原文网址:http://blog.csdn.net/newchenxf/article/details/51719597


1 前言

JPEG是joint Photographic Experts Group(联合图像专家组)的缩写,文件后辍名为”.jpg”或”.jpeg”。 
jpg图片可以说是最常见的图片格式了,基本上你的自拍照,要么是png的,要么就是jpeg的了。(有关jpeg和png的区别,请参考我的另一博文【jpeg 与 png 图片格式的区别】) 
但它是一种有损压缩。支持多种压缩级别,压缩比率通常在10:1到40:1之间,压缩比越大,品质就越低;相反地,压缩比越小,品质就越好。

那么,JPEG是如何压缩的呢?靠的就是传说中的DCT(离散余弦变换)。

下图是JPEG压缩/解压缩的流程图。我想你最大的疑问估计就是DCT了。 

2 JPEG压缩流程

2.1 以8x8的图象块为基本单位进行编码

如下图所示。比如一个160x160大小的原始图像,就可以分成20x20个8x8图像块。 
 
每个图像块共64个像素。像素可以用RGB或YUV表示,需要3个byte。所以严格来说,上图3个箭头代表的数据,指的是RGB/YUV的某一个值,比如Y。

2.2 将RGB转换为亮度-色调-饱和度系统(YUV),并重新采样

YUV是什么?它也是一种很不错的图像数据表示方法,特别是在视频领域。 
Y:指颜色的明视度、亮度、灰度值; 
U:指色调; 
V:指饱和度。

YUV是一个统称,其实有很多具体格式,比如YUV420, YUV444, YUV422。 
YUV的某些格式,和RGB比起来,其数据量要少很多。 
比如YUV420,每个像素需要一个Y,每4个像素需要一个U/V,因此一个8*8图像块,数据量只要8x8x3/2 = 96byte。而RGB需要8x8x3 = 192byte。少了一半的数据量。现在很多视频都是YUV420作为色域。 
当然啦,在本次转换,用的是YUV444, 也就是每个像素都有YUV的值。

YUV与RGB可以互相转换。 
Y=0.299R+0.587G+0.114B 
U=0.148R-0.289G+0.473B 
V=0.615R-0.515G-0.1B

2.3 FDCT与IDCT

一个是正变换,一个是逆变换。反正都可以称为离散余弦变换。 
根据8*8的二维DCT定义 
 
其中:0<= u, v < 8 
 
a(v) = a(u) 
 是输入8x8像素的坐标。 
 是输出的8x8变换结果的坐标。

不要把上式看的有多难,也不要被“离散余弦变换”这个词给吓到,其实他没什么(如果你非要去追究,那就打开“信号与系统”的书复习一下吧,我拦不住你哈),上式其实就是一个运算公式而已。 
输入就是8x8的数据矩阵,经过计算,输出还是一个8x8的数据矩阵。 
其实上式可以简化为: 
 
并且A和A转置矩阵都是已知的。所以,说白了,就是个矩阵运算。对程序来说,很简单。

称G(0,0),也就是输出8x8矩阵的(0,0)坐标的值,为直流系数,其他为交流系数。 
之所以称它为直流系数,是因为当u, v = 0时,cos()结果都为0,所以最后结果就是输入矩阵的8x8的每个数值的和,再乘于a(u) x a(v) x 1/4 = 1/8。

当然了,输入数据其实是有3个的,也就是YUV,因此对每个8x8的原始图像数据,需要做3次DCT。

2.4 量化与反量化

定义:将DCT变换后的临时结果,除以各自量化步长并四舍五入后取整,得到量化系数。 
为什么可以量化?! 
因为经过DCT后,数据就不同了,左上方都是大数值,右下方都是小数值。比如左上方都是几十几百的,右下方附近,都是个位数,那么,大数值和小数值就可以分别量化。

在术语里,左上方称为低频数据,右下方称为高频数据。 
你要是不理解,可以这么想,既然G(0,0)都是直流分量了,那频率不就是0?不就是所谓的低频?^^

还是不理解?好吧,那你也可以这么想: 
比如cos(ax),a是常数,x是变量。那么,根据频率f = a/2π,a越大,函数的频率越高。 
看看DCT公式: 
 
u,v 越大,则越在右下方对吧。当计算某个G(u, v)时,x, y是变量,u, v相当于常数,当u/v越大,则频率越高! 
这就是为啥右下方称为高频数据了!

好了,别走偏了,还继续说量化。 
JPEG系统分别规定了亮度分量和色度分量的量化表,色度分量相应的量化步长比亮度分量大。

对量化系数的处理和组织 
思想:JPEG采用定长和变长相结合的编码方法。 
直流系数:通常相邻8*8图象块的DC分量很接近,因此JPEG对量化后的直流分量采用无失真DPCM编码。通常JPEG要保存所需比特数和实际差值。

交流系数:经过量化后,AC分量出现较多的0。JPEG采用对0系数的行程长度编码。而对非0值,则要保存所需数和实际值。 
ZIG-ZAG排序:为使连续的0个数增多,采用Z形编码。 
 
你要是不理解,看看下面的例子,就知道为啥ZIG-ZAG可以俘获更多的0了!

3 应用举例

3.1 编码

某个图象的一个8*8方块,的亮度值。 

由于一个字节是0~255,为了减小绝对值波动,先把数值移位一下,变成-128~127。 

接着,根据DCT变换公式,各种计算,获得临时结果。 

根据亮度量化表量化后得到的量化系数矩阵 

获得量化结果: 

可见,新的数据,很小,很多是0。正如上文所说,这么多0,完全可以用游程编码,大大缩小数据量。

3.2 解码

先游程编码恢复为 

然后,根据量化表,恢复 

再根据反离散余弦变换的公式: 

结果为: 

再右移127,恢复原始。 

和原始图像的数据相比,基本是一样的,或者近似的!

4 其他

必须再强调的是,JPEG压缩是有损失的,从上面的例子就看出来,输出结果并不是完全等于输入。 
此外,JPEG压缩比例是可以控制的,只不过图像质量会变差。比如 
压缩率:10 

压缩率:50 

JPEG压缩比例,就是通过控制量化的多少来控制。比如,上面的量化矩阵Q,如果我把矩阵的每个数都double一下,那是不是会出现更多的0?!说不定都只有G(0, 0)非0,其他都是0,如果这样,那编码时就可以更省空间啦,N个0只要一个游程编码搞定,数据量超小。但也意味着,恢复时,会带来更多的误差,图像质量也会变差了。

参考: 
https://en.wikipedia.org/wiki/JPEG#Discrete_cosine_transform

JPEG压缩原理与DCT离散余弦变换 量化相关推荐

  1. JPEG压缩原理与DCT离散余弦变换

    原文网址:http://blog.csdn.net/newchenxf/article/details/51719597 转载请注明出处喔 1 前言 JPEG是joint Photographic E ...

  2. JPEG压缩原理(DCT)

    本文介绍JPEG压缩技术的原理,对于DCT变换.Zig-Zag扫描和Huffman编码,给出一个较为清晰的框架. 1. JPEG压缩的编解码互逆过程: 编码 解码 2. 具体过程:(这里仅以编码为例, ...

  3. 数字图像处理100问—40 JPEG 压缩——第四步:YCbCr+离散余弦变换+量化

    提示:内容整理自:https://github.com/gzr2017/ImageProcessing100Wen CV小白从0开始学数字图像处理 40 JPEG 压缩--第四步:YCbCr+离散余弦 ...

  4. fdct算法 java_ImageSharp源码详解之JPEG压缩原理(3)DCT变换

    DCT变换可谓是JPEG编码原理里面数学难度最高的一环,我也是因为DCT变换的算法才对JPEG编码感兴趣(真是不自量力).这一章我就把我对DCT的研究心得体会分享出来,希望各位大神也不吝赐教. 1.离 ...

  5. DCT离散余弦变换原理与应用讲解

    1 前言 JPEG是joint Photographic Experts Group(联合图像专家组)的缩写,文件后辍名为".jpg"或".jpeg".  jp ...

  6. 基于DCT离散余弦变换的自适应水印算法的设计

    文章目录 前言 一.目的和需求分析 1.1项目设计目的 1.2项目需求分析 二.图像预处理 2.1 图像预处理的作用 2.2 Logistic混沌映射置乱 2.2 细胞自动机处理 均值滤波平滑处理 三 ...

  7. JPEG压缩原理与PyTorch实现

    背景介绍 JPEG (Joint Photographic Experts Group) 是JPEG标准的产物,该标准由国际标准化组织(ISO)制订,是面向连续色调静止图像的一种压缩标准.JPEG格式 ...

  8. JPEG图像压缩原理与DCT离散余弦变换

    原文网址:http://blog.csdn.net/newchenxf/article/details/51719597 转载请注明出处喔 1 前言 JPEG是joint Photographic E ...

  9. dct余弦离散c语言,DCT离散余弦变换的DSP实现.doc

    DCT离散余弦变换的DSP实现 学生姓名: 指导老师: TMS320VC5402的特性,以运用TMS320VC5402定点DSP芯片完成MPEG-4标准中DCT系数量化为例,简要介绍MPEG-4标准的 ...

最新文章

  1. 对时序逻辑电路采用不同描述方式,ISE综合出来的电路(RTL Schematic)比较(以模5计数器为例)
  2. java常用的几种线程池
  3. JetBrain WebStorm 注册码
  4. javascript操作dom的一些函数
  5. mtk一键usb驱动_三菱MRJEB驱动器报错,导致报错原因37.1参数设置范围异常?
  6. MySQL 5.6, 5.7并行复制测试(二)(r12笔记第10天)
  7. POJ1664 放苹果【递推+记忆化递归】
  8. day12 python学习随笔 中
  9. 通过代理截取并修改非对称密钥加密信息
  10. 关于document对象
  11. 整理优秀的网盘搜索合集
  12. P1195口袋的天空
  13. 渗透测试详解及爱加密加固使用及优势
  14. php ios表情包,十分钟开发一款 iOS 表情包 App
  15. mysql handlers_MySQL handler相关状态参数解释
  16. 模式分解的无损连接性之深入剖析
  17. 再见了 SELECT *!大厂的 MySQL 查询优化方案,确实牛逼!
  18. norflash 分析
  19. 四十六、Fluent壁面函数的选取依据
  20. 甄嬛传趣玩系统数据可视化分析

热门文章

  1. matlab校正环节,基于MATLAB的控制系统校正环节优化设计
  2. java redis mq_redis之mq实现发布订阅模式
  3. 小米6关闭位置服务器,关闭这6个设置,让你的小米手机从回青春,再战3年
  4. 网络协议命令行处理c语言程序解析,网络协议工程SPIN实验报告剖析.doc
  5. access查询女教师所有的信息_【9月3日报名必看】教师资格证报名如何查询报名成功及修改报名信息?...
  6. 大块数据申请及DMA
  7. java输出gc_GC输出澄清
  8. c++连接oracle数据库程序,无法从c++程序连接到我的oracle数据库
  9. java 使用Spring的JdbcTemplate以及DriverManagerDataSource实现JDBC操作
  10. 如何写一份优秀的Java程序员简历?