同时也使网络复杂化,增加网络的训练时间。误差精度的提高也可以通过增加隐层结点数来实现。一般情况下,应优先考虑增加隐含层的结点数。

三、隐含层神经元个数的选择当用神经网络实现网络映射时,隐含层神经元个数直接影响着神经网络的学习能力和归纳能力。

隐含层神经元数目较少时,网络每次学习的时间较短,但有可能因为学习不足导致网络无法记住全部学习内容;隐含层神经元数目较大时,学习能力增强,网络每次学习的时间较长,网络的存储容量随之变大,导致网络对未知输入的归纳能力下降,因为对隐含层神经元个数的选择尚无理论上的指导,一般凭经验确定。

四、神经网络图像识别系统人工神经网络方法实现模式识别,可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸变,神经网络方法的缺点是其模型在不断丰富完善中,目前能识别的模式类还不够多,神经网络方法允许样品有较大的缺损和畸变,其运行速度快,自适应性能好,具有较高的分辨率。

神经网络的图像识别系统是神经网络模式识别系统的一种,原理是一致的。一般神经网络图像识别系统由预处理,特征提取和神经网络分类器组成。预处理就是将原始数据中的无用信息删除,平滑,二值化和进行幅度归一化等。

神经网络图像识别系统中的特征提取部分不一定存在,这样就分为两大类:① 有特征提取部分的:这一类系统实际上是传统方法与神经网络方法技术的结合,这种方法可以充分利用人的经验来获取模式特征以及神经网络分类能力来识别目标图像。

特征提取必须能反应整个图像的特征。但它的抗干扰能力不如第2类。

② 无特征提取部分的:省去特征抽取,整副图像直接作为神经网络的输入,这种方式下,系统的神经网络结构的复杂度大大增加了,输入模式维数的增加导致了网络规模的庞大。

此外,神经网络结构需要完全自己消除模式变形的影响。但是网络的抗干扰性能好,识别率高。当BP 网用于分类时,首先要选择各类的样本进行训练,每类样本的个数要近似相等。

其原因在于一方面防止训练后网络对样本多的类别响应过于敏感,而对样本数少的类别不敏感。另一方面可以大幅度提高训练速度,避免网络陷入局部最小点。

由于BP 网络不具有不变识别的能力,所以要使网络对模式的平移、旋转、伸缩具有不变性,要尽可能选择各种可能情况的样本。

例如要选择不同姿态、不同方位、不同角度、不同背景等有代表性的样本,这样可以保证网络有较高的识别率。

构造神经网络分类器首先要选择适当的网络结构:神经网络分类器的输入就是图像的特征向量;神经网络分类器的输出节点应该是类别数。隐层数要选好,每层神经元数要合适,目前有很多采用一层隐层的网络结构。

然后要选择适当的学习算法,这样才会有很好的识别效果。

在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。

神经网络是按整个特征向量的整体来记忆图像的,只要大多数特征符合曾学习过的样本就可识别为同一类别,所以当样本存在较大噪声时神经网络分类器仍可正确识别。

在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。五、仿真实验1、实验对象本实验用MATLAB 完成了对神经网络的训练和图像识别模拟。

从实验数据库中选择0~9 这十个数字的BMP 格式的目标图像。图像大小为16×8 像素,每个目标图像分别加10%、20%、30%、40%、50%大小的随机噪声,共产生60 个图像样本。

将样本分为两个部分,一部分用于训练,另一部分用于测试。实验中用于训练的样本为40个,用于测试的样本为20 个。随机噪声调用函数randn(m,n)产生。

2、网络结构本试验采用三层的BP 网络,输入层神经元个数等于样本图像的象素个数16×8 个。隐含层选24 个神经元,这是在试验中试出的较理想的隐层结点数。

输出层神经元个数就是要识别的模式数目,此例中有10 个模式,所以输出层神经元选择10 个,10 个神经元与10 个模式一一对应。

3、基于MATLAB 语言的网络训练与仿真建立并初始化网络% ================S1 = 24;% 隐层神经元数目S1 选为24[R,Q] = size(numdata);[S2,Q] = size(targets);F = numdata;P=double(F);net = newff(minmax(P),[S1 S2],{'logsig''logsig'},'traingda','learngdm')这里numdata 为训练样本矩阵,大小为128×40, targets 为对应的目标输出矩阵,大小为10×40。

newff(PR,[S1 S2…SN],{TF1 TF2…TFN},BTF,BLF,PF)为MATLAB 函数库中建立一个N 层前向BP 网络的函数,函数的自变量PR 表示网络输入矢量取值范围的矩阵[Pmin max];S1~SN 为各层神经元的个数;TF1~TFN 用于指定各层神经元的传递函数;BTF 用于指定网络的训练函数;BLF 用于指定权值和阀值的学习函数;PF 用于指定网络的性能函数,缺省值为‘mse’。

设置训练参数net.performFcn = 'sse'; %平方和误差性能函数 = 0.1; %平方和误差目标 = 20; %进程显示频率net.trainParam.epochs = 5000;%最大训练步数 = 0.95; %动量常数网络训练net=init(net);%初始化网络[net,tr] = train(net,P,T);%网络训练对训练好的网络进行仿真D=sim(net,P);A = sim(net,B);B 为测试样本向量集,128×20 的点阵。

D 为网络对训练样本的识别结果,A 为测试样本的网络识别结果。实验结果表明:网络对训练样本和对测试样本的识别率均为100%。如图为64579五个数字添加50%随机噪声后网络的识别结果。

六、总结从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。

卷积神经网络表情识别,神经网络动作识别相关推荐

  1. 如何区分针对视频的分类,场景识别,动作识别三个概念?

    如题,比如对于斗_殴.爆_炸和枪_击三类视频,从深度学习学术角度讲,是纯粹的视频分类问题?还是场景抑或行为识别问题?看论文的话主要的搜索关键词应当是什么? overlap很严重.而且要看你对动作如何定 ...

  2. matlab人体轮廓识别,人体动作识别代码,求问这是提取的什么轮廓信息

    该楼层疑似违规已被系统折叠 隐藏此楼查看此楼 目地是进行视频中人体动作的识别,这个代码好像是计算人体边界轮廓特征参数,与模版进行比对. 我知道里面有面积 周长 宽 高 ,可是那个旋转计算交点个数那个参 ...

  3. Action4D:人群和杂物中的在线动作识别:CVPR209论文阅读

    Action4D:人群和杂物中的在线动作识别:CVPR209论文阅读 Action4D: Online Action Recognition in the Crowd and Clutter 论文链接 ...

  4. 基于骨骼关键点的动作识别(OpenMMlab学习笔记,附PYSKL相关代码演示)

    一.骨骼动作识别 骨骼动作识别是视频理解领域的一项任务 1.1 视频数据的多种模态 RGB:使用最广,包含信息最多,从RGB可以得到Flow.Skeleton.但是处理需要较大的计算量 Flow:光流 ...

  5. ECCV 2022 | 浙大提出:基于骨骼点的少样本动作识别

    点击下方卡片,关注"CVer"公众号 AI/CV重磅干货,第一时间送达 作者:Dropooict |  已授权转载(源:知乎)编辑:CVer https://zhuanlan.zh ...

  6. 3D 卷积神经网络 视频动作识别

    转自:http://blog.csdn.net/AUTO1993/article/details/70948249 https://zhuanlan.zhihu.com/p/25912625 http ...

  7. 卷积神经网络表情识别,神经网络表情识别

    1.如何通过人工神经网络实现图像识别 人工神经网络(Artificial Neural Networks)(简称ANN)系统从20 世纪40 年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储 ...

  8. 空间注意力机制sam_一种基于注意力机制的神经网络的人体动作识别方法与流程...

    本发明属于计算机视觉领域,具体来说是一种基于注意力机制的神经网络的人体动作识别的方法. 背景技术: 人体动作识别,具有着非常广阔的应用前景,如人机交互,视频监控.视频理解等方面.按目前的主流方法,可主 ...

  9. PyTorch之LeNet-5:利用PyTorch实现最经典的LeNet-5卷积神经网络对手写数字图片识别CNN

    PyTorch之LeNet-5:利用PyTorch实现最经典的LeNet-5卷积神经网络对手写数字图片识别CNN 目录 训练过程 代码设计 训练过程 代码设计 #PyTorch:利用PyTorch实现 ...

  10. 基于卷积神经网络的温室黄瓜病害识别系统

    基于卷积神经网络的温室黄瓜病害识别系统 1.研究思路 针对温室现场采集的黄瓜病害图像中含有较多光照不均匀和复杂背景等噪声的情况,采用了一种复合颜色特征(combinations of color fe ...

最新文章

  1. 计算机会计应用实训,计算机会计模拟实习报告.pdf
  2. 2019年中国工业机器人首次出口数量大于进口数量
  3. 基于Android Studio搭建cordova开发环境
  4. ASP.NET Core 中做集成测试的三种方案
  5. Wireshark 3.0.0 正式版发布,免费开源的网络数据包分析软件
  6. Golang的协程调度
  7. 【奇葩笔试】—— printf() 作为函数的参数及其返回值
  8. oracle 百分位数,oracle分析函数 percent_rank, percentile_cont, percentile_disc
  9. smart原则_人生工具:SWOT、PDCA、6W2H、SMART、WBS、时间管理、二八原则
  10. 鼠标右键中新建选项消失
  11. [原]最初的梦想---关于野猪和家猪
  12. Dell 服务器开启虚拟化功能Intel VT-x
  13. 【LeetCode】18. 4Sum 四数之和
  14. redis查看集合中元素的数量,scard
  15. 2022年拼多多双十二活动什么时候开始?会有哪些福利?
  16. win10系统声音很小
  17. 小米红米手机无电池24H开机完美解决方案
  18. 电磁阀的分类及应用范围
  19. C++构造函数基于Rectangle类并派生Cuboid长方体类
  20. Hadoop Yarn常用命令

热门文章

  1. Java中Springboot实战之签到功能详解(超全面)
  2. 国外广告联盟前期需要准备的事情
  3. 混合现实门户SteamVR环境下
  4. 中兴机顶盒网关服务器地址,中兴全球首发高清双向网关型DVB机顶盒
  5. 2019 未能正确加载ExtensionManagerPackage
  6. Hexo博客搭建教程
  7. 3-23 实对称矩阵知识补充
  8. SGG前台项目复习笔记
  9. Crash监控神器之腾讯Bugly
  10. 【比赛回顾】广工大2020级年ACM第一次月赛——Dio的面包工坊