前端面试:你应该了解的JS算法相关的知识

时间复杂度

通常使用最差的时间复杂度来衡量一个算法的好坏。

常数时间 O(1) 代表这个操作和数据量没关系,是一个固定时间的操作,比如说四则运算。

对于一个算法来说,可能会计算出如下操作次数 aN + 1N 代表数据量。那么该算法的时间复杂度就是 O(N)。因为我们在计算时间复杂度的时候,数据量通常是非常大的,这时候低阶项和常数项可以忽略不计。

当然可能会出现两个算法都是 O(N) 的时间复杂度,那么对比两个算法的好坏就要通过对比低阶项和常数项了。

位运算

位运算在算法中很有用,速度可以比四则运算快很多。

在学习位运算之前应该知道十进制如何转二进制,二进制如何转十进制。这里说明下简单的计算方式

  • 十进制 33 可以看成是 32 + 1 ,并且 33 应该是六位二进制的(因为 33 近似 32,而 32 是 2 的五次方,所以是六位),那么 十进制 33 就是 100001 ,只要是 2 的次方,那么就是 1 否则都为 0
  • 那么二进制 100001 同理,首位是 2^5 ,末位是 2^0 ,相加得出 33

左移 <<

10 << 1 // -> 20

左移就是将二进制全部往左移动,10 在二进制中表示为 1010 ,左移一位后变成 10100 ,转换为十进制也就是 20,所以基本可以把左移看成以下公式 a * (2 ^ b)

右移 >>

10 >> 1 // -> 5

算数右移就是将二进制全部往右移动并去除多余的右边,10 在二进制中表示为 1010 ,右移一位后变成 101 ,转换为十进制也就是 5,所以基本可以把右移看成以下公式 int v = a / (2 ^ b)

右移很好用,比如可以用在二分算法中取中间值

13 >> 1 // -> 6

按位操作

按位与

每一位都为 1,结果才为 1

8 & 7 // -> 0
// 1000 & 0111 -> 0000 -> 0

按位或

其中一位为 1,结果就是 1

8 | 7 // -> 15
// 1000 | 0111 -> 1111 -> 15

按位异或

每一位都不同,结果才为 1

8 ^ 7 // -> 15
8 ^ 8 // -> 0
// 1000 ^ 0111 -> 1111 -> 15
// 1000 ^ 1000 -> 0000 -> 0

从以上代码中可以发现按位异或就是不进位加法

面试题:两个数不使用四则运算得出和

这道题中可以按位异或,因为按位异或就是不进位加法,8 ^ 8 = 0 如果进位了,就是 16 了,所以我们只需要将两个数进行异或操作,然后进位。那么也就是说两个二进制都是 1 的位置,左边应该有一个进位 1,所以可以得出以下公式 a + b = (a ^ b) + ((a & b) << 1) ,然后通过迭代的方式模拟加法

function sum(a, b) {if (a == 0) return bif (b == 0) return alet newA = a ^ blet newB = (a & b) << 1return sum(newA, newB)
}

排序

以下两个函数是排序中会用到的通用函数,就不一一写了

function checkArray(array) {if (!array || array.length <= 2) return
}
function swap(array, left, right) {let rightValue = array[right]array[right] = array[left]array[left] = rightValue
}

冒泡排序

冒泡排序的原理如下,从第一个元素开始,把当前元素和下一个索引元素进行比较。如果当前元素大,那么就交换位置,重复操作直到比较到最后一个元素,那么此时最后一个元素就是该数组中最大的数。下一轮重复以上操作,但是此时最后一个元素已经是最大数了,所以不需要再比较最后一个元素,只需要比较到 length - 1 的位置。

以下是实现该算法的代码

function bubble(array) {checkArray(array)for (let i = array.length - 1; i > 0; i--) {// 从 0 到 `length - 1` 遍历for (let j = 0; j < i; j++) {if (array[j] > array[j + 1]) swap(array, j, j + 1)}}return array
}

该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1 ,去掉常数项以后得出时间复杂度是 O(n * n)

插入排序

插入排序的原理如下。第一个元素默认是已排序元素,取出下一个元素和当前元素比较,如果当前元素大就交换位置。那么此时第一个元素就是当前的最小数,所以下次取出操作从第三个元素开始,向前对比,重复之前的操作。

以下是实现该算法的代码

function insertion(array) {checkArray(array)for (let i = 1; i < array.length; i++) {for (let j = i - 1; j >= 0 && array[j] > array[j + 1]; j--)swap(array, j, j + 1)}return array
}

该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1 ,去掉常数项以后得出时间复杂度是 O(n * n)

选择排序

选择排序的原理如下。遍历数组,设置最小值的索引为 0,如果取出的值比当前最小值小,就替换最小值索引,遍历完成后,将第一个元素和最小值索引上的值交换。如上操作后,第一个元素就是数组中的最小值,下次遍历就可以从索引 1 开始重复上述操作。

以下是实现该算法的代码

function selection(array) {checkArray(array)for (let i = 0; i < array.length - 1; i++) {let minIndex = ifor (let j = i + 1; j < array.length; j++) {minIndex = array[j] < array[minIndex] ? j : minIndex}swap(array, i, minIndex)}return array
}

该算法的操作次数是一个等差数列 n + (n - 1) + (n - 2) + 1 ,去掉常数项以后得出时间复杂度是 O(n * n)

归并排序

归并排序的原理如下。递归的将数组两两分开直到最多包含两个元素,然后将数组排序合并,最终合并为排序好的数组。假设我有一组数组 [3, 1, 2, 8, 9, 7, 6],中间数索引是 3,先排序数组 [3, 1, 2, 8] 。在这个左边数组上,继续拆分直到变成数组包含两个元素(如果数组长度是奇数的话,会有一个拆分数组只包含一个元素)。然后排序数组 [3, 1] 和 [2, 8] ,然后再排序数组 [1, 3, 2, 8] ,这样左边数组就排序完成,然后按照以上思路排序右边数组,最后将数组 [1, 2, 3, 8] 和 [6, 7, 9] 排序。

以下是实现该算法的代码

function sort(array) {checkArray(array)mergeSort(array, 0, array.length - 1)return array
}function mergeSort(array, left, right) {// 左右索引相同说明已经只有一个数if (left === right) return// 等同于 `left + (right - left) / 2`// 相比 `(left + right) / 2` 来说更加安全,不会溢出// 使用位运算是因为位运算比四则运算快let mid = parseInt(left + ((right - left) >> 1))mergeSort(array, left, mid)mergeSort(array, mid + 1, right)let help = []let i = 0let p1 = leftlet p2 = mid + 1while (p1 <= mid && p2 <= right) {help[i++] = array[p1] < array[p2] ? array[p1++] : array[p2++]}while (p1 <= mid) {help[i++] = array[p1++]}while (p2 <= right) {help[i++] = array[p2++]}for (let i = 0; i < help.length; i++) {array[left + i] = help[i]}return array
}

以上算法使用了递归的思想。递归的本质就是压栈,每递归执行一次函数,就将该函数的信息(比如参数,内部的变量,执行到的行数)压栈,直到遇到终止条件,然后出栈并继续执行函数。对于以上递归函数的调用轨迹如下

mergeSort(data, 0, 6) // mid = 3
mergeSort(data, 0, 3) // mid = 1
mergeSort(data, 0, 1) // mid = 0
mergeSort(data, 0, 0) // 遇到终止,回退到上一步
mergeSort(data, 1, 1) // 遇到终止,回退到上一步
// 排序 p1 = 0, p2 = mid + 1 = 1
// 回退到 `mergeSort(data, 0, 3)` 执行下一个递归
mergeSort(2, 3) // mid = 2
mergeSort(3, 3) // 遇到终止,回退到上一步
// 排序 p1 = 2, p2 = mid + 1 = 3
// 回退到 `mergeSort(data, 0, 3)` 执行合并逻辑
// 排序 p1 = 0, p2 = mid + 1 = 2
// 执行完毕回退
// 左边数组排序完毕,右边也是如上轨迹

该算法的操作次数是可以这样计算:递归了两次,每次数据量是数组的一半,并且最后把整个数组迭代了一次,所以得出表达式 2T(N / 2) + T(N) (T 代表时间,N 代表数据量)。根据该表达式可以套用 该公式 得出时间复杂度为 O(N * logN)

快排

快排的原理如下。随机选取一个数组中的值作为基准值,从左至右取值与基准值对比大小。比基准值小的放数组左边,大的放右边,对比完成后将基准值和第一个比基准值大的值交换位置。然后将数组以基准值的位置分为两部分,继续递归以上操作。

以下是实现该算法的代码

function sort(array) {checkArray(array);quickSort(array, 0, array.length - 1);return array;
}function quickSort(array, left, right) {if (left < right) {swap(array, , right)// 随机取值,然后和末尾交换,这样做比固定取一个位置的复杂度略低let indexs = part(array, parseInt(Math.random() * (right - left + 1)) + left, right);quickSort(array, left, indexs[0]);quickSort(array, indexs[1] + 1, right);}
}
function part(array, left, right) {let less = left - 1;let more = right;while (left < more) {if (array[left] < array[right]) {// 当前值比基准值小,`less` 和 `left` 都加一++less;++left;} else if (array[left] > array[right]) {// 当前值比基准值大,将当前值和右边的值交换// 并且不改变 `left`,因为当前换过来的值还没有判断过大小swap(array, --more, left);} else {// 和基准值相同,只移动下标left++;}}// 将基准值和比基准值大的第一个值交换位置// 这样数组就变成 `[比基准值小, 基准值, 比基准值大]`swap(array, right, more);return [less, more];
}

该算法的复杂度和归并排序是相同的,但是额外空间复杂度比归并排序少,只需 O(logN),并且相比归并排序来说,所需的常数时间也更少。

面试题

Sort Colors:该题目来自 LeetCode,题目需要我们将 [2,0,2,1,1,0] 排序成 [0,0,1,1,2,2] ,这个问题就可以使用三路快排的思想。

以下是代码实现

var sortColors = function(nums) {let left = -1let right = nums.lengthlet i = 0// 下标如果遇到 right,说明已经排序完成while (i < right) {if (nums[i] == 0) {swap(nums, i++, ++left)} else if (nums[i] == 1) {i++} else {swap(nums, i, --right)}}
}

Kth Largest Element in an Array:该题目来自 LeetCode,题目需要找出数组中第 K 大的元素,这问题也可以使用快排的思路。并且因为是找出第 K 大元素,所以在分离数组的过程中,可以找出需要的元素在哪边,然后只需要排序相应的一边数组就好。

以下是代码实现

var findKthLargest = function(nums, k) {let l = 0let r = nums.length - 1// 得出第 K 大元素的索引位置k = nums.length - kwhile (l < r) {// 分离数组后获得比基准树大的第一个元素索引let index = part(nums, l, r)// 判断该索引和 k 的大小if (index < k) {l = index + 1} else if (index > k) {r = index - 1} else {break}}return nums[k]
}
function part(array, left, right) {let less = left - 1let more = rightwhile (left < more) {if (array[left] < array[right]) {++less++left} else if (array[left] > array[right]) {swap(array, --more, left)} else {left++}}swap(array, right, more)return more
}

堆排序

堆排序利用了二叉堆的特性来做,二叉堆通常用数组表示,并且二叉堆是一颗完全二叉树(所有叶节点(最底层的节点)都是从左往右顺序排序,并且其他层的节点都是满的)。二叉堆又分为大根堆与小根堆。

  • 大根堆是某个节点的所有子节点的值都比他小
  • 小根堆是某个节点的所有子节点的值都比他大

堆排序的原理就是组成一个大根堆或者小根堆。以小根堆为例,某个节点的左边子节点索引是 i * 2 + 1,右边是 i * 2 + 2,父节点是 (i - 1) /2

  1. 首先遍历数组,判断该节点的父节点是否比他小,如果小就交换位置并继续判断,直到他的父节点比他大
  2. 重新以上操作 1,直到数组首位是最大值
  3. 然后将首位和末尾交换位置并将数组长度减一,表示数组末尾已是最大值,不需要再比较大小
  4. 对比左右节点哪个大,然后记住大的节点的索引并且和父节点对比大小,如果子节点大就交换位置
  5. 重复以上操作 3 - 4 直到整个数组都是大根堆。

以下是实现该算法的代码

function heap(array) {checkArray(array)// 将最大值交换到首位for (let i = 0; i < array.length; i++) {heapInsert(array, i)}let size = array.length// 交换首位和末尾swap(array, 0, --size)while (size > 0) {heapify(array, 0, size)swap(array, 0, --size)}return array
}function heapInsert(array, index) {// 如果当前节点比父节点大,就交换while (array[index] > array[parseInt((index - 1) / 2)]) {swap(array, index, parseInt((index - 1) / 2))// 将索引变成父节点index = parseInt((index - 1) / 2)}
}
function heapify(array, index, size) {let left = index * 2 + 1while (left < size) {// 判断左右节点大小let largest =left + 1 < size && array[left] < array[left + 1] ? left + 1 : left// 判断子节点和父节点大小largest = array[index] < array[largest] ? largest : indexif (largest === index) breakswap(array, index, largest)index = largestleft = index * 2 + 1}
}

以上代码实现了小根堆,如果需要实现大根堆,只需要把节点对比反一下就好。

该算法的复杂度是 O(logN)

系统自带排序实现

每个语言的排序内部实现都是不同的。

对于 JS 来说,数组长度大于 10 会采用快排,否则使用插入排序 源码实现 。选择插入排序是因为虽然时间复杂度很差,但是在数据量很小的情况下和 O(N * logN)相差无几,然而插入排序需要的常数时间很小,所以相对别的排序来说更快。

对于 Java 来说,还会考虑内部的元素的类型。对于存储对象的数组来说,会采用稳定性好的算法。稳定性的意思就是对于相同值来说,相对顺序不能改变。

链表

反转单向链表

该题目来自 LeetCode,题目需要将一个单向链表反转。思路很简单,使用三个变量分别表示当前节点和当前节点的前后节点,虽然这题很简单,但是却是一道面试常考题

以下是实现该算法的代码

var reverseList = function(head) {// 判断下变量边界问题if (!head || !head.next) return head// 初始设置为空,因为第一个节点反转后就是尾部,尾部节点指向 nulllet pre = nulllet current = headlet next// 判断当前节点是否为空// 不为空就先获取当前节点的下一节点// 然后把当前节点的 next 设为上一个节点// 然后把 current 设为下一个节点,pre 设为当前节点while (current) {next = current.nextcurrent.next = prepre = currentcurrent = next}return pre
}

二叉树的先序,中序,后序遍历

先序遍历表示先访问根节点,然后访问左节点,最后访问右节点。

中序遍历表示先访问左节点,然后访问根节点,最后访问右节点。

后序遍历表示先访问左节点,然后访问右节点,最后访问根节点。

递归实现

递归实现相当简单,代码如下

function TreeNode(val) {this.val = valthis.left = this.right = null
}
var traversal = function(root) {if (root) {// 先序console.log(root)traversal(root.left)// 中序// console.log(root);traversal(root.right)// 后序// console.log(root);}
}

对于递归的实现来说,只需要理解每个节点都会被访问三次就明白为什么这样实现了。

非递归实现

非递归实现使用了栈的结构,通过栈的先进后出模拟递归实现。

以下是先序遍历代码实现

function pre(root) {if (root) {let stack = []// 先将根节点 pushstack.push(root)// 判断栈中是否为空while (stack.length > 0) {// 弹出栈顶元素root = stack.pop()console.log(root)// 因为先序遍历是先左后右,栈是先进后出结构// 所以先 push 右边再 push 左边if (root.right) {stack.push(root.right)}if (root.left) {stack.push(root.left)}}}
}

以下是中序遍历代码实现

function mid(root) {if (root) {let stack = []// 中序遍历是先左再根最后右// 所以首先应该先把最左边节点遍历到底依次 push 进栈// 当左边没有节点时,就打印栈顶元素,然后寻找右节点// 对于最左边的叶节点来说,可以把它看成是两个 null 节点的父节点// 左边打印不出东西就把父节点拿出来打印,然后再看右节点while (stack.length > 0 || root) {if (root) {stack.push(root)root = root.left} else {root = stack.pop()console.log(root)root = root.right}}}
}

以下是后序遍历代码实现,该代码使用了两个栈来实现遍历,相比一个栈的遍历来说要容易理解很多

function pos(root) {if (root) {let stack1 = []let stack2 = []// 后序遍历是先左再右最后根// 所以对于一个栈来说,应该先 push 根节点// 然后 push 右节点,最后 push 左节点stack1.push(root)while (stack1.length > 0) {root = stack1.pop()stack2.push(root)if (root.left) {stack1.push(root.left)}if (root.right) {stack1.push(root.right)}}while (stack2.length > 0) {console.log(s2.pop())}}
}

中序遍历的前驱后继节点

实现这个算法的前提是节点有一个 parent 的指针指向父节点,根节点指向 null 。

如图所示,该树的中序遍历结果是 4, 2, 5, 1, 6, 3, 7

前驱节点

对于节点 2 来说,他的前驱节点就是 4 ,按照中序遍历原则,可以得出以下结论

  1. 如果选取的节点的左节点不为空,就找该左节点最右的节点。对于节点 1 来说,他有左节点 2 ,那么节点 2 的最右节点就是 5
  2. 如果左节点为空,且目标节点是父节点的右节点,那么前驱节点为父节点。对于节点 5 来说,没有左节点,且是节点 2 的右节点,所以节点 2 是前驱节点
  3. 如果左节点为空,且目标节点是父节点的左节点,向上寻找到第一个是父节点的右节点的节点。对于节点 6 来说,没有左节点,且是节点 3 的左节点,所以向上寻找到节点 1 ,发现节点 3 是节点 1 的右节点,所以节点 1 是节点 6 的前驱节点

以下是算法实现

function predecessor(node) {if (!node) return// 结论 1if (node.left) {return getRight(node.left)} else {let parent = node.parent// 结论 2 3 的判断while (parent && parent.right === node) {node = parentparent = node.parent}return parent}
}
function getRight(node) {if (!node) returnnode = node.rightwhile (node) node = node.rightreturn node
}

后继节点

对于节点 2 来说,他的后继节点就是 5 ,按照中序遍历原则,可以得出以下结论

  1. 如果有右节点,就找到该右节点的最左节点。对于节点 1 来说,他有右节点 3 ,那么节点 3 的最左节点就是 6
  2. 如果没有右节点,就向上遍历直到找到一个节点是父节点的左节点。对于节点 5 来说,没有右节点,就向上寻找到节点 2 ,该节点是父节点 1 的左节点,所以节点 1 是后继节点

以下是算法实现

function successor(node) {if (!node) return// 结论 1if (node.right) {return getLeft(node.right)} else {// 结论 2let parent = node.parent// 判断 parent 为空while (parent && parent.left === node) {node = parentparent = node.parent}return parent}
}
function getLeft(node) {if (!node) returnnode = node.leftwhile (node) node = node.leftreturn node
}

树的深度

树的最大深度:该题目来自 Leetcode,题目需要求出一颗二叉树的最大深度

以下是算法实现

var maxDepth = function(root) {if (!root) return 0return Math.max(maxDepth(root.left), maxDepth(root.right)) + 1
}

对于该递归函数可以这样理解:一旦没有找到节点就会返回 0,每弹出一次递归函数就会加一,树有三层就会得到 3。

动态规划

动态规划背后的基本思想非常简单。就是将一个问题拆分为子问题,一般来说这些子问题都是非常相似的,那么我们可以通过只解决一次每个子问题来达到减少计算量的目的。

一旦得出每个子问题的解,就存储该结果以便下次使用。

斐波那契数列

斐波那契数列就是从 0 和 1 开始,后面的数都是前两个数之和

0,1,1,2,3,5,8,13,21,34,55,89....

那么显然易见,我们可以通过递归的方式来完成求解斐波那契数列

function fib(n) {if (n < 2 && n >= 0) return nreturn fib(n - 1) + fib(n - 2)
}
fib(10)

以上代码已经可以完美的解决问题。但是以上解法却存在很严重的性能问题,当 n 越大的时候,需要的时间是指数增长的,这时候就可以通过动态规划来解决这个问题。

动态规划的本质其实就是两点

  1. 自底向上分解子问题
  2. 通过变量存储已经计算过的解

根据上面两点,我们的斐波那契数列的动态规划思路也就出来了

  1. 斐波那契数列从 0 和 1 开始,那么这就是这个子问题的最底层
  2. 通过数组来存储每一位所对应的斐波那契数列的值
function fib(n) {let array = new Array(n + 1).fill(null)array[0] = 0array[1] = 1for (let i = 2; i <= n; i++) {array[i] = array[i - 1] + array[i - 2]}return array[n]
}
fib(10)

0 - 1 背包问题

该问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。每个问题只能放入至多一次。

假设我们有以下物品

物品 ID / 重量 价值
1 3
2 7
3 12

对于一个总容量为 5 的背包来说,我们可以放入重量 2 和 3 的物品来达到背包内的物品总价值最高。

对于这个问题来说,子问题就两个,分别是放物品和不放物品,可以通过以下表格来理解子问题

物品 ID / 剩余容量 0 1 2 3 4 5
1 0 3 3 3 3 3
2 0 3 7 10 10 10
3 0 3 7 12 15 19

直接来分析能放三种物品的情况,也就是最后一行

  • 当容量少于 3 时,只取上一行对应的数据,因为当前容量不能容纳物品 3
  • 当容量 为 3 时,考虑两种情况,分别为放入物品 3 和不放物品 3
    • 不放物品 3 的情况下,总价值为 10
    • 放入物品 3 的情况下,总价值为 12,所以应该放入物品 3
  • 当容量 为 4 时,考虑两种情况,分别为放入物品 3 和不放物品 3
    • 不放物品 3 的情况下,总价值为 10
    • 放入物品 3 的情况下,和放入物品 1 的价值相加,得出总价值为 15,所以应该放入物品 3
  • 当容量 为 5 时,考虑两种情况,分别为放入物品 3 和不放物品 3
    • 不放物品 3 的情况下,总价值为 10
    • 放入物品 3 的情况下,和放入物品 2 的价值相加,得出总价值为 19,所以应该放入物品 3

以下代码对照上表更容易理解

/*** @param {*} w 物品重量* @param {*} v 物品价值* @param {*} C 总容量* @returns*/
function knapsack(w, v, C) {let length = w.lengthif (length === 0) return 0// 对照表格,生成的二维数组,第一维代表物品,第二维代表背包剩余容量// 第二维中的元素代表背包物品总价值let array = new Array(length).fill(new Array(C + 1).fill(null))// 完成底部子问题的解for (let i = 0; i <= C; i++) {// 对照表格第一行, array[0] 代表物品 1// i 代表剩余总容量// 当剩余总容量大于物品 1 的重量时,记录下背包物品总价值,否则价值为 0array[0][i] = i >= w[0] ? v[0] : 0}// 自底向上开始解决子问题,从物品 2 开始for (let i = 1; i < length; i++) {for (let j = 0; j <= C; j++) {// 这里求解子问题,分别为不放当前物品和放当前物品// 先求不放当前物品的背包总价值,这里的值也就是对应表格中上一行对应的值array[i][j] = array[i - 1][j]// 判断当前剩余容量是否可以放入当前物品if (j >= w[i]) {// 可以放入的话,就比大小// 放入当前物品和不放入当前物品,哪个背包总价值大array[i][j] = Math.max(array[i][j], v[i] + array[i - 1][j - w[i]])}}}return array[length - 1][C]
}

最长递增子序列

最长递增子序列意思是在一组数字中,找出最长一串递增的数字,比如

0, 3, 4, 17, 2, 8, 6, 10

对于以上这串数字来说,最长递增子序列就是 0, 3, 4, 8, 10,可以通过以下表格更清晰的理解

数字 0 3 4 17 2 8 6 10
长度 1 2 3 4 2 4 4 5

通过以上表格可以很清晰的发现一个规律,找出刚好比当前数字小的数,并且在小的数组成的长度基础上加一。

这个问题的动态思路解法很简单,直接上代码

function lis(n) {if (n.length === 0) return 0// 创建一个和参数相同大小的数组,并填充值为 1let array = new Array(n.length).fill(1)// 从索引 1 开始遍历,因为数组已经所有都填充为 1 了for (let i = 1; i < n.length; i++) {// 从索引 0 遍历到 i// 判断索引 i 上的值是否大于之前的值for (let j = 0; j < i; j++) {if (n[i] > n[j]) {array[i] = Math.max(array[i], 1 + array[j])}}}let res = 1for (let i = 0; i < array.length; i++) {res = Math.max(res, array[i])}return res
}

字符串相关

在字符串相关算法中,Trie 树可以解决解决很多问题,同时具备良好的空间和时间复杂度,比如以下问题

  • 词频统计
  • 前缀匹配

如果你对于 Trie 树还不怎么了解,可以前往 这里 阅读

推荐文章:《JS 数据结构之旅 :通过JS实现栈、队列、二叉树、二分搜索树、AVL树、Trie树、并查集树、堆》

前端面试:你应该了解的JS算法相关的知识相关推荐

  1. Interview:人工智能岗位面试—人工智能岗位求职之机器学习算法工程师必备知识框架结构图

    Interview:人工智能岗位面试-人工智能岗位求职之机器学习算法工程师必备知识框架结构图 目录 机器学习算法工程师思维导图 机器学习算法工程师思维导图 后期继续更新-- 1.思维导图01

  2. 前端面试:手写代码JS实现字符串反转

    前端萌新面试:手写代码JS实现字符串反转 前言 因为做前年小红书的前端校招面试题,发现出现好几道关于字符串对象和数组对象的题目,说难不难,但突然要写的话一时想不起来,这不想着做个小总结. 首先明白字符 ...

  3. 【C++后台开发面经】面试总结第三波:针对后台开发相关基础知识分类总结

    前言 面试总结第三波,关于后台开发面试相关基础知识,数据结构.算法.linux操作系统.计算机网络.C++.数据库进行分类总结. 后端面试总结 目录 后端面试总结 1.数据结构 链表和数组的区别 树的 ...

  4. 前端面试题目汇总摘录(JS 基础篇 —— 2018.11.01更新)

    温故而知新,保持空杯心态 JS 基础 JavaScript 的 typeof 返回那些数据类型 object number function boolean undefined string type ...

  5. 前端面试题目汇总摘录(JS 基础篇)

    温故而知新,保持空杯心态 JS 基础 JavaScript 的 typeof 返回那些数据类型 object number function boolean undefined string type ...

  6. (建议收藏)前端面试必问的十六条HTTP网络知识体系

    大家好,我是若川.最近组织了源码共读活动,感兴趣的可以加我微信 ruochuan12 参与,每周大家一起学习200行左右的源码,共同进步.已进行四个月了,很多小伙伴表示收获颇丰. 想学源码,极力推荐订 ...

  7. AES算法相关数学知识 - 素域学习

    在AES算法中的MixColumn层中会用到伽罗瓦域中的乘法运算,而伽罗瓦域的运算涉及一些数学知识如下: 素域 有限域有时也称伽罗瓦域,它指的是由有限个元素组成的集合,在这个集合内可以执行加.减.乘和 ...

  8. 前端面试超全整理1( js 浏览器安全 性能)

    1.JS 基础面试题(一) 原始(Primitive)类型 涉及面试题:原始类型有哪几种?null 是对象嘛? 在 JS 中,存在着 6 种原始值,分别是: boolean null undefine ...

  9. 前端面试查漏补缺--(一) 防抖和节流

    前言 本系列最开始是为了自己面试准备的.后来发现整理越来越多,差不多有十二万字符,最后决定还是分享出来给大家. 为了分享整理出来,花费了自己大量的时间,起码是只自己用的三倍时间.如果喜欢的话,欢迎收藏 ...

最新文章

  1. spark SQL学习(综合案例-日志分析)
  2. Ajax入门(创建 XMLHttpRequest 对象)
  3. 这8种常见的SQL错误用法,你还在用吗?
  4. java 判断是合法语言_使用Java 怎么实现一个判断IP地址是否合法的功能
  5. 从DWG导入SKP后的封面问题
  6. Unity游戏ugui适配阿拉伯文本显示
  7. BCDboot 命令行选项
  8. matlab手动抠图,MATLAB可视化手动抠图
  9. 你对Redis的使用靠谱吗?Redis的性能高,吗?Redis可以保证原子性,吗?用Redis可以实现事务,吗?用Redis可以当队列,吗?Redis适合用来做什么?
  10. “数字人体”宫颈癌风险智能诊断大会小结
  11. 计算机管理即插即用服务,意外终止Plug and Play(即插即用)服务开启方法
  12. python抢票_抢票工具成了GitHub热榜第一,最新支持候补抢票,Python跑起来 | 标星8400...
  13. 转载:深入浅出的讲解傅里叶变换
  14. 菜鸟入门:Java程序员学习之路
  15. 「需求工程」需求工程-介绍(第1部分)
  16. 51中断优先级及中断嵌套
  17. 小程序毕设作品之微信积分商城小程序毕业设计成品(4)开题报告
  18. 添加底图&切换底图——参考ArcGIS API
  19. 咖啡再热闹,也逃不出巨头的手掌心
  20. 杂记——请再给我一点时间

热门文章

  1. 精选30个优秀的CSS技术和实例
  2. WebBrowser中显示乱码
  3. 8 个 jQuery 的 PDF 浏览插件
  4. 深入理解Magento – 第四章 – 模型和ORM基础
  5. reids的持久化 RDB和AOF
  6. linux设置date-hwclock-clock
  7. Spring-AOP概念及使用教程
  8. OpenVR——驱动接口之IServerTrackedDeviceProvider简介
  9. 【今日CS 视觉论文速览】1 Jan 2019
  10. 外键 级联操作 mysql