Python 3 学习笔记

  • 基础语法
    • 标识符
    • Python中的关键字
    • 注释
    • 缩进
    • 多行语句
    • 数字(Number)类型
    • 字符串(String)
    • 空行
    • 同一行显示多条语句
    • 多个语句构成代码组
    • print() 输出
      • print() 的定界符
    • import 与 from...import
    • 命令行参数
  • 基本数据类型
    • 多个变量赋值
    • 标准数据类型
    • Number(数字)
      • 数值运算
      • 数值类型实例
    • String(字符串)
      • 常见用法
        • center(self, width, fillchar=None)
        • count(self, sub, start=None, end=None)
        • encode(self, encodeing='utf-8', errors='strict')
        • endswith(self, suffix, start=None, end=None)和startswith(self, suffix, start=None, end=None)
        • find(self, sub, start=None, end=None)
        • isdigit()
        • join()
        • replace()
        • split(self, sep=None, maxsplit=-1)
        • strip()
    • List(列表)
    • Tuple(元组)
    • Set(集合)
    • Dictionary(字典)
      • dict()
  • 数据类型转换
    • 隐式类型转换
    • 显式类型转换
  • 推导式
    • 列表推导式
    • 字典推导式
    • 集合推导式
    • 元组推导式
  • Python3 解释器
  • Python3 运算符
    • 算术运算符
    • 比较运算符
    • 赋值运算符
    • 位运算符
    • 逻辑运算符
    • 成员运算符
    • 身份运算符
    • 运算符优先级
  • 条件控制
    • if 语句
    • if 嵌套
  • 循环语句
    • while 循环
      • while 循环使用 else 语句
      • 简单语句组
    • for 循环
      • range()函数
      • enumerate 函数
    • break 和 continue 语句
    • pass 语句
  • 迭代器与生成器
    • 创建一个迭代器
    • StopIteration
    • 生成器
      • yield
  • 函数
    • 函数定义的规则
    • 函数调用
    • 参数传递
      • 可更改(mutable)与不可更改(immutable)对象
      • 传不可变对象实例
      • 传可变对象实例
    • 参数
      • 必需参数
      • 关键字参数
      • 默认参数
      • 不定长参数
  • 模块
    • import 语句
    • from … import 语句
    • from … import * 语句
    • 深入模块
    • __name__属性
    • dir() 函数
    • 标准模块
    • 从一个包中导入*
  • 输入和输出

基础语法

默认情况下,Python 3 源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串。 当然你也可以为源码文件指定不同的编码:# -*- coding: cp-1252 -*-

标识符

  • 第一个字符必须是字母表中的字母或者下划线"_"。
  • 标识符的其他部分由字母、数字和下划线组成。
  • 标识符对大小写敏感。
  • 在Python 3 中,可以永中文作为变量名,非ASCII标识符也是允许的了。

Python中的关键字

即不能作为标识符的名称。Python中的 keyword 模块,可以输出当前版本的所有关键字。

>>> import keyword
>>> keyword.kwlist
>['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']

注释

单行注释义 # 开头,如:

#!/usr/bin/python3
#第一个注释
print("Hello Word")#第二个注释

执行以上代码,输出结果为:

Hello Word

多行注释可以用多个 # 号,还有 ‘’’ 和 “”":

#!/usr/bin/python3# 第一个注释
# 第二个注释'''
第三注释
第四注释
'''"""
第五注释
第六注释
"""
print ("Hello, Python!")

执行以上代码,输出结果为:

Hello, Python!

缩进

Python是以缩进来表示来表示代码块的,就像C语言用{}来表示代码块一样。所以Python中的缩进非常严格,同意该代码块的语句必须包含相同的缩进空格数。如下:

if True:print ("True")
else:print ("False")

以下代码最后一行语句缩进数的空格数不一致,会导致运行错误:

if True:print ("Answer")print ("True")
else:print ("Answer")print ("False")    # 缩进不一致,会导致运行错误

以上程序由于缩进不一致,执行后会出现类似以下错误:

File “test.py”, line 6
print (“False”) # 缩进不一致,会导致运行错误
^
IndentationError: unindent does not match any outer indentation level

多行语句

Python 通常是一行写完一条语句,但如果语句很长,我们可以使用反斜杠 \ 来实现多行语句,例如:

total = item_one + \item_two + \item_three

在 [], {}, 或 () 中的多行语句,不需要使用反斜杠 \,例如:

total = ['item_one', 'item_two', 'item_three','item_four', 'item_five']

数字(Number)类型

python中数字有四种类型:整数、布尔型、浮点数和复数。

  • int (整数), 如 1, 只有一种整数类型 int,表示为长整型,没有 python2 中的 Long。
  • bool (布尔), 如 True。
  • float (浮点数), 如 1.23、3E-2
  • complex (复数), 如 1 + 2j、 1.1 + 2.2j

字符串(String)

  • Python 中单引号 ’ 和双引号 " 使用完全相同。
  • 使用三引号(‘’’ 或 “”")可以指定一个多行字符串。
  • 转义符 \。
  • 反斜杠可以用来转义,使用 r 可以让反斜杠不发生转义。 如 r"this is a line with \n" 则 \n 会显示,并不是换行。
  • 按字面意义级联字符串,如 "this " "is " “string” 会被自动转换为 this is string。
  • 字符串可以用 + 运算符连接在一起,用 * 运算符重复。
  • Python 中的字符串有两种索引方式,从左往右以 0 开始,从右往左以 -1 开始。
  • Python 中的字符串不能改变。
  • Python 没有单独的字符类型,一个字符就是长度为 1 的字符串。
  • 字符串的截取的语法格式如下:变量[头下标:尾下标:步长]
word = '字符串'
sentence = "这是一个句子。"
paragraph = """这是一个段落,
可以由多行组成"""
#!/usr/bin/python3str='123456789'print(str)                 # 输出字符串
print(str[0:-1])           # 输出下标为0到最后一个字符之间的所有字符(不包括最后一个字符)
print(str[0])              # 输出字符串第一个字符
print(str[2:5])            # 输出从下标为2到下标为5之间的所有字符
print(str[2:])             # 输出下标为2开始后的所有字符
print(str[1:5:2])          # 输出从下标1开始到下标4且每隔一个的字符(步长为2)
print(str * 2)             # 输出字符串两次
print(str + '你好')         # 连接字符串print('------------------------------')print('hello\nrunoob')      # 使用反斜杠(\)+n转义特殊字符
print(r'hello\nrunoob')     # 在字符串前面添加一个 r,表示原始字符串,不会发生转义

以上实例输出结果:

123456789
12345678
1
345
3456789
24
123456789123456789
123456789你好


hello
runoob
hello\nrunoob

空行

函数之间或类的方法之间用空行分隔,表示一段新的代码的开始。类和函数入口之间也用一行空行分隔,以突出函数入口的开始。空行与代码缩进不同,空行并不是 Python 语法的一部分。书写时不插入空行,Python 解释器运行也不会出错。但是空行的作用在于分隔两段不同功能或含义的代码,便于日后代码的维护或重构。

记住:空行也是程序代码的一部分。

同一行显示多条语句

Python 可以在同一行中使用多条语句,语句之间使用分号 分割,以下是一个简单的实例:

#!/usr/bin/python3import sys; x = 'runoob'; sys.stdout.write(x + '\n')

使用pycharm执行以上代码,结果为:

runoob

使用CMD执行以上代码,结果为:

runoob
7

其中 7 表示字符数,runoob 有6个字符,\n 表示一个字符,加起来7个字符。

多个语句构成代码组

缩进相同的一组语句构成一个代码块,我们称之代码组。

像if、while、def和class这样的复合语句,首行以关键字开始,以冒号( : )结束,该行之后的一行或多行代码构成代码组。

我们将首行及后面的代码组称为一个子句(clause)。

如下实例:

if expression : suite
elif expression : suite
else : suite

print() 输出

print 默认输出是换行的,如果要实现不换行需要在变量末尾加上 end=“”:

#!/usr/bin/python3x="a"
y="b"
# 换行输出
print( x )
print( y )print('---------')
# 不换行输出
print( x, end=" " )
print( y, end=" " )
print()

以上实例执行结果为:

a
b
---------
a b

更多内容参考:Python2 与 Python3 print 不换行

print() 的定界符

在 print 打印的时候双引号与单引号都可以当做定界符使用,且可以嵌套。被嵌套的会被解释成为标点符号,反之一样。

代码实例:

print("Hello'World!")

这句代码执行时,外侧的双引号为定界符,里面的那个单引号为标点符号。

输出:

Hello’World!

print(‘Hello"World!’)

这句代码执行时,外侧的单引号为定界符,里面的那个双引号为标点符号。

输出:

Hello"World!

import 与 from…import

在 python 用import或者from…import来导入相应的模块。

将整个模块(somemodule)导入,格式为: import somemodule

从某个模块中导入某个函数,格式为: from somemodule import somefunction

从某个模块中导入多个函数,格式为: from somemodule import firstfunc, secondfunc, thirdfunc

将某个模块中的全部函数导入,格式为: from somemodule import *

导入 sys 模块:

import sys
print('================Python import mode==========================')
print ('命令行参数为:')
for i in sys.argv:print (i)
print ('\n python 路径为',sys.path)

导入 sys 模块的 argv,path 成员

from sys import argv,path  #  导入特定的成员print('================python from import===================================')
print('path:',path) # 因为已经导入path成员,所以此处引用时不需要加sys.path

命令行参数

很多程序可以执行一些操作来查看一些基本信息,Python可以使用-h参数查看各参数帮助信息:

$ python -h
usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...
Options and arguments (and corresponding environment variables):
-c cmd : program passed in as string (terminates option list)
-d     : debug output from parser (also PYTHONDEBUG=x)
-E     : ignore environment variables (such as PYTHONPATH)
-h     : print this help message and exit[ etc. ]

我们在使用脚本形式执行 Python 时,可以接收命令行输入的参数,具体使用可以参照 Python 3 命令行参数。

基本数据类型

Python 中的变量不需要声明。每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建。

在 Python 中,变量就是变量,它没有类型,我们所说的"类型"是变量所指的内存中对象的类型。

等号(=)用来给变量赋值。

等号(=)运算符左边是一个变量名,等号(=)运算符右边是存储在变量中的值。例如:

#!/usr/bin/python3counter = 100          # 整型变量
miles   = 1000.0       # 浮点型变量
name    = "runoob"     # 字符串print (counter)
print (miles)
print (name)

执行以上程序会输出如下结果:

100
1000.0
runoob

多个变量赋值

Python允许你同时为多个变量赋值。例如:

a = b = c = 1

以上实例,创建一个整型对象,值为 1,从后向前赋值,三个变量被赋予相同的数值。您也可以为多个对象指定多个变量。例如:

a, b, c = 1, 2, “runoob”

以上实例,两个整型对象 1 和 2 的分配给变量 a 和 b,字符串对象 “runoob” 分配给变量 c。

标准数据类型

标准数据类型
Python3 中有六个标准的数据类型:

  • Number(数字)
  • String(字符串)
  • List(列表)
  • Tuple(元组)
  • Set(集合)
  • Dictionary(字典)

Python3 的六个标准数据类型中:

  • 不可变数据(3 个):Number(数字)、String(字符串)、Tuple(元组);
  • 可变数据(3 个):List(列表)、Dictionary(字典)、Set(集合)。

Number(数字)

Python 3 内置的 type() 函数可以用来查询变量所指的对象类型。

a,b,c,d=20,5.5,True,4+3j
print(type(a), type(b), type(c), type(d))

输出结果:

<class ‘int’> <class ‘float’> <class ‘bool’> <class ‘complex’>

此外还可以用 isinstance 来判断:

a = 111
isinstance(a, int)

结果:

True

isinstance 和 type 的区别在于:

  • type()不会认为子类是一种父类类型。
  • isinstance()会认为子类是一种父类类型。

注意:Python3 中,bool 是 int 的子类,True 和 False 可以和数字相加, True== 1、False== 0 会返回 True,但可以通过 is 来判断类型。

>>> issubclass(bool, int)
True
>>> True==1
True
>>> False==0
True
>>> True+1
2
>>> False+1
1
>>> 1 is True
False
>>> 0 is False
False

在 Python2 中是没有布尔型的,它用数字 0 表示 False,用 1 表示 True。

当你为Number变量赋值时,Number变量才会被创建。

数值运算

>>> 5 + 4  # 加法
9
>>> 4.3 - 2 # 减法
2.3
>>> 3 * 7  # 乘法
21
>>> 2 / 4  # 除法,得到一个浮点数
0.5
>>> 2 // 4 # 除法,得到一个整数
0
>>> 17 % 3 # 取余
2
>>> 2 ** 5 # 乘方
32

注意:

  • Python可以同时为多个变量赋值,如a, b = 1, 2。
  • 一个变量可以通过赋值指向不同类型的对象。
  • 数值的除法包含两个运算符:/ 返回一个浮点数,// 返回一个整数。
  • 在混合计算时,Python会把整型转换成为浮点数。

数值类型实例

Python还支持复数,复数由实数部分和虚数部分构成,可以用a + bj,或者complex(a,b)表示, 复数的实部a和虚部b都是浮点型

更多详解

String(字符串)

Python中的字符串用单引号 ’ 或双引号 " 括起来,同时使用反斜杠 \ 转义特殊字符。
字符串的截取的语法格式如下:

变量[头下标:尾下标]

索引值以 0 为开始值,-1 为从末尾的开始位置。

加号 + 是字符串的连接符, 星号 * 表示复制当前字符串,与之结合的数字为复制的次数。实例如下:

#!/usr/bin/python3str = 'Runoob'print (str)          # 输出字符串
print (str[0:-1])    # 输出第一个到倒数第二个的所有字符
print (str[0])       # 输出字符串第一个字符
print (str[2:5])     # 输出从第三个开始到第五个的字符
print (str[2:])      # 输出从第三个开始的后的所有字符
print (str * 2)      # 输出字符串两次,也可以写成 print (2 * str)
print (str + "TEST") # 连接字符串

执行以上程序会输出如下结果:

Runoob
Runoo
R
noo
noob
RunoobRunoob
RunoobTEST

Python 使用反斜杠 \ 转义特殊字符,如果你不想让反斜杠发生转义,可以在字符串前面添加一个 r,表示原始字符串:

>>> print('Ru\noob')
Ru
oob
>>> print(r'Ru\noob')
Ru\noob
>>>

另外,反斜杠()可以作为续行符,表示下一行是上一行的延续。也可以使用 “”“…”“” 或者 ‘’‘…’‘’ 跨越多行。

word="""fdjks
fse"""

注意

  • Python 没有单独的字符类型,一个字符就是长度为1的字符串。
  • Python 字符串不能被改变。向一个索引位置赋值,比如word[0] = 'm’会导致错误。
  • 反斜杠可以用来转义,使用r可以让反斜杠不发生转义。
  • 字符串可以用+运算符连接在一起,用*运算符重复。
  • Python中的字符串有两种索引方式,从左往右以0开始,从右往左以-1开始。
  • Python中的字符串不能改变。

常见用法

center(self, width, fillchar=None)

>>> a = "amerrr"
>>> print(a.center(50,"-"))
----------------------amerrr-----------------------
>>>

count(self, sub, start=None, end=None)

查找字符串中字符出现的次数

>>> a = "amerrr"
>>> print(a.count('r',0,5))
2
>>>

encode(self, encodeing=‘utf-8’, errors=‘strict’)

endswith(self, suffix, start=None, end=None)和startswith(self, suffix, start=None, end=None)

判断结尾与开头

>>>a = "amerrr is boy"
>>>print(a.endswith("o", 0,12))
True

find(self, sub, start=None, end=None)

查找字符串
如果找到就返回所查字符的索引
如果没找到就返回-1

isdigit()

判断是否是整数

join()

字符串的拼接

>>> name = ["abc","def","ghv"]
>>> print("-".join(name))
abc-def-ghv
>>>

replace()

>>> a = "azxswqe"
>>> print(a.replace('a','P',1))
Pzxswqe

split(self, sep=None, maxsplit=-1)

将一个字符串变为列表 默认按照空格划分。

>>> a = "azxswxqefxefsfdxfe"
>>> print(a.split('x',2))
['az', 'sw', 'qefxefsfdxfe']

strip()

方法用于移除字符串头尾指定的字符(默认为空格或换行符)或字符序列。

str = "00000003210Runoob01230000000";
print str.strip( '0' ); # 去除首尾字符 0 str2 = " Runoob "; # 去除首尾空格
print str2.strip();# result3210Runoob0123Runoob

更多详解

List(列表)

List(列表) 是 Python 中使用最频繁的数据类型。

列表可以完成大多数集合类的数据结构实现。列表中元素的类型可以不相同,它支持数字,字符串甚至可以包含列表(所谓嵌套)。

列表是写在方括号 [] 之间、用逗号分隔开的元素列表。

和字符串一样,列表同样可以被索引和截取,列表被截取后返回一个包含所需元素的新列表。

列表截取的语法格式如下:

变量[头下标:尾下标]

索引值以 0 为开始值,-1 为从末尾的开始位置。

加号 + 是列表连接运算符,星号 * 是重复操作。如下实例:

#!/usr/bin/python3list = [ 'abcd', 786 , 2.23, 'runoob', 70.2 ]
tinylist = [123, 'runoob']print (list)            # 输出完整列表
print (list[0])         # 输出列表第一个元素
print (list[1:3])       # 从第二个开始输出到第三个元素
print (list[2:])        # 输出从第三个元素开始的所有元素
print (tinylist * 2)    # 输出两次列表
print (list + tinylist) # 连接列表

以上实例输出结果:

[‘abcd’, 786, 2.23, ‘runoob’, 70.2]
abcd
[786, 2.23]
[2.23, ‘runoob’, 70.2]
[123, ‘runoob’, 123, ‘runoob’]
[‘abcd’, 786, 2.23, ‘runoob’, 70.2, 123, ‘runoob’]

与Python字符串不一样的是,列表中的元素是可以改变的:

>>> a = [1, 2, 3, 4, 5, 6]
>>> a[0] = 9
>>> a[2:5] = [13, 14, 15]
>>> a
[9, 2, 13, 14, 15, 6]
>>> a[2:5] = []   # 将对应的元素值设置为 []
>>> a
[9, 2, 6]

List 内置了有很多方法,例如 append()、pop() 等等。
注意:

  • List写在方括号之间,元素用逗号隔开。
  • 和字符串一样,list可以被索引和切片。
  • List可以使用+操作符进行拼接。
  • List中的元素是可以改变的。

Python 列表截取可以接收第三个参数,参数作用是截取的步长,以下实例在索引 1 到索引 4 的位置并设置为步长为 2(间隔一个位置)来截取字符串:

如果第三个参数为负数表示逆向读取,以下实例用于翻转字符串:

def reverseWords(input):# 通过空格将字符串分隔符,把各个单词分隔为列表inputWords = input.split(" ")# 翻转字符串# 假设列表 list = [1,2,3,4],  # list[0]=1, list[1]=2 ,而 -1 表示最后一个元素 list[-1]=4 ( 与 list[3]=4 一样)# inputWords[-1::-1] 有三个参数# 第一个参数 -1 表示最后一个元素# 第二个参数为空,表示移动到列表末尾# 第三个参数为步长,-1 表示逆向inputWords=inputWords[-1::-1]# 重新组合字符串output = ' '.join(inputWords)return outputif __name__ == "__main__":input = 'I like runoob'rw = reverseWords(input)print(rw)

输出结果为:

runoob like I

更多详解

Tuple(元组)

元组(tuple)与列表类似,不同之处在于元组的元素不能修改。元组写在小括号 () 里,元素之间用逗号隔开。元组中的元素类型也可以不相同:

#!/usr/bin/python3tuple = ( 'abcd', 786 , 2.23, 'runoob', 70.2  )
tinytuple = (123, 'runoob')print (tuple)             # 输出完整元组
print (tuple[0])          # 输出元组的第一个元素
print (tuple[1:3])        # 输出从第二个元素开始到第三个元素
print (tuple[2:])         # 输出从第三个元素开始的所有元素
print (tinytuple * 2)     # 输出两次元组
print (tuple + tinytuple) # 连接元组

以上实例输出结果:

(‘abcd’, 786, 2.23, ‘runoob’, 70.2)
abcd
(786, 2.23)
(2.23, ‘runoob’, 70.2)
(123, ‘runoob’, 123, ‘runoob’)
(‘abcd’, 786, 2.23, ‘runoob’, 70.2, 123, ‘runoob’)

注意:

  • 元组也可以使用+操作符进行拼接。

  • 与字符串一样,元组的元素不能修改。

  • 元组的元素不可改变,但它可以包含可变的对象,比如List列表。

  • 构造包含 0 个或 1 个元素的元组比较特殊,所以有一些额外的语法规则:

    tup1 = ()    # 空元组
    tup2 = (20,) # 一个元素,需要在元素后添加逗号
    

更多详解

Set(集合)

集合(set)是由一个或数个形态各异的大小整体组成的,构成集合的事物或对象称作元素或是成员。

基本功能是进行成员关系测试和删除重复元素。

可以使用大括号 { } 或者 set() 函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建一个空字典。

创建格式:

parame = {value01,value02,…}
或者
set(value)

实例:

#!/usr/bin/python3sites = {'Google', 'Taobao', 'Runoob', 'Facebook', 'Zhihu', 'Baidu'}print(sites)   # 输出集合,重复的元素被自动去掉# 成员测试
if 'Runoob' in sites :print('Runoob 在集合中')
else :print('Runoob 不在集合中')a = set('abcd')
b = set('alacazam')
c={'sfse','csae'}print(a)
print(b)
print(c)
print(a - b)     # a 和 b 的差集
print(a | b)     # a 和 b 的并集
print(a & b)     # a 和 b 的交集
print(a ^ b)     # a 和 b 中不同时存在的元素

以上实例的输出结果:

{‘Taobao’, ‘Zhihu’, ‘Runoob’, ‘Facebook’, ‘Baidu’, ‘Google’}
Runoob 在集合中
{‘b’, ‘c’, ‘a’, ‘d’}
{‘z’, ‘l’, ‘m’, ‘c’, ‘a’}
{‘sfse’, ‘csae’}
{‘b’, ‘d’}
{‘z’, ‘l’, ‘b’, ‘d’, ‘m’, ‘c’, ‘a’}
{‘c’, ‘a’}
{‘m’, ‘z’, ‘l’, ‘b’, ‘d’}

更多详解

Dictionary(字典)

字典(dictionary)是Python中另一个非常有用的内置数据类型。列表是有序的对象集合,字典是无序的对象集合。两者之间的区别在于:字典当中的元素是通过来存取的,而不是通过偏移存取。

字典是一种映射类型,字典用 { } 标识,它是一个无序的 键(key) : 值(value) 的集合。

键(key)必须使用不可变类型,在同一个字典中,键(key)必须是唯一的。
实例:

#!/usr/bin/python3dict = {}
dict['one'] = "1 - 菜鸟教程"
dict[2]     = "2 - 菜鸟工具"tinydict = {'name': 'runoob','code':1, 'site': 'www.runoob.com'}print (dict['one'])       # 输出键为 'one' 的值
print (dict[2])           # 输出键为 2 的值
print (tinydict)          # 输出完整的字典
print (tinydict.keys())   # 输出所有键
print (tinydict.values()) # 输出所有值

以上实例的输出结果:

1 - 菜鸟教程
2 - 菜鸟工具
{‘name’: ‘runoob’, ‘code’: 1, ‘site’: ‘www.runoob.com’}
dict_keys([‘name’, ‘code’, ‘site’])
dict_values([‘runoob’, 1, ‘www.runoob.com’])

dict()

构造函数 dict() 可以直接从键值对序列中构建字典。

>>> dict([('Runoob', 1), ('Google', 2), ('Taobao', 3)])
{'Runoob': 1, 'Google': 2, 'Taobao': 3}
>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}
>>> dict(Runoob=1, Google=2, Taobao=3)
{'Runoob': 1, 'Google': 2, 'Taobao': 3}

另外,字典类型也有一些内置的函数,例如 clear()、keys()、values() 等。
注意:

  • 字典是一种映射类型,它的元素是键值对。
  • 字典的关键字必须为不可变类型,且不能重复。
  • 创建空字典使用 { }。

更多详解

数据类型转换

有时候,我们需要对数据内置的类型进行转换,数据类型的转换,一般情况下你只需要将数据类型作为函数名即可。
Python 数据类型转换可以分为两种:

  • 隐式类型转换 - 自动完成
  • 显式类型转换 - 需要使用类型函数来转换

隐式类型转换

Python 会自动将一种数据类型转换为另一种数据类型,不需要我们去干预。
以下实例中,我们对两种不同类型的数据进行运算,较低数据类型(整数)就会转换为较高数据类型(浮点数)以避免数据丢失。

num_int = 123
num_flo = 1.23num_new = num_int + num_floprint("datatype of num_int:",type(num_int))
print("datatype of num_flo:",type(num_flo))print("Value of num_new:",num_new)
print("datatype of num_new:",type(num_new))

以上实例输出结果为:

num_int 数据类型为: <class ‘int’>
num_flo 数据类型为: <class ‘float’>
num_new: 值为: 124.23
num_new 数据类型为: <class ‘float’>

我们再看一个实例,整型数据与字符串类型的数据进行相加:

num_int = 123
num_str = "456"print("Data type of num_int:",type(num_int))
print("Data type of num_str:",type(num_str))print(num_int+num_str)

以上实例输出结果为:

num_int 数据类型为: <class ‘int’>
num_str 数据类型为: <class ‘str’>
Traceback (most recent call last):
File “/runoob-test/test.py”, line 7, in
print(num_int+num_str)
TypeError: unsupported operand type(s) for +: ‘int’ and ‘str’

从输出中可以看出,整型和字符串类型运算结果会报错,输出 TypeError。 Python 在这种情况下无法使用隐式转换。但是,Python 为这些类型的情况提供了一种解决方案,称为显式转换。

显式类型转换

在显式类型转换中,用户将对象的数据类型转换为所需的数据类型。 我们使用 int()、float()、str() 等预定义函数来执行显式类型转换。
int() 强制转换为整型:

x = int(1)   # x 输出结果为 1
y = int(2.8) # y 输出结果为 2
z = int("3") # z 输出结果为 3

其他类型也是类似。
整型和字符串类型进行运算,就可以用强制类型转换来完成:

num_int = 123
num_str = "456"print("num_int 数据类型为:",type(num_int))
print("类型转换前,num_str 数据类型为:",type(num_str))num_str = int(num_str)    # 强制转换为整型
print("类型转换后,num_str 数据类型为:",type(num_str))num_sum = num_int + num_strprint("num_int 与 num_str 相加结果为:",num_sum)
print("sum 数据类型为:",type(num_sum))

以上实例输出结果为:

num_int 数据类型为: <class ‘int’>
类型转换前,num_str 数据类型为: <class ‘str’>
类型转换后,num_str 数据类型为: <class ‘int’>
num_int 与 num_str 相加结果为: 579
sum 数据类型为: <class ‘int’>

**注意:**字符串类型转换为int或者float类型时字符串中不能包含除数字之外的字符。
函数 描述
int(x [,base]) 将x转换为一个整数
float(x) 将x转换到一个浮点数
complex(real[,imag]) 创建一个复数
str(x) 将对象x转换为字符串
repr(x) 将对象x转换为表达式字符串
eval(str) 用来计算在字符串中的有效Python表达式,并返回一个对象
tuple(s) 将序列 s 转换为一个元组
list(s) 将序列 s 转换为一个列表
set(s) 转换为可变集合
dict(d) 创建一个字典。d 必须是一个 (key, value)元组序列。
frozenset(s) 转换为不可变集合
chr(x) 将一个整数转换为一个字符
ord(x) 将一个字符转换为它的整数值
hex(x) 将一个整数转换为一个十六进制字符串
oct(x) 将一个整数转换为一个八进制字符串

推导式

Python 推导式是一种独特的数据处理方式,可以从一个数据序列构建另一个新的数据序列的结构体。

Python 支持各种数据结构的推导式:

  • 列表(list)推导式
  • 字典(dict)推导式
  • 集合(set)推导式
  • 元组(tuple)推导式

列表推导式

列表推导式格式为:

[表达式 for 变量 in 列表]
[out_exp_res for out_exp in input_list]

或者

[表达式 for 变量 in 列表 if 条件]
[out_exp_res for out_exp in input_list if condition]

  • out_exp_res:列表生成元素表达式,可以是有返回值的函数。
  • for out_exp in input_list:迭代 input_list 将 out_exp 传入到 out_exp_res 表达式中。
  • if condition:条件语句,可以过滤列表中不符合条件的值。

例如:

#过滤掉长度小于或等于3的字符串列表,并将剩下的转换成大写字母
names = ['Bob','Tom','alice','Jerry','Wendy','Smith']
new_names = [name.upper()for name in names if len(name)>3]
print(new_names)

结果为:

[‘ALICE’, ‘JERRY’, ‘WENDY’, ‘SMITH’]

#计算 30 以内可以被 3 整除的整数。
multiples = [i for i in range(30) if i % 3 == 0]
print(multiples)

结果为:

[0, 3, 6, 9, 12, 15, 18, 21, 24, 27]

字典推导式

字典推导基本格式:

{ key_expr: value_expr for value in collection }

{ key_expr: value_expr for value in collection if condition }

使用字符串及其长度创建字典:

listdemo = ['Google','Runoob', 'Taobao']
# 将列表中各字符串值为键,各字符串的长度为值,组成键值对
newdict = {key:len(key) for key in listdemo}
print(newdict)

结果为:

{‘Google’: 6, ‘Runoob’: 6, ‘Taobao’: 6}

提供三个数字,以三个数字为键,三个数字的平方为值来创建字典:

dic = {x: x**2 for x in (2, 4, 6)}
print(dic)
print(type(dic))

结果为:

{2: 4, 4: 16, 6: 36}
<class ‘dict’>

集合推导式

集合推导式基本格式:

{ expression for item in Sequence }

{ expression for item in Sequence if conditional }

计算数字 1,2,3 的平方数:

setnew = {i**2 for i in (1,2,3)}
print(setnew)

结果为:

{1, 4, 9}

判断不是 abc 的字母并输出:

a = {x for x in 'abracadabra' if x not in 'abc'}
print(a)
print(type(a))

结果为:

{‘d’, ‘r’}
<class ‘set’>

元组推导式

元组推导式可以利用 range 区间、元组、列表、字典和集合等数据类型,快速生成一个满足指定需求的元组。

元组推导式基本格式:

(expression for item in Sequence )

(expression for item in Sequence if conditional )

元组推导式和列表推导式的用法也完全相同,只是元组推导式是用 () 圆括号将各部分括起来,而列表推导式用的是中括号 [],另外元组推导式返回的结果是一个生成器对象。

例如,我们可以使用下面的代码生成一个包含数字 1~9 的元组:

a = (x for x in range(1,10))
print(a)
print(tuple(a))       # 使用 tuple() 函数,可以直接将生成器对象转换成元组

结果为:

<generator object at 0x7faf6ee20a50> # 返回的是生成器对象
(1, 2, 3, 4, 5, 6, 7, 8, 9)

Python3 解释器

Python3 运算符

Python 语言支持以下类型的运算符:

  • 算术运算符
  • 比较(关系)运算符
  • 赋值运算符
  • 逻辑运算符
  • 位运算符
  • 成员运算符
  • 身份运算符
  • 运算符优先级

算术运算符

以下假设变量 a=10,变量 b=21:

比较运算符

以下假设变量a为10,变量b为20:

赋值运算符

以下假设变量a为10,变量b为20:

位运算符

按位运算符是把数字看作二进制来进行计算的。Python中的按位运算法则如下:

下表中变量 a 为 60,b 为 13二进制格式如下:

a = 0011 1100

b = 0000 1101
-----------------
a&b = 0000 1100
a|b = 0011 1101
a^b = 0011 0001
~a = 1100 0011


例如,剑指offer上面的一道:

输入一个整数,输出该数二进制表示中1的个数。其中负数用补码表示。
代码:

# -*- coding:utf-8 -*-
n = int(input())
cnt = 0
if n<0:n = n & 0xffffffff
while n:cnt+=1n = (n-1) & n
print(cnt)

逻辑运算符

Python语言支持逻辑运算符,以下假设变量 a 为 0, b为 20:

成员运算符

除了以上的一些运算符之外,Python还支持成员运算符,测试实例中包含了一系列的成员,包括字符串,列表或元组。

身份运算符

身份运算符用于比较两个对象的存储单元

: id() 函数用于获取对象内存地址。

#!/usr/bin/python3a = 20
b = 20if ( a is b ):print ("1 - a 和 b 有相同的标识")
else:print ("1 - a 和 b 没有相同的标识")if ( id(a) == id(b) ):print ("2 - a 和 b 有相同的标识")
else:print ("2 - a 和 b 没有相同的标识")# 修改变量 b 的值
b = 30
if ( a is b ):print ("3 - a 和 b 有相同的标识")
else:print ("3 - a 和 b 没有相同的标识")if ( a is not b ):print ("4 - a 和 b 没有相同的标识")
else:print ("4 - a 和 b 有相同的标识")

输出结果为:

1 - a 和 b 有相同的标识
2 - a 和 b 有相同的标识
3 - a 和 b 没有相同的标识
4 - a 和 b 没有相同的标识

“is” 与” = = "区别:
is 用于判断两个变量引用对象是否为同一个, == 用于判断引用变量的值是否相等。

运算符优先级

以下表格列出了从最到最优先级的所有运算符, 相同单元格内的运算符具有相同优先级。 运算符均指二元运算,除非特别指出。 相同单元格内的运算符从左至右分组(除了幂运算是从右至左分组):

注意:Python3 已不支持 <> 运算符,可以使用 != 代替,如果你一定要使用这种比较运算符,可以使用以下的方式:

>>> from __future__ import barry_as_FLUFL
>>> 1 <> 2
True

条件控制

if 语句

Python中if语句的一般形式如下所示:

if condition_1:statement_block_1
elif condition_2:statement_block_2
else:statement_block_3
  • 如果 “condition_1” 为 True 将执行 “statement_block_1” 块语句
  • 如果 “condition_1” 为False,将判断 “condition_2”
  • 如果"condition_2" 为 True 将执行 “statement_block_2” 块语句
  • 如果 “condition_2” 为False,将执行"statement_block_3"块语句

Python 中用 elif 代替了 else if,所以if语句的关键字为:if – elif – else。

注意:

  • 1、每个条件后面要使用冒号 :,表示接下来是满足条件后要执行的语句块。
  • 2、使用缩进来划分语句块,相同缩进数的语句在一起组成一个语句块。
  • 3、在Python中没有switch – case语句。

if 嵌套

在嵌套 if 语句中,可以把 if…elif…else 结构放在另外一个 if…elif…else 结构中。
例如:

# !/usr/bin/python3num=int(input("输入一个数字:"))
if num%2==0:if num%3==0:print ("你输入的数字可以整除 2 和 3")else:print ("你输入的数字可以整除 2,但不能整除 3")
else:if num%3==0:print ("你输入的数字可以整除 3,但不能整除 2")else:print  ("你输入的数字不能整除 2 和 3")

执行结果为:

输入一个数字:6
你输入的数字可以整除 2 和 3

循环语句

while 循环

Python 中 while 语句的一般形式:

while 判断条件(condition):

执行语句(statements)……

以下实例使用了 while 来计算 1 到 50 的总和:

#!/usr/bin/env python3n = 50sum = 0
counter = 1
while counter <= n:sum = sum + countercounter += 1print("1 到 %d 之和为: %d" % (n,sum))

执行结果如下:

1 到 100 之和为: 1275

while 循环使用 else 语句

简单语句组

类似if语句的语法,如果你的while循环体中只有一条语句,你可以将该语句与while写在同一行中, 如下所示:

#!/usr/bin/pythonflag = 1while (flag): print ('Python')print ("Good bye!")

**注意:**以上的无限循环你可以使用 CTRL+C 来中断循环。

执行以上脚本,输出结果如下:

Python
Python
Python
Python
Python

for 循环

Python for 循环可以遍历任何可迭代对象,如一个列表或者一个字符串。

for循环的一般格式如下:

for <variable> in <sequence>:<statements>
else:<statements>

for 循环实例:

>>>languages = ["C", "C++", "Perl", "Python"]
>>> for x in languages:
...     print (x)
...
C
C++
Perl
Python
>>>

以下 for 实例中使用了 break 语句,break 语句用于跳出当前循环体

#!/usr/bin/python3sites = ["Baidu", "Google","Runoob","Taobao"]
for site in sites:if site == "Runoob":print("Python")breakprint("循环数据 " + site)
else:print("没有循环数据!")
print("完成循环!")

执行脚本后,在循环到 "Runoob"时会跳出循环体:

循环数据 Baidu
循环数据 Google
Python
完成循环!

range()函数

如果你需要遍历数字序列,可以使用内置range()函数。它会生成数列,例如:

>>>for i in range(5):
...     print(i)
...
0
1
2
3
4

你也可以使用range指定区间的值:

>>>for i in range(5,9) :print(i)5
6
7
8
>>>

也可以使range以指定数字开始并指定不同的增量(甚至可以是负数,有时这也叫做’步长’):

>>>for i in range(0, 10, 3) :print(i)0
3
6
9
>>>

负数:

>>>for i in range(-10, -100, -30) :print(i)-10
-40
-70
>>>

您可以结合range()和len()函数以遍历一个序列的索引,如下所示:

>>>a = ['Google', 'Baidu', 'Runoob', 'Taobao', 'QQ']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Google
1 Baidu
2 Runoob
3 Taobao
4 QQ
>>>

还可以使用range()函数来创建一个列表:

>>>list(range(5))
[0, 1, 2, 3, 4]
>>>

enumerate 函数

使用内置 enumerate 函数进行遍历:

for index, item in enumerate(sequence):process(index, item)

实例:

>>> sequence = [12, 34, 34, 23, 45, 76, 89]
>>> for i, j in enumerate(sequence):
...     print(i, j)
...
0 12
1 34
2 34
3 23
4 45
5 76
6 89

break 和 continue 语句

while 语句代码执行过程:

for 语句代码执行过程:

break 语句可以跳出 for 和 while 的循环体。如果你从 for 或 while 循环中终止,任何对应的循环 else 块将不执行。

continue 语句被用来告诉 Python 跳过当前循环块中的剩余语句,然后继续进行下一轮循环。

pass 语句

Python pass是空语句,是为了保持程序结构的完整性。

pass 不做任何事情,一般用做占位语句,如下实例

>>>while True:
...     pass  # 等待键盘中断 (Ctrl+C)

最小的类:

>>>class MyEmptyClass:
...     pass

以下实例在字母为 o 时 执行 pass 语句块:

#!/usr/bin/python3for letter in 'Runoob': if letter == 'o':passprint ('执行 pass 块')print ('当前字母 :', letter)print ("Good bye!")

执行以上脚本输出结果为:

当前字母 : R
当前字母 : u
当前字母 : n
执行 pass 块
当前字母 : o
执行 pass 块
当前字母 : o
当前字母 : b
Good bye!

迭代器与生成器

迭代器:

  • 迭代是Python最强大的功能之一,是访问集合元素的一种方式。
  • 迭代器是一个可以记住遍历的位置的对象。
  • 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
  • 迭代器有两个基本的方法:iter()next()
  • 字符串,列表或元组对象都可用于创建迭代器:

实例:

>>> list=[1,2,3,4]
>>> it = iter(list)    # 创建迭代器对象
>>> print (next(it))   # 输出迭代器的下一个元素
1
>>> print (next(it))
2
>>>

迭代器对象可以使用常规for语句进行遍历:

#!/usr/bin/python3list=[1,2,3,4]
it = iter(list)    # 创建迭代器对象
for x in it:print (x, end=" ")

执行以上程序,输出结果如下:

1 2 3 4

也可以使用 next() 函数:

#!/usr/bin/python3import sys         # 引入 sys 模块list=[1,2,3,4]
it = iter(list)    # 创建迭代器对象while True:try:print (next(it))except StopIteration:sys.exit()

执行以上程序,输出结果如下:

1
2
3
4

创建一个迭代器

把一个类作为一个迭代器使用需要在类中实现两个方法 __ iter__() 与 __ next__ () 。

如果你已经了解的面向对象编程,就知道类都有一个构造函数,Python 的构造函数为 __ init__(), 它会在对象初始化的时候执行。

Python3 面向对象

__ iter__() 方法返回一个特殊的迭代器对象, 这个迭代器对象实现了 __ next__() 方法并通过 StopIteration 异常标识迭代的完成。

__ next__() 方法(Python 2 里是 next())会返回下一个迭代器对象。

创建一个返回数字的迭代器,初始值为 1,逐步递增 1:

class MyNumbers:def __iter__(self):self.a = 1return selfdef __next__(self):x = self.aself.a += 1return xmyclass = MyNumbers()
myiter = iter(myclass)print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))

执行输出结果为:

1
2
3
4
5

StopIteration

StopIteration 异常用于标识迭代的完成,防止出现无限循环的情况,在 next() 方法中我们可以设置在完成指定循环次数后触发 StopIteration 异常来结束迭代。

在 20 次迭代后停止执行:

class MyNumbers:def __iter__(self):self.a = 1return selfdef __next__(self):if self.a <= 20:x = self.aself.a += 1return xelse:raise StopIterationmyclass = MyNumbers()
myiter = iter(myclass)for x in myiter:print(x)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

生成器

在 Python 中,使用了 yield 的函数被称为生成器(generator)。

跟普通函数不同的是,生成器是一个返回迭代器的函数,只能用于迭代操作,更简单点理解生成器就是一个迭代器。

在调用生成器运行的过程中,每次遇到 yield 时函数会暂停并保存当前所有的运行信息,返回 yield 的值, 并在下一次执行 next() 方法时从当前位置继续运行。

调用一个生成器函数,返回的是一个迭代器对象。

以下实例使用 yield 实现斐波那契数列:

#!/usr/bin/python3import sysdef fibonacci(n): # 生成器函数 - 斐波那契a, b, counter = 0, 1, 0while True:if (counter > n): returnyield aa, b = b, a + bcounter += 1
f = fibonacci(10) # f 是一个迭代器,由生成器返回生成while True:try:print (next(f), end=" ")except StopIteration:sys.exit()

执行以上程序,输出结果如下:

0 1 1 2 3 5 8 13 21 34 55

yield

对yield的测试结果:

  • 打个比方的话,yield有点像断点。 加了yield的函数,每次执行到有yield的时候,会返回yield后面的值 并且函数会暂停,直到下次调用或迭代终止;
  • yield后面可以加多个数值(可以是任意类型),但返回的值是元组类型的。

下面代码中#后面是输出结果

def get():m = 0n = 2l = ['s',1,3]k = {1:1,2:2}p = ('2','s','t')while True:m += 1yield myield m ,n ,l ,k ,pit = get()
print(next(it)) #1
print(next(it)) #(1, 2, ['s', 1, 3], {1: 1, 2: 2}, ('2', 's', 't'))print(next(it)) #2
print(type(next(it))) #<class 'tuple'>

详解

函数

函数定义的规则

  • 函数代码块以 def 关键词开头,后接函数标识符名称和圆括号 ()。
  • 任何传入参数和自变量必须放在圆括号中间,圆括号之间可以用于定义参数。
  • 函数的第一行语句可以选择性地使用文档字符串—用于存放函数说明。
  • 函数内容以冒号 : 起始,并且缩进。
  • return [表达式] 结束函数,选择性地返回一个值给调用方,不带表达式的 return 相当于返回 None。

函数调用

定义一个函数:给了函数一个名称,指定了函数里包含的参数,和代码块结构。

这个函数的基本结构完成以后,你可以通过另一个函数调用执行,也可以直接从 Python 命令提示符执行。

如下实例调用了 printme() 函数:

#!/usr/bin/python3# 定义函数
def printme( str ):# 打印任何传入的字符串print (str)return# 调用函数
printme("我要调用用户自定义函数!")
printme("再次调用同一函数")

以上实例输出结果:

我要调用用户自定义函数!
再次调用同一函数

参数传递

在 python 中,类型属于对象,对象有不同类型的区分,变量是没有类型的:

a=[1,2,3]

a=“Runoob”

以上代码中,[1,2,3] 是 List 类型,“Runoob” 是 String 类型,而变量 a 是没有类型,她仅仅是一个对象的引用(一个指针),可以是指向 List 类型对象,也可以是指向 String 类型对象。

可更改(mutable)与不可更改(immutable)对象

在 python 中,strings, tuples, 和 numbers 是不可更改的对象,而 list,dict 等则是可以修改的对象。

  • 不可变类型:变量赋值 a=5 后再赋值 a=10,这里实际是新生成一个 int 值对象 10,再让 a 指向它,而 5 被丢弃,不是改变 a 的值,相当于新生成了 a。

  • 可变类型:变量赋值 la=[1,2,3,4] 后再赋值 la[2]=5 则是将 list la 的第三个元素值更改,本身la没有动,只是其内部的一部分值被修改了。

python 函数的参数传递:

  • 不可变类型:类似 C++ 的值传递,如整数、字符串、元组。如 fun(a),传递的只是 a 的值,没有影响 a 对象本身。如果在 fun(a) 内部修改 a 的值,则是新生成一个 a 的对象。

  • 可变类型:类似 C++ 的引用传递,如 列表,字典。如 fun(la),则是将 la 真正的传过去,修改后 fun 外部的 la 也会受影响

python 中一切都是对象,严格意义我们不能说值传递还是引用传递,我们应该说传不可变对象和传可变对象。

传不可变对象实例

传不可变对象实例

def change(a):print(id(a))   # 指向的是同一个对象a=10print(id(a))   # 一个新对象a=1
print(id(a))
change(a)

以上实例输出结果为:

4379369136
4379369136
4379369424

可以看见在调用函数前后,形参和实参指向的是同一个对象(对象 id 相同),在函数内部修改形参后,形参指向的是不同的 id。

传可变对象实例

可变对象在函数里修改了参数,那么在调用这个函数的函数里,原始的参数也被改变了。例如:

#!/usr/bin/python3# 可写函数说明
def changeme( mylist ):"修改传入的列表"mylist.append([1,2,3,4])print ("函数内取值: ", mylist)return# 调用changeme函数
mylist = [10,20,30]
changeme( mylist )
print ("函数外取值: ", mylist)

传入函数的和在末尾添加新内容的对象用的是同一个引用。故输出结果如下:

函数内取值: [10, 20, 30, [1, 2, 3, 4]]
函数外取值: [10, 20, 30, [1, 2, 3, 4]]

参数

以下是调用函数时可使用的正式参数类型:

  • 必需参数
  • 关键字参数
  • 默认参数
  • 不定长参数

必需参数

必需参数须以正确的顺序传入函数。调用时的数量必须和声明时的一样。

调用 printme() 函数,你必须传入一个参数,不然会出现语法错误:

#!/usr/bin/python3#可写函数说明
def printme( str ):"打印任何传入的字符串"print (str)return# 调用 printme 函数,不加参数会报错
printme()

以上实例输出结果:

Traceback (most recent call last):File "test.py", line 10, in <module>printme()
TypeError: printme() missing 1 required positional argument: 'str'

关键字参数

以下实例中演示了函数参数的使用不需要使用指定顺序:

#!/usr/bin/python3#可写函数说明
def printinfo( name, age ):"打印任何传入的字符串"print ("名字: ", name)print ("年龄: ", age)return#调用printinfo函数
printinfo( age=50, name="runoob" )

以上实例输出结果:

名字: runoob
年龄: 50

默认参数

调用函数时,如果没有传递参数,则会使用默认参数。以下实例中如果没有传入 age 参数,则使用默认值:

#!/usr/bin/python3#可写函数说明
def printinfo( name, age = 35 ):"打印任何传入的字符串"print ("名字: ", name)print ("年龄: ", age)return#调用printinfo函数
printinfo( age=50, name="runoob" )
print ("------------------------")
printinfo( name="runoob" )

以上实例输出结果:

名字:  runoob
年龄:  50
------------------------
名字:  runoob
年龄:  35

注意:默认参数必须放在最后面,不然会报错。

不定长参数

你可能需要一个函数能处理比当初声明时更多的参数。这些参数叫做不定长参数,和上述 2 种参数不同,声明时不会命名。基本语法如下:

def functionname([formal_args,] *var_args_tuple ):"函数_文档字符串"function_suitereturn [expression]

加了星号 * 的参数会以元组(tuple)的形式导入,存放所有未命名的变量参数。

#!/usr/bin/python3# 可写函数说明
def printinfo( arg1, *vartuple ):"打印任何传入的参数"print ("输出: ")print (arg1)print (vartuple)# 调用printinfo 函数
printinfo( 70, 60, 50 )

以上实例输出结果:

输出:
70
(60, 50)

还有一种就是参数带两个星号 **。

加了两个星号 ** 的参数会以字典的形式导入。

#!/usr/bin/python3# 可写函数说明
def printinfo( arg1, **vardict ):"打印任何传入的参数"print ("输出: ")print (arg1)print (vardict)# 调用printinfo 函数
printinfo(1, a=2,b=3)

以上实例输出结果:

输出:
1
{'a': 2, 'b': 3}

模块

import 语句

想使用 Python 源文件,只需在另一个源文件里执行 import 语句,语法如下:

import module1[, module2[,… moduleN]

当解释器遇到 import 语句,如果模块在当前的搜索路径就会被导入。

搜索路径是一个解释器会先进行搜索的所有目录的列表。如想要导入模块 support,需要把命令放在脚本的顶端:

#!/usr/bin/python3
# Filename: support.pydef print_func( par ):print ("Hello : ", par)return

test.py 引入 support 模块:

#!/usr/bin/python3
# Filename: test.py# 导入模块
import support# 现在可以调用模块里包含的函数了
support.print_func("Runoob")

以上实例输出结果:

$ python3 test.py
Hello :  Runoob

一个模块只会被导入一次,不管你执行了多少次 import。这样可以防止导入模块被一遍又一遍地执行。

当我们使用 import 语句的时候,Python 解释器是怎样找到对应的文件的呢?

这就涉及到 Python 的搜索路径,搜索路径是由一系列目录名组成的,Python 解释器就依次从这些目录中去寻找所引入的模块。

这看起来很像环境变量,事实上,也可以通过定义环境变量的方式来确定搜索路径。

搜索路径是在 Python 编译或安装的时候确定的,安装新的库应该也会修改。搜索路径被存储在 sys 模块中的 path 变量,做一个简单的实验,在交互式解释器中,输入以下代码:

>>> import sys
>>> sys.path
['', '/usr/lib/python3.4', '/usr/lib/python3.4/plat-x86_64-linux-gnu', '/usr/lib/python3.4/lib-dynload', '/usr/local/lib/python3.4/dist-packages', '/usr/lib/python3/dist-packages']
>>>

sys.path 输出是一个列表,其中第一项是空串 ‘’,代表当前目录(若是从一个脚本中打印出来的话,可以更清楚地看出是哪个目录),亦即我们执行python解释器的目录(对于脚本的话就是运行的脚本所在的目录)。

因此若像我一样在当前目录下存在与要引入模块同名的文件,就会把要引入的模块屏蔽掉。

了解了搜索路径的概念,就可以在脚本中修改sys.path来引入一些不在搜索路径中的模块。

现在,在解释器的当前目录或者 sys.path 中的一个目录里面来创建一个fibo.py的文件,代码如下:

# 斐波那契(fibonacci)数列模块def fib(n):    # 定义到 n 的斐波那契数列a, b = 0, 1while b < n:print(b, end=' ')a, b = b, a+bprint()def fib2(n): # 返回到 n 的斐波那契数列result = []a, b = 0, 1while b < n:result.append(b)a, b = b, a+breturn result

然后进入Python解释器,使用下面的命令导入这个模块:

>>> import fibo

这样做并没有把直接定义在fibo中的函数名称写入到当前符号表里,只是把模块fibo的名字写到了那里。

可以使用模块名称来访问函数:

>>>fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'

如果你打算经常使用一个函数,你可以把它赋给一个本地的名称:

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

from … import 语句

Python 的 from 语句让你从模块中导入一个指定的部分到当前命名空间中,语法如下:

from modname import name1[, name2[, ... nameN]]

例如,要导入模块 fibo 的 fib 函数,使用如下语句:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

这个声明不会把整个fibo模块导入到当前的命名空间中,它只会将fibo里的fib函数引入进来。

from … import * 语句

把一个模块的所有内容全都导入到当前的命名空间也是可行的,只需使用如下声明:

from modname import *

深入模块

模块除了方法定义,还可以包括可执行的代码。这些代码一般用来初始化这个模块。这些代码只有在第一次被导入时才会被执行。

每个模块有各自独立的符号表,在模块内部为所有的函数当作全局符号表来使用。

所以,模块的作者可以放心大胆的在模块内部使用这些全局变量,而不用担心把其他用户的全局变量搞混。

从另一个方面,当你确实知道你在做什么的话,你也可以通过 modname.itemname 这样的表示法来访问模块内的函数。

模块是可以导入其他模块的。在一个模块(或者脚本,或者其他地方)的最前面使用 import 来导入一个模块,当然这只是一个惯例,而不是强制的。被导入的模块的名称将被放入当前操作的模块的符号表中。

还有一种导入的方法,可以使用 import 直接把模块内(函数,变量的)名称导入到当前操作模块。比如:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

这种导入的方法不会把被导入的模块的名称放在当前的字符表中(所以在这个例子里面,fibo 这个名称是没有定义的)。

这还有一种方法,可以一次性的把模块中的所有(函数,变量)名称都导入到当前模块的字符表:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

这将把所有的名字都导入进来,但是那些由单一下划线(_)开头的名字不在此例。大多数情况, Python程序员不使用这种方法,因为引入的其它来源的命名,很可能覆盖了已有的定义。

__name__属性

一个模块被另一个程序第一次引入时,其主程序将运行。如果我们想在模块被引入时,模块中的某一程序块不执行,我们可以用__name__属性来使该程序块仅在该模块自身运行时执行。

#!/usr/bin/python3
# Filename: using_name.pyif __name__ == '__main__':print('程序自身在运行')
else:print('我来自另一模块')

运行输出如下:

$ python using_name.py
程序自身在运行
$ python
>>> import using_name
我来自另一模块
>>>

说明: 每个模块都有一个__name__属性,当其值是__main__时,表明该模块自身在运行,否则是被引入。

说明:namemain 底下是双下划线,_ _是这样去掉中间的那个空格。

dir() 函数

内置的函数 dir() 可以找到模块内定义的所有名称。以一个字符串列表的形式返回:

>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__loader__', '__name__','__package__', '__stderr__', '__stdin__', '__stdout__','_clear_type_cache', '_current_frames', '_debugmallocstats', '_getframe','_home', '_mercurial', '_xoptions', 'abiflags', 'api_version', 'argv','base_exec_prefix', 'base_prefix', 'builtin_module_names', 'byteorder','call_tracing', 'callstats', 'copyright', 'displayhook','dont_write_bytecode', 'exc_info', 'excepthook', 'exec_prefix','executable', 'exit', 'flags', 'float_info', 'float_repr_style','getcheckinterval', 'getdefaultencoding', 'getdlopenflags','getfilesystemencoding', 'getobjects', 'getprofile', 'getrecursionlimit','getrefcount', 'getsizeof', 'getswitchinterval', 'gettotalrefcount','gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info','intern', 'maxsize', 'maxunicode', 'meta_path', 'modules', 'path','path_hooks', 'path_importer_cache', 'platform', 'prefix', 'ps1','setcheckinterval', 'setdlopenflags', 'setprofile', 'setrecursionlimit','setswitchinterval', 'settrace', 'stderr', 'stdin', 'stdout','thread_info', 'version', 'version_info', 'warnoptions']

如果没有给定参数,那么 dir() 函数会罗列出当前定义的所有名称:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir() # 得到一个当前模块中定义的属性列表
['__builtins__', '__name__', 'a', 'fib', 'fibo', 'sys']
>>> a = 5 # 建立一个新的变量 'a'
>>> dir()
['__builtins__', '__doc__', '__name__', 'a', 'sys']
>>>
>>> del a # 删除变量名a
>>>
>>> dir()
['__builtins__', '__doc__', '__name__', 'sys']
>>>

标准模块

Python 本身带着一些标准的模块库,在 Python 库参考文档中将会介绍到(就是后面的"库参考文档")。

有些模块直接被构建在解析器里,这些虽然不是一些语言内置的功能,但是他却能很高效的使用,甚至是系统级调用也没问题。

这些组件会根据不同的操作系统进行不同形式的配置,比如 winreg 这个模块就只会提供给 Windows 系统。

应该注意到这有一个特别的模块 sys ,它内置在每一个 Python 解析器中。变量 sys.ps1 和 sys.ps2 定义了主提示符和副提示符所对应的字符串:

>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print('Runoob!')
Runoob!
C>

包是一种管理 Python 模块命名空间的形式,采用"点模块名称"。

比如一个模块的名称是 A.B, 那么他表示一个包 A中的子模块 B 。

就好像使用模块的时候,你不用担心不同模块之间的全局变量相互影响一样,采用点模块名称这种形式也不用担心不同库之间的模块重名的情况。

这样不同的作者都可以提供 NumPy 模块,或者是 Python 图形库。

不妨假设你想设计一套统一处理声音文件和数据的模块(或者称之为一个"包")。

现存很多种不同的音频文件格式(基本上都是通过后缀名区分的,例如: .wav,:file:.aiff,:file:.au,),所以你需要有一组不断增加的模块,用来在不同的格式之间转换。

并且针对这些音频数据,还有很多不同的操作(比如混音,添加回声,增加均衡器功能,创建人造立体声效果),所以你还需要一组怎么也写不完的模块来处理这些操作。

这里给出了一种可能的包结构(在分层的文件系统中):

sound/                          顶层包__init__.py               初始化 sound 包formats/                  文件格式转换子包__init__.pywavread.pywavwrite.pyaiffread.pyaiffwrite.pyauread.pyauwrite.py...effects/                  声音效果子包__init__.pyecho.pysurround.pyreverse.py...filters/                  filters 子包__init__.pyequalizer.pyvocoder.pykaraoke.py...

在导入一个包的时候,Python 会根据 sys.path 中的目录来寻找这个包中包含的子目录。

目录只有包含一个叫做 init.py 的文件才会被认作是一个包,主要是为了避免一些滥俗的名字(比如叫做 string)不小心的影响搜索路径中的有效模块。

最简单的情况,放一个空的 :file:init.py就可以了。当然这个文件中也可以包含一些初始化代码或者为(将在后面介绍的) __all__变量赋值。

用户可以每次只导入一个包里面的特定模块,比如:

import sound.effects.echo

这将会导入子模块:sound.effects.echo。 他必须使用全名去访问:

sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)

还有一种导入子模块的方法是:

from sound.effects import echo

这同样会导入子模块: echo,并且他不需要那些冗长的前缀,所以他可以这样使用:

echo.echofilter(input, output, delay=0.7, atten=4)

还有一种变化就是直接导入一个函数或者变量:

from sound.effects.echo import echofilter

同样的,这种方法会导入子模块: echo,并且可以直接使用他的 echofilter() 函数:

echofilter(input, output, delay=0.7, atten=4)

注意当使用 from package import item 这种形式的时候,对应的 item 既可以是包里面的子模块(子包),或者包里面定义的其他名称,比如函数,类或者变量。

import 语法会首先把 item 当作一个包定义的名称,如果没找到,再试图按照一个模块去导入。如果还没找到,抛出一个 :exc:ImportError 异常。

反之,如果使用形如 import item.subitem.subsubitem 这种导入形式,除了最后一项,都必须是包,而最后一项则可以是模块或者是包,但是不可以是类,函数或者变量的名字。

从一个包中导入*

如果我们使用 from sound.effects import * 会发生什么呢?

Python 会进入文件系统,找到这个包里面所有的子模块,然后一个一个的把它们都导入进来。

但这个方法在 Windows 平台上工作的就不是非常好,因为 Windows 是一个不区分大小写的系统。

在 Windows 平台上,我们无法确定一个叫做 ECHO.py 的文件导入为模块是 echo 还是 Echo,或者是 ECHO。

为了解决这个问题,我们只需要提供一个精确包的索引。

导入语句遵循如下规则:如果包定义文件 init.py 存在一个叫做 all 的列表变量,那么在使用 from package import * 的时候就把这个列表中的所有名字作为包内容导入。

作为包的作者,可别忘了在更新包之后保证 all 也更新了啊。

以下实例在 file:sounds/effects/init.py 中包含如下代码:

__all__ = ["echo", "surround", "reverse"]

这表示当你使用from sound.effects import *这种用法时,你只会导入包里面这三个子模块。

如果 all 真的没有定义,那么使用from sound.effects import *这种语法的时候,就不会导入包 sound.effects 里的任何子模块。他只是把包sound.effects和它里面定义的所有内容导入进来(可能运行__init__.py里定义的初始化代码)。

这会把 __ init__.py 里面定义的所有名字导入进来。并且他不会破坏掉我们在这句话之前导入的所有明确指定的模块。看下这部分代码:

import sound.effects.echo
import sound.effects.surround
from sound.effects import *

这个例子中,在执行 from…import 前,包 sound.effects 中的 echo 和 surround 模块都被导入到当前的命名空间中了。(当然如果定义了 __ all__ 就更没问题了)

通常我们并不主张使用 * 这种方法来导入模块,因为这种方法经常会导致代码的可读性降低。不过这样倒的确是可以省去不少敲键的功夫,而且一些模块都设计成了只能通过特定的方法导入。

记住,使用 from Package import specific_submodule 这种方法永远不会有错。事实上,这也是推荐的方法。除非是你要导入的子模块有可能和其他包的子模块重名。

如果在结构中包是一个子包(比如这个例子中对于包sound来说),而你又想导入兄弟包(同级别的包)你就得使用导入绝对的路径来导入。比如,如果模块sound.filters.vocoder 要使用包 sound.effects 中的模块 echo,你就要写成 from sound.effects import echo。

from . import echo
from .. import formats
from ..filters import equalizer

无论是隐式的还是显式的相对导入都是从当前模块开始的。主模块的名字永远是"main",一个Python应用程序的主模块,应当总是使用绝对路径引用。

包还提供一个额外的属性__path__。这是一个目录列表,里面每一个包含的目录都有为这个包服务的__init__.py,你得在其他__init__.py被执行前定义哦。可以修改这个变量,用来影响包含在包里面的模块和子包。

这个功能并不常用,一般用来扩展包里面的模块。

输入和输出

Python 有两种输出值的方式:表达式语句和print()函数。
还有一种文件对象的write()方法,标准输出文件可以用sys.stdout引用。
如果你希望格式化输出,可以使用str.format()函数。
如果你希望将输出的值转换为字符串,可以使用repr()或者str()函数。

  • str():函数返回一个用户易读的表达形式。
  • repr():产生一个解释器易读的表达式。

例如:

>>> s = 'Hello, Runoob'
>>> str(s)
'Hello, Runoob'
>>> repr(s)
"'Hello, Runoob'"
>>> str(1/7)
'0.14285714285714285'
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'x 的值为: ' + repr(x) + ',  y 的值为:' + repr(y) + '...'
>>> print(s)
x 的值为: 32.5,  y 的值为:40000...
>>> #  repr() 函数可以转义字符串中的特殊字符
... hello = 'hello, runoob\n'
>>> hellos = repr(hello)
>>> print(hellos)
'hello, runoob\n'
>>> # repr() 的参数可以是 Python 的任何对象
... repr((x, y, ('Google', 'Runoob')))
"(32.5, 40000, ('Google', 'Runoob'))"

这里有两种方式输出一个平方与立方的表:

>>> for x in range(1, 11):
...     print(repr(x).rjust(2), repr(x*x).rjust(5), repr(x*x*x).rjust(7))
...1     1       12     4       83     9      274    16      645    25     1256    36     2167    49     3438    64     5129    81     729
10   100    1000
>>>
>>> for x in range(1, 11):
...     print('{} {} {}'.format(x, x*x, x*x*x))
...1   1    12   4    83   9   274  16   645  25  1256  36  2167  49  3438  64  5129  81  729
10 100 1000
>>>

注意:在第一个例子中, 每列间的空格由 print() 添加。

这个例子展示了字符串对象的 rjust() 方法, 它可以将字符串靠右, 并在左边填充空格。

还有类似的方法, 如 ljust() 和 center()。 这些方法并不会写任何东西, 它们仅仅返回新的字符串。

另一个方法 zfill(), 当字符串里字符个数小于输入的参数时,它会在数字的左边填充 0,如下所示:

>>> '12'.zfill(5)
'00012'
>>> '-3.14'.zfill(7)
'-003.14'
>>> '3.14159265359'.zfill(5)
'3.14159265359'

str.format() 的基本使用如下:

>>> print('{}网址: "{}!"'.format('百度', 'www.baidu.com'))
百度网址: "www.baidu.com!"

括号及其里面的字符 (称作格式化字段) 将会被 format() 中的参数替换。

在括号中的数字用于指向传入对象在 format() 中的位置,如下所示:

>>> print('{0} 和 {1}'.format('Google', 'Runoob'))
Google 和 Runoob
>>> print('{1} 和 {0}'.format('Google', 'Runoob'))
Runoob 和 Google

如果在 format() 中使用了关键字参数, 那么它们的值会指向使用该名字的参数。

>>> print('{name}网址: {site}'.format(name='百度', site='www.baidu.com'))
百度网址: www.baidu.com

位置及关键字参数可以任意的结合:

>>> print('站点列表 {0}, {1}, 和 {other}。'.format('Google', 'Runoob', other='Taobao'))
站点列表 Google, Runoob, 和 Taobao。

!a (使用 ascii()), !s (使用 str()) 和 !r (使用 repr()) 可以用于在格式化某个值之前对其进行转化:

>>> import math
>>> print('常量 PI 的值近似为: {}。'.format(math.pi))
常量 PI 的值近似为: 3.141592653589793。
>>> print('常量 PI 的值近似为: {!r}。'.format(math.pi))
常量 PI 的值近似为: 3.141592653589793。

可选项 : 和格式标识符可以跟着字段名。 这就允许对值进行更好的格式化。 下面的例子将 Pi 保留到小数点后三位:

>>> import math
>>> print('常量 PI 的值近似为 {0:.3f}。'.format(math.pi))
常量 PI 的值近似为 3.142。

: 后传入一个整数, 可以保证该域至少有这么多的宽度。 用于美化表格时很有用。

>>> table = {'Google': 1, 'Runoob': 2, 'Taobao': 3}
>>> for name, number in table.items():
...     print('{0:10} ==> {1:10d}'.format(name, number))
...
Google     ==>          1
Runoob     ==>          2
Taobao     ==>          3

Python 3 学习笔记相关推荐

  1. python做直方图-python OpenCV学习笔记实现二维直方图

    本文介绍了python OpenCV学习笔记实现二维直方图,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/dd/d0d/tutorial_py_2d ...

  2. python 正则学习笔记

    python 正则学习笔记 官方document #1.0 import re m=re.search('(?<=abc)def','cxabcdefgb')print(m.group(0))# ...

  3. Python数据结构学习笔记——链表:无序链表和有序链表

    目录 一.链表 二.无序链表 实现步骤分析 三.无序链表的Python实现代码 四.有序链表 实现步骤分析 五.有序链表的Python实现代码 结语 一.链表 链表中每一个元素都由为两部分构成:一是该 ...

  4. Python数据结构学习笔记——队列和双端队列

    目录 一.队列的定义 二.队列 实现步骤分析 三.队列的Python实现代码 四.队列的应用 六人传土豆游戏 五.双端队列的定义 六.双端队列 实现步骤分析 七.双端队列的Python实现代码 八.双 ...

  5. Python数据结构学习笔记——栈

    目录 一.栈的定义和特性 (一)栈的定义 (二)栈的反转特性 二.实现分析步骤 三.栈的Python实现代码 四.栈的应用 (一)匹配圆括号 (二)匹配符号 (三)模2除法(十进制转二进制) (四)进 ...

  6. Python基础学习笔记三

    Python基础学习笔记三 print和import print可以用,分割变量来输出 import copy import copy as co from copy import deepcopy ...

  7. python opencv 直方图均衡_详解python OpenCV学习笔记之直方图均衡化

    本文介绍了python OpenCV学习笔记之直方图均衡化,分享给大家,具体如下: 官方文档 – https://docs.opencv.org/3.4.0/d5/daf/tutorial_py_hi ...

  8. Python基础学习笔记之(二)

    Python基础学习笔记之(二) zouxy09@qq.com http://blog.csdn.net/zouxy09 六.包与模块 1.模块module Python中每一个.py脚本定义一个模块 ...

  9. Python基础学习笔记之(一)

    Python基础学习笔记之(一) zouxy09@qq.com http://blog.csdn.net/zouxy09 前段时间参加微软的windows Azure云计算的一个小培训,其中Pytho ...

  10. python数据挖掘学习笔记】十九.鸢尾花数据集可视化、线性回归、决策树花样分析

    #2018-04-05 16:57:26 April Thursday the 14 week, the 095 day SZ SSMR python数据挖掘学习笔记]十九.鸢尾花数据集可视化.线性回 ...

最新文章

  1. 【Spring】基于注解的IOC案例
  2. 自动驾驶汽车测试在美惹争议,原因为何?
  3. 开发Android必知的工具
  4. 电子商务人们广泛使用计算机,电子商务基础——PPT课件
  5. oracle jdbctype null,Oracle数据库之springboot 项目mybatis plus 设置 jdbcTypeForNull
  6. 计算机学校专业工学,大学专业详解:工学(仪器仪表类)
  7. 从RGB到Lab色彩空间的转换
  8. linux内核那些事之ZONE
  9. Spring Cloud Sleuth+Zipkin 构建微服务链路跟踪系统
  10. 解决mysql无法启动,错误1067
  11. mybatisplus代码生成连接池_SpringBoot2 高级案例(15): 配置多数据源,整合MybatisPlus增强插件...
  12. linux 中文转unicode,Linux下汉字编码的转换
  13. 对996的一些看法与个人价值实现
  14. 《游戏大师Chris Crawford谈互动叙事》一第 6 章 数学之苦劳
  15. 倒计时器 (WPF)
  16. DNS 服务器 清除缓存
  17. Windows系统各个版本的ISO镜像下载地址
  18. linux内核panic
  19. ESP32-C3入门教程——导读
  20. 分布式专题(一)什么是分布式

热门文章

  1. 色彩物理学与颜色视觉
  2. MacOS 开发 — 关闭开机自启动软件
  3. 枚举--赢球票(蓝桥杯)
  4. redis中ziplist,skiplist
  5. 基于低代码平台的合同管理系统,可定制更智能
  6. linux内核视频 网易,网易视频云技术分享:UML调试Linux内核
  7. Telegram中语音
  8. Python爬虫:python2使用scrapy输出unicode乱码
  9. ZBrush教程视频教程-ZBrush教程教程下载
  10. B站小迪安全笔记第十七天-SQL注入之二次加解密,dns等注入