马氏链模型(Markov Chain)

  • 对于有随机因素影响的动态系统,系统从这个时期到下个时期的状态按照一定的概率进行转移,并且下个时期的状态只取决于这个时期的状态和转移概率。
  • 无后效性:已知现在,将来与历史无关。
  • 具有无后效性,时间、状态均为离散的随机转移过程通常用马氏链模型描述。

实例1:健康与疾病

  • 本实例介绍马氏链的基本概念,以及两种主要类型——正则链和吸收链。

人的健康状态随时间的推移会发生转变,人寿保险公司要通过对状态转变的概率做出估计,才能确定出不同年龄、不同健康状况的人的保险金和理赔金数额,下面分两种情况进行讨论:

情况一:

  • 把人的健康状况分为健康和疾病两种,以一年为一个时段研究状态的转变。假定对某一年龄段的人,今年健康,明年转为疾病状态的概率为0.2;今年患病,明年转为健康的概率为0.7。
  • 如果一个人投保时处于健康状态,我们研究以后若干年他分别处于这两种状态的概率。
  • 用随机变量 X n X_n Xn​ 表示第 n n n 年的状态, X n = 1 X_n=1 Xn​=1 表示健康, X n = 2 X_n=2 Xn​=2 表示疾病, n = 0 , 1 , 2 , . . . n=0,1,2,... n=0,1,2,...,用 a i ( n ) a_i(n) ai​(n) 表示第 n n n 年处于状态 i i i 的概率, i = 1 , 2 i=1,2 i=1,2,即 a i ( n ) = P ( X n = i ) a_i(n)=P(X_n=i) ai​(n)=P(Xn​=i)。
  • 用 p i j p_{ij} pij​ 表示已知今年状态处于状态 i i i,来年状态处于状态 j j j 的概率, p i j p_{ij} pij​ 称为状态转移概率
  • 显然,第 n + 1 n+1 n+1 年的状态 X n + 1 X_{n+1} Xn+1​ 只取决于第 n n n 年的状态 X n X_n Xn​ 和转移概率 p i j p_{ij} pij​,而与以前的状态 X n − 1 , X n − 2 , . . . X_{n-1},X_{n-2},... Xn−1​,Xn−2​,... 无关,即状态转移具有无后效性
  • 第 n + 1 n+1 n+1 年的状态概率可由全概率公式得到:
    { a 1 ( n + 1 ) = a 1 ( n ) p 11 + a 2 ( n ) p 21 a 2 ( n + 1 ) = a 1 ( n ) p 12 + a 2 ( n ) p 22 \left\{\begin{array}{l} a_{1}(n+1)=a_{1}(n) p_{11}+a_{2}(n) p_{21} \\ a_{2}(n+1)=a_{1}(n) p_{12}+a_{2}(n) p_{22} \end{array}\right. {a1​(n+1)=a1​(n)p11​+a2​(n)p21​a2​(n+1)=a1​(n)p12​+a2​(n)p22​​
  • 由前 p 11 = 0.8 , p 12 = 0.2 , p 21 = 0.7 , p 22 = 0.3 p_{11}=0.8, p_{12}=0.2, p_{21}=0.7, p_{22}=0.3 p11​=0.8,p12​=0.2,p21​=0.7,p22​=0.3,投保人开始时处于健康状态,即 a 1 ( 0 ) = 1 , a 2 ( 0 ) = 0 a_{1}(0)=1, a_{2}(0)=0 a1​(0)=1,a2​(0)=0 立即可以算出以后各年他处于两种状态的概率 a 1 ( n ) , a 2 ( n ) , n = 1 , 2 , ⋯ , a_{1}(n), a_{2}(n), n=1,2, \cdots, a1​(n),a2​(n),n=1,2,⋯, 如下表:
  • 通过计算可以发现,无论初始状态概率是否相同,对于给定的状态转移概率, n → ∞ \boldsymbol{n} \rightarrow \infty n→∞ 时,状态概率 a 1 ( n ) , a 2 ( n ) a_{1}(n), a_{2}(n) a1​(n),a2​(n) 趋于稳定值,该值与初始状态无关,这是一种主要的马氏链类型的重要性质。

情况二:

  • 把人的死亡作为第3种状态,用 X n = 3 X_n=3 Xn​=3 表示,今年健康、明天可能因突发疾病或偶然事故而死亡,今年患病、明年更可能转为死亡,而一旦死亡就不能再转为健康或疾病状态。
  • 用 a i ( n ) a_i(n) ai​(n) 表示第 n n n 年处于状态 i i i 的概率, i = 1 , 2 , 3 i=1,2,3 i=1,2,3,用 p i j p_{ij} pij​ 表示状态转移概率。特别注意, p 31 = p 32 = 0 , p 33 = 1 p_{31}=p_{32}=0,p_{33}=1 p31​=p32​=0,p33​=1
  • 第 n + 1 n+1 n+1 年的状态概率可由全概率公式得到:
    { a 1 ( n + 1 ) = a 1 ( n ) p 11 + a 2 ( n ) p 21 + a 3 ( n ) p 31 a 2 ( n + 1 ) = a 1 ( n ) p 12 + a 2 ( n ) p 22 + a 3 ( n ) p 32 a 3 ( n + 1 ) = a 1 ( n ) p 13 + a 2 ( n ) p 23 + a 3 ( n ) p 33 \left\{\begin{array}{l} a_{1}(n+1)=a_{1}(n) p_{11}+a_{2}(n) p_{21}+a_{3}(n) p_{31} \\ a_{2}(n+1)=a_{1}(n) p_{12}+a_{2}(n) p_{22}+a_{3}(n) p_{32} \\ a_{3}(n+1)=a_{1}(n) p_{13}+a_{2}(n) p_{23}+a_{3}(n) p_{33} \end{array}\right. ⎩ ⎨ ⎧​a1​(n+1)=a1​(n)p11​+a2​(n)p21​+a3​(n)p31​a2​(n+1)=a1​(n)p12​+a2​(n)p22​+a3​(n)p32​a3​(n+1)=a1​(n)p13​+a2​(n)p23​+a3​(n)p33​​
  • 算得的结果如下表所示:
  • 表中的最后一列时根据计算数值的趋势猜测的,可以看到,不论初始状态如何,最终都要转到状态3.

马氏链的基本概念

马氏链及其基本方程
  • 按照系统的发展,时间离散化为 n = 0 , 1 , 2... n=0,1,2... n=0,1,2...,对每个 n n n ,系统的状态用随机变量 X n X_n Xn​ 表示,设 X n X_n Xn​ 可取 k k k 个离散值 X n = 1 , 2 , . . . , k X_n=1,2,...,k Xn​=1,2,...,k,且记 a i ( n ) = P ( X n = i ) a_i(n)=P(X_n=i) ai​(n)=P(Xn​=i),即状态概率。
  • 如果 X n + 1 X_{n+1} Xn+1​ 的取值只取决于 X n X_n Xn​ 的取值及转移概率,而与 X n − 1 , X n − 2 , . . . X_{n-1},X_{n-2},... Xn−1​,Xn−2​,... 的取值无关,那么这种离散状态按照离散时间的随机转移过程称为马氏链
  • 由状态转移的无后效性和全概率公式可以写出马氏链的基本方程为:
    a i ( n + 1 ) = ∑ j = 1 k a j ( n ) p j i , i = 1 , 2 , ⋯ , k a_{i}(n+1)=\sum_{j=1}^{k} a_{j}(n) p_{j i}, \quad i=1,2, \cdots, k ai​(n+1)=j=1∑k​aj​(n)pji​,i=1,2,⋯,k
    并且满足:
    ∑ i = 1 k a i ( n ) = 1 , n = 0 , 1 , 2 , ⋯ p i j ⩾ 0 , i , j = 1 , 2 , ⋯ , k ∑ j = 1 k p i j = 1 , i = 1 , 2 , ⋯ , k \begin{array}{ll} \sum_{i=1}^{k} a_{i}(n)=1, & n=0,1,2, \cdots \\ p_{i j} \geqslant 0, & i, j=1,2, \cdots, k \\ \sum_{j=1}^{k} p_{i j}=1, & i=1,2, \cdots, k \end{array} ∑i=1k​ai​(n)=1,pij​⩾0,∑j=1k​pij​=1,​n=0,1,2,⋯i,j=1,2,⋯,ki=1,2,⋯,k​
    引入状态概率向量(行向量)和转移概率矩阵(简称转移矩阵):
    a ( n ) = ( a 1 ( n ) , a 2 ( n ) , ⋯ , a k ( n ) ) , P = { p i j } k × k a(n)=\left(a_{1}(n), a_{2}(n), \cdots, a_{k}(n)\right), P=\left\{p_{i j}\right\}_{k \times k} a(n)=(a1​(n),a2​(n),⋯,ak​(n)),P={pij​}k×k​
    则基本方程可以表示为:
    a ( n + 1 ) = a ( n ) P a(n+1)=a(n) P a(n+1)=a(n)P
    还可以得到:
    a ( n ) = a ( 0 ) P n a(n)=a(0) P^{n} a(n)=a(0)Pn
    转移矩阵 P P P 是非负阵, P P P 的行和为1,称为 随机矩阵
  • 马氏链模型最基本的问题是构造状态 X n X_n Xn​ 及写出转移矩阵 P P P,这里的转移矩阵与时段 n n n 无关,这种马氏链称为时齐的。

马氏链的两个重要类型

正则链

这类马氏链的特点是,从任意状态出发经过有限次转移都能达到另外的任意状态。

  • 定义 一个有 k k k 个状态的马氏链如果存在正整数 N N N ,使从任意状态 i i i 经 N N N 次转移都以大于零的概率到达状态 j ( i , j = 1 , 2 , . . . . , k ) j(i,j=1,2,....,k) j(i,j=1,2,....,k),则称为正则链。
  • 用下面的定理可以检验一个马氏链是否是正则链:
    定理1 若马氏链的转移矩阵是 P P P,则它是正则链的充要条件是,存在正整数 N N N,使 P N > 0 P^N>0 PN>0
    定理2 正则链存在唯一的极限状态概率 w = ( w 1 , w 2 , . . . , w k ) w=(w_1,w_2,...,w_k) w=(w1​,w2​,...,wk​),又称稳态概率
    求解稳态概率 w w w 线性方程租:
    w P = w ∑ i = 1 k w i = 1 \begin{array}{c} \boldsymbol{w}P=\boldsymbol{w} \\ \sum_{i=1}^{k} w_{i}=1 \end{array} wP=w∑i=1k​wi​=1​
    从状态 i i i 出发,第一次到达状态 j j j 的概率称为 i i i 到 j j j 的首达概率,记作 f i j ( n ) f_{ij}(n) fij​(n),于是由状态 i i i 到达第一次状态 j j j 的平均转移次数为
    μ i j = ∑ n = 1 ∞ n f i j ( n ) \mu_{i j}=\sum_{n=1}^{\infty} n f_{i j}(n) μij​=n=1∑∞​nfij​(n)
吸收链
  • 定义 转移概率 p i i = 1 p_{ii}=1 pii​=1 的状态 i i i 称为吸收状态。如果马氏链至少包含一个吸收状态,并且从每一个非吸收状态出发,能以正的概率经有限次转移到达某个吸收状态,那么这个马氏链称为吸收链
  • 吸收链的转移矩阵可以写成简单的标准形式。若有 r r r 个吸收状态, k − r k-r k−r 个非吸收状态,则转移矩阵 P P P 可表为
    P = [ I r × r 0 R Q ] P=\left[\begin{array}{cc} \mathbb{I}_{r \times r} & 0 \\ R & Q \end{array}\right] P=[Ir×r​R​0Q​]

【数学建模】马氏链模型(基本概念+正则链+吸收链)相关推荐

  1. Python小白的数学建模课-15.图论的基本概念

    图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...

  2. Python小白的数学建模课-09.微分方程模型

    小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...

  3. dna序列分类数学建模matlab,数学建模DNA序列分类模型(终稿).doc

    您所在位置:网站首页 > 海量文档 &nbsp>&nbsp高等教育&nbsp>&nbsp生物学 数学建模DNA序列分类模型(终稿).doc32页 本文 ...

  4. 【Python数学建模】SEIR传染病模型模型延伸-SEIDR模型(一),加入疫苗接种、政府管控、病毒变异等因素的影响

    目录 一. SEIR传染病模型 二. SEIR模型的延伸--SEIDR模型 三. 模型延伸--影响因素1:疫苗接种 四. 模型延伸--影响因素2:政府管控 五. 模型延伸--影响因素3:病毒变异 写在 ...

  5. 数学建模学习记录——数学规划模型

    数学建模学习记录--数学规划模型 一.线性规划问题 MatLab中线性规划的标准型 MatLab中求解线性规划的命令 二.整数线性规划问题 三.非线性规划问题 MatLab中非线性规划的标准型 Mat ...

  6. 数学建模美赛常见模型

    数学模型的分类按数学方法分类: 几何模型.图论模型.微分方程模型.概率模型.最优控制模型.规划论模型.马氏链模型等. 按特征分类: 静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性 ...

  7. 数学建模常考三大模型

    在数学建模中,经常考到三大模型是预测模型,优化模型,评估模型.如果你是想学数学建模,那这三大模型是一定要熟悉这三大模型 预测模型:神经网络预测,时间序列预测,线性回归预测,灰度预测,马尔科夫链预测,微 ...

  8. 2023电工杯数学建模B题思路模型

    文章目录 0 赛题思路 1 竞赛信息 2 竞赛时间 3 组织机构 4 建模常见问题类型 4.1 分类问题 4.2 优化问题 4.3 预测问题 4.4 评价问题 0 赛题思路 (赛题出来以后第一时间在C ...

  9. 2023第十五届电工杯数学建模AB题思路模型

    文章目录 0 赛题思路 1 竞赛信息 2 竞赛时间 3 组织机构 4 建模常见问题类型 4.1 分类问题 4.2 优化问题 4.3 预测问题 4.4 评价问题 0 赛题思路 (赛题出来以后第一时间在C ...

最新文章

  1. Python 中的进程、线程、协程、同步、异步、回调(一)
  2. 「土行孙」机器人登上Science子刊封面,用气流在地下穿梭自如,速度达每秒4.8米...
  3. C# 特性 Attribute
  4. java高级反射_反射---Java高级开发必须懂的
  5. PDF文件如何转成markdown格式 1
  6. 【C语言笔记初级篇】第二章:分支与循环
  7. python判断列表为空的三种方法
  8. SCUT - 254 - 欧洲爆破 - 概率dp - 状压dp
  9. Spring 框架 IOC 与 DI 的总结
  10. LINUX内核内存管理kmalloc,vmalloc
  11. 小程序源码:全新外卖侠cps5.6全套微信小程序源码下载(内附加2.7.5版本微擎)支持多种CPS收益和流量主收益
  12. 基于ESP32CAM实现WebSocket服务器实时点灯
  13. .NET MongoDB Driver GridFS 2.2原理及使用示例
  14. 求安慰,找java工作两个多月了
  15. Word——打开word时,提示由于宏安全设置,无法找到宏或宏被禁用的一种解决办法
  16. linux网卡ip自动丢失,重启电脑IP设定丢失的故障处理
  17. 《DKN: Deep Knowledge-Aware Network for News Recommendation》知识图谱与推荐系统结合之DKN
  18. 【原创】从头开始,使用安卓系统WebView做一个功能强大的Epub阅读器(五)
  19. c语言编程显示文件无效或损坏,【转】LNK1123: 转换到 COFF 期间失败: 文件无效或损坏...
  20. 计算机算出幽默的公式,幽默(二)段子的基本公式

热门文章

  1. 抖音粉丝快速过千,开通橱窗带货功能?
  2. 答疑go语言与区块链
  3. 「征文」使用极光遇到过的那些事
  4. 我们面临的困境,往往不是“程序问题”
  5. (一)jsp是什么?有什么作用?
  6. assure, ensure, insure, guarantee的区别
  7. requirejs:杏仁的优化(almond)
  8. 【教学类-26-01】背诵家长电话号码-Python数字填空(中班 偏数学和社会)
  9. SSTI了解+反序列化了解+SSRF了解+之前的一些题
  10. Java基础知识——Stream