电路常识性概念(8)-MOS管及简单CMOS逻辑门电路原理图

2008-05-28 22:17

现代单片机主要是采用CMOS工艺制成的。

1、MOS管      MOS管又分为两种类型:N型和P型。如下图所示:

以N型管为例,2端为控制端,称为“栅极”;3端通常接地,称为“源极”;源极电压记作Vss,1端接正电压,称为“漏极”,漏极电压记作VDD。要使1端与3端导通,栅极2上要加高电平。
       对P型管,栅极、源极、漏极分别为5端、4端、6端。要使4端与6端导通,栅极5要加低电平。
       在CMOS工艺制成的逻辑器件或单片机中,N型管与P型管往往是成对出现的。同时出现的这两个CMOS管,任何时候,只要一只导通,另一只则不导通(即“截止”或“关断”),所以称为“互补型CMOS管”。

2、CMOS逻辑电平

高速CMOS电路的电源电压VDD通常为+5V;Vss接地,是0V。

高电平视为逻辑“1”,电平值的范围为:VDD的65%~VDD(或者VDD-1.5V~VDD)

低电平视作逻辑“0”,要求不超过VDD的35%或0~1.5V。

+1.5V~+3.5V应看作不确定电平。在硬件设计中要避免出现不确定电平。

近年来,随着亚微米技术的发展,单片机的电源呈下降趋势。低电源电压有助于降低功耗。VDD为3.3V的CMOS器件已大量使用。在便携式应用中,VDD为2.7V,甚至1.8V的单片机也已经出现。将来电源电压还会继续下降,降到0.9V,但低于VDD的35%的电平视为逻辑“0”,高于VDD的65%的电平视为逻辑“1”的规律仍然是适用的。

3、非门

非门(反向器)是最简单的门电路,由一对CMOS管组成。其工作原理如下:

A端为高电平时,P型管截止,N型管导通,输出端C的电平与Vss保持一致,输出低电平;A端为低电平时,P型管导通,N型管截止,输出端C的电平与VDD一致,输出高电平。

4、与非门

与非门工作原理:

①、A、B输入均为低电平时,1、2管导通,3、4管截止,C端电压与VDD一致,输出高电平。

②、A输入高电平,B输入低电平时,1、3管导通,2、4管截止,C端电位与1管的漏极保持一致,输出高电平。

③、A输入低电平,B输入高电平时,情况与②类似,亦输出高电平。

④、A、B输入均为高电平时,1、2管截止,3、4管导通,C端电压与地一致,输出低电平。

5、或非门

或非门工作原理:

①、A、B输入均为低电平时,1、2管导通,3、4管截止,C端电压与VDD一致,输出高电平。

②、A输入高电平,B输入低电平时,1、4管导通,2、3管截止,C端输出低电平。

③、A输入低电平,B输入高电平时,情况与②类似,亦输出低电平。

④、A、B输入均为高电平时,1、2管截止,3、4管导通,C端电压与地一致,输出低电平。

注:

将上述“与非”门、“或非”门逻辑符号的输出端的小圆圈去掉,就成了“与”门、“或”门的逻辑符号。而实现“与”、“或”功能的电路图则必须在输出端加上一个反向器,即加上一对CMOS管,因此,“与”门实际上比“与非”门复杂,延迟时间也长些,这一点在电路设计中要注意。

6、三态门

三态门的工作原理:

当控制端C为“1”时,N型管3导通,同时,C端电平通过反向器后成为低电平,使P型管4导通,输入端A的电平状况可以通过3、4管到达输出端B。

当控制端C为“0”时,3、4管都截止,输入端A的电平状况无法到达输出端B,输出端B呈现高电阻的状态,称为“高阻态”。

这个器件也称作“带控制端的传输门”。带有一定驱动能力的三态门也称作“缓冲器”,逻辑符号是一样的。

注:

从CMOS等效电路或者真值表、逻辑表达式上都可以看出,把“0”和“1”换个位置,“与非”门就变成了“或非”门。对于“1”有效的信号是“与非”关系,对于“0”有效的信号是“或非”关系。

上述图中画的逻辑器件符号均是正逻辑下的输入、输出关系,即对“1”(高电平)有效而言。而单片机中的多数控制信号是按照负有效(低电平有效)定义的。例如片选信号CS(Chip Select),指该信号为“0”时具有字符标明的意义,即该信号为“0”表示该芯片被选中。因此,“或非”门的逻辑符号也可以画成下图。

7、组合逻辑电路

“与非”门、“或非”门等逻辑电路的不同组合可以得到各种组合逻辑电路,如译码器、解码器、多路开关等。
       组合逻辑电路的实现可以使用现成的集成电路,也可以使用可编程逻辑器件,如PAL、GAL等实现。

电路常识性概念(8)-MOS管及简单CMOS逻辑门电路原理图相关推荐

  1. 电路常识性概念(3)-TTL与CMOS集成电路

    目前应用最广泛的数字电路是TTL电路和CMOS电路. 1.TTL电路 TTL电路以双极型晶体管为开关元件,所以又称双极型集成电路.双极型数字集成电路是利用电子和空穴两种不同极性的载流子进行电传导的器件 ...

  2. 电路常识性概念(5)-上拉电阻、下拉电阻 / 拉电流、灌电流 / 扇出系数

    电路常识性概念(5)-上拉电阻.下拉电阻 / 拉电流.灌电流 / 扇出系数 (一)上拉电阻: 1.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平 (一般为3.5 ...

  3. 电路常识性概念(6)-VCC、VDD和VSS三种标号的区别

    电路常识性概念(6)-VCC.VDD和VSS三种标号的区别 在电子电路中,常可以看到VCC.VDD和VSS三种不同的符号,它们有什么区别呢? 一.解释 VCC:C=circuit 表示电路的意思, 即 ...

  4. 电路常识性概念(1)-输入、输出阻抗

    1.输入阻抗 输入阻抗是指一个电路输入端的等效阻抗.在输入端上加上一个电压源U,测量输入端的电流I,则输入阻抗Rin=U/I.你可以把输入端想象成一个电阻的两端,这个电阻的阻值,就是输入阻抗. 输入阻 ...

  5. 电路常识性概念(2)-电容

    所谓电容,就是容纳和释放电荷的电子元器件. 电容的基本工作原理就是充电放电,当然还有整流.振荡以及其它的作用. 另外电容的结构非常简单,主要由两块正负电极和夹在中间的绝缘介质组成. 作为无源元件之一的 ...

  6. 常识性概念图谱建设以及在美团场景中的应用

    来源:美团技术团队本文约9600字,建议阅读15分钟 本文介绍了美团常识性概念图谱构建的Schema,图谱建设中遇到的挑战以及建设过程中的算法实践,最后介绍了一些目前常识性概念图谱在业务上的应用. 常 ...

  7. 领域应用 | 常识性概念图谱建设以及在美团场景中的应用

    转载公众号 | 美团技术团队 常识性概念图谱,是围绕常识性概念建立的实体以及实体之间的关系,同时侧重美团的场景构建的一类知识图谱.本文介绍了美团常识性概念图谱构建的Schema,图谱建设中遇到的挑战以 ...

  8. 常识性概念图谱建设与应用

    目录 一.知识图谱背景介绍 (一)基本背景 (二)与NLP的关系 (三)常识性概念图谱的引入对比 二.常识性概念图谱介绍 (一)常识性概念图谱关系图示例 (二)图谱三类节点 (三)图谱四类关系 Is- ...

  9. 什么是MOS管驱动电路,如何理解MOS管驱动电路原理?

    今天泰德兰电子 小编和大家分享主题:什么是MOS管驱动电路,如何理解MOS管驱动电路原理? 作为电子工程师,我们都知道在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻 ...

最新文章

  1. 【Python学习系列二十五】数据结构-有向图绘制
  2. 双击Jar的启动方法
  3. 危!我用python克隆了女朋友的声音!
  4. 音视频技术开发周刊 | 185
  5. Linux 下安装和配置git
  6. html中给文章怎么设置行高,css如何设置行距?
  7. 前端开发的难点到底在什么地方?
  8. 【LeetCode题解】二叉树的遍历
  9. kafka shutdown停止关闭很慢问题的解决方案
  10. 关于html5毕业论文设计任务书,毕业论文设计任务书(精选多篇)
  11. 杰理之ANC降噪【篇】
  12. 语音论文阅读TINY TRANSDUCER: A HIGHLY-EFFICIENT SPEECH RECOGNITION MODEL ON EDGE DEVICES
  13. 解决:TransportException: Cannot execute request on any known server
  14. 机器学习实战(Machine Learning in Action)学习笔记————04.朴素贝叶斯分类(bayes)...
  15. 安装mysql报msvcr100_解决安装mysql 提示msvcr100.dill 丢失,的最快方法
  16. IoT名企:物联网云服务龙头企业软硬实力兼备,机智云喜获高新技术企业认定
  17. SAP小技巧之 标签打印
  18. 模糊测试中的动态符号执行
  19. 黑客攻防技术宝典(五)
  20. 小强怎样练成——读《现代软件工程——构建之法》第三章有感

热门文章

  1. SAP UI5 datajs.js response handling
  2. SAP Fiori extension hook added via note
  3. CL_ABAP_COMPILER - get ID - double click on local variable
  4. how to create BRF application via code
  5. step by step to download equipment via request download
  6. COM_ASET check in CRM Middleware inbound scenario
  7. 如何远程比较两个系统里同一个ABAP类方法代码的差异
  8. step 1 android-sdk-download
  9. Java Spring实现原理研究之Servlet initialization初始化过程
  10. SAP CRM Fiori应用My Note的OData调用设计