概述

本文大部分整理自《Java并发编程的艺术》,温故而知新,加深对基础的理解程度。

指令序列的重排序

我们在编写代码的时候,通常自上而下编写,那么希望执行的顺序,理论上也是逐步串行执行,但是为了提高性能,编译器和处理器常常会对指令做重排序。

1) 编译器优化的重排序。编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。

2) 指令级并行的重排序。现代处理器采用了指令级并行技术来将多条指令重叠执行。如果不存在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。

3) 内存系统的重排序。由于处理器使用缓存和读/写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。

从Java源代码到最终实际执行的指令序列,会分别经历下面3种重排序:

happens-before语义

从JDK 5开始,Java使用新的内存模型,使用happens-before的概念来阐述操作之间的内存可见性。那到底什么是happens-before呢?

在JMM中,如果一个操作执行的结果需要对另一个操作可见,那么这两个操作之间必须要存在happens-before关系,这里提到的两个操作既可以是在一个线程之内,也可以是在不同线程之间。

happens-before规则如下:

程序顺序规则: 对于单个线程中的每个操作,前继操作happens-before于该线程中的任意后续操作。

监视器锁规则: 对一个锁的解锁,happens-before于随后对这个锁的加锁。

volatile变量规则: 对一个volatile域的写,happens-before于任意后续对这个volatile域的读。

传递性: 如果A happens-before B,且B happens-before C,那么A happens-before C。

注意:

两个操作之间具有happens-before关系,并不意味着前一个操作必须要在后一个操作之前执行,happens-before仅仅要求前一个操作(执行的结果)对后一个操作可见,且前一个操作按顺序排在第二个操作之前。

happens-before与JMM的关系如图所示:

如图所示,一个happens-before规则对应于一个或多个编译器和处理器重排序规则。

重排序

重排序指的是:编译器和处理器为了优化程序性能而对指令序列进行重新排序的一种手段。

如果两个操作访问同一个变量,且这两个操作中有一个为写操作,此时这两个操作之间就存在数据依赖性。数据依赖分为下列3种类型:

上面情况,只要重排序两个操作的执行顺序,程序的执行结果就会被改变。而编译器和处理器可能会对操作做重排序,但是编译器和处理器在重排序时,会遵守数据依赖性,编译器和处理器不会改变存在数据依赖关系的两个操作的执行顺序。

注意:

这里所说的数据依赖性仅针对单个处理器中执行的指令序列和单个线程中执行的操作,不同处理器之间和不同线程之间的数据依赖性不被编译器和处理器考虑。

as-if-serial语义

as-if-serial语义的意思是:不管怎么重排序,单线程程序的执行结果不能被改变。编译器、runtime和处理器都必须遵守as-if-serial语义。所以编译器和处理器不会对存在数据依赖关系的操作做重排序,因为这种重排序会改变执行结果。但是,如果操作之间不存在数据依赖关系,这些操作就可能被编译器和处理器重排序。

下面还是以书中的实例(计算圆的面积)进行说明:

double pi = 3.14;

// Adouble r = 1.0;

// Bdouble area = pi * r * r; // C

上面3个操作的数据依赖关系如图所示:

A和C之间存在数据依赖关系,同时B和C之间也存在数据依赖关系。因此在最终执行的指令序列中,C不能被重排序到A和B的前面(因为C排到A和B的前面,程序的结果将会被改变)。但A和B之间没有数据依赖关系,编译器和处理器可以重排序A和B之间的执行顺序。

该程序的两种可能执行顺序:

as-if-serial语义把单线程程序保护了起来,遵守as-if-serial语义的编译器、runtime和处理器共同为编写单线程程序的程序员创建了一个幻觉:单线程程序是按程序的顺序来执行的。

程序顺序规则

根据happens-before的程序顺序规则,上面计算圆的面积的示例代码存在3个happens-before关系。

1) A happens-before B。

2) B happens-before C。

3) A happens-before C。

而这里的第3个happens-before关系,是根据happens-before的传递性推导出来的。

注意:

这里A happens-before B,但实际执行时B却可以排在A之前执行,JMM并不要求A一定要在B之前执行。JMM仅仅要求前一个操作(执行的结果)对后一个操作可见,且前一个操作按顺序排在第二个操作之前。这里操作A的执行结果不需要对操作B可见,而且重排序操作A和操作B后的执行结果,与操作A和操作B按happens-before顺序执行的结果一致。在这种情况下,JMM会认为这种重排序并不非法,JMM允许这种重排序。

重排序对多线程的影响

重排序是否会改变多线程程序的执行结果?还是借用书中的一个例子:

class ReorderExample {

int a = 0;

boolean flag = false;

public void writer() {

a = 1; // 1

flag = true; // 2

}

public void reader() {

if (flag) { // 3

int i = a * a; // 4

}

}

}

flag变量是个标记,用来标识变量a是否已被写入。这里假设有两个线程A和B,A首先执行writer()方法,随后B线程接着执行reader()方法。线程B在执行操作4时,能否看到线程A在操作1对共享变量a的写入呢?

答案是:不一定能看到。

由于操作1和操作2没有数据依赖关系,编译器和处理器可以对这两个操作重排序;同样,操作3和操作4没有数据依赖关系,编译器和处理器也可以对这两个操作重排序。

当操作1和操作2重排序时,可能会产生什么效果?(虚箭线标识错误的读操作,用实箭线标识正确的读操作。)

如图所示,操作1和操作2做了重排序。程序执行时,线程A首先写标记变量flag,随后线程B读这个变量。由于条件判断为真,线程B将读取变量a。此时,变量a还没有被线程A写入,在这里多线程程序的语义被重排序破坏了!

当操作3和操作4重排序时会产生什么效果。下面是操作3和操作4重排序后,程序执行的时序图:

在程序中,操作3和操作4存在控制依赖关系。当代码中存在控制依赖性时,会影响指令序列执行的并行度。为此,编译器和处理器会采用猜测执行来克服控制相关性对并行度的影响。以处理器的猜测执行为例,执行线程B的处理器可以提前读取并计算a*a,然后把计算结果临时保存到一个名为重排序缓冲的硬件缓存中。当操作3的条件判断为真时,就把该计算结果写入变量i中。猜测执行实质上对操作3和4做了重排序,在这里重排序破坏了多线程程序的语义!

注意:

在单线程程序中,对存在控制依赖的操作重排序,不会改变执行结果。

在多线程程序中,对存在控制依赖的操作重排序,可能会改变程序的执行结果。

参考

《Java并发编程的艺术》

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

as和java什么关系_深入理解happens-before和as-if-serial语义相关推荐

  1. linux查看java虚拟机内存_深入理解java虚拟机(linux与jvm内存关系)

    本文转载自美团技术团队发表的同名文章 https://tech.meituan.com/linux-jvm-memory.html 一, linux与进程内存模型 要理解jvm最重要的一点是要知道jv ...

  2. java虚拟机和内存的关系_深入理解java虚拟机(linux与jvm内存关系)

    本文转载自美团技术团队发表的同名文章 https://tech.meituan.com/linux-jvm-memory.html 一, linux与进程内存模型 要理解jvm最重要的一点是要知道jv ...

  3. java枚举类与成员变量的关系_深入理解枚举类

    深入理解枚举 最近刚学习完JVM相关知识,想到枚举既然这么异类,那就从字节码角度来分析一下它.有关枚举的讲解,很多博客已经很详细了,这里我们就从字节码的角度重新来认识一下它. 枚举类是一种特殊的类,它 ...

  4. java事件处理模型_从零开始理解JAVA事件处理机制(3)

    我们连续写了两小节的教师-学生的例子,必然觉得无聊死了,这样的例子我们就是玩上100遍,还是不知道该怎么写真实的代码.那从本节开始,我们开始往真实代码上面去靠拢. 事件最容易理解的例子是鼠标事件:我们 ...

  5. Java 内存 关系_内存一致性 – 发生在Java之前的关系

    参见英文答案 > How to understand happens-before consistent                                    4个 在阅读有关内 ...

  6. 全面理解java内存模型_深入理解Java内存模型(八)——总结

    处理器内存模型 顺序一致性内存模型是一个理论参考模型,JVM和处理器内存模型在设计时通常会把顺序一致性内存模型作为参照.JVM和处理器内存模型在设计时会对顺序一致性模型做一些放松,因为如果完全按照顺序 ...

  7. java 异常机制_深入理解Java异常处理机制

    一.引子 try-catch-finally恐怕是大家再熟悉不过的语句了,而且感觉用起来也是很简单,逻辑上似乎也是很容易理解.不过,我亲自体验的"教训"告诉我,这个东西可不是想象中 ...

  8. Java 内存 关系_发生在Java内存模型中的关系之前

    (1) What does it really mean by saying "ordered before"? Because even if action_a happens- ...

  9. java画板抽象类_深入理解Java抽象类与接口

    基于抽象类与接口有太多相似之处且均体现着oop的抽象性,本文从以下几点谈谈对这两者的理解. 1.抽象类 2.接口 3.各自优缺点以及应用举例. 1.抽象类 在了解抽象类之前,先来了解一下抽象方法.抽象 ...

最新文章

  1. Windown Server 2003
  2. go http的按序号发送,按序号接收
  3. 【控制】盖尔圆盘定理
  4. yolo loss 将图像标注的真实事坐标转换到anchor坐标
  5. php配置mysql集群_mysql的集群配置
  6. MySQL Commons
  7. 消息队列RocketMQ性能测试案例
  8. 使用Prometheus监控Cloudflare的全球网络
  9. TCP粘包拆包基本解决方案
  10. auc是ROC曲线面积的直观理解
  11. MATLAB的Monte Carlo方法,Monte Carlo的某些用法总结_monte carlo
  12. linux定时任务(crontab)
  13. (四)Ps快速选择/魔棒
  14. 对C++一脸懵逼却又无比热爱的第一篇
  15. Excel表格设置下拉选项并应用到整列及清除下拉项设置
  16. uniapp ->video 黑屏 无时长(新手容易遇到的坑)
  17. 无源物联网的定义、特点和优势
  18. Bilateral Filtering(双边滤波)算法研究
  19. 2020 年百度之星·程序设计大赛 - 初赛三-Discount
  20. 单商户商城系统功能拆解45—应用中心—积分商城

热门文章

  1. 公网可用的RTMP、RTSP测试地址(更新于2021年3月)
  2. Spring-bean的循环依赖以及解决方式___Spring源码初探--Bean的初始化-循环依赖的解决
  3. Java面试——SpringMVC系列总结
  4. 个人用户不得开设服务器对外提供信息服务,北京大学网络安全知识温馨提示
  5. 输出有样式的php,PHP导出带样式的Excel
  6. idea调试怎么跳出循环_IDEA调试技巧条件断点实现步骤详解
  7. python io多路复用_Python之IO多路复用
  8. linux 网络劫持编程,Linux下实现劫持系统调用的总结(上)--代码及实现
  9. mac mysql not found_mac下mysql提示command not found解决
  10. switch语句可以被代替吗_爬楼梯可以代替跑步吗?