泡芙噶的计算机网络(3)-扑朔迷离的Cisco Packet Tracer实验

  • 实验内容
  • 准备阶段
  • 实验内容
    • 直接连接两台 PC 构建 LAN
    • 用交换机构建 LAN
    • 交换机接口地址列表
    • 生成树协议(Spanning Tree Protocol)
    • 路由器配置初步
      • 配置数据
      • 说明一
      • 说明二
      • 说明三
      • 说明四
      • 说明五
      • 说明六
      • 静态路由
      • 动态路由RIP
      • 动态路由OSPF
    • 基于端口的网络地址翻译 PAT
    • 虚拟局域网VLAN
    • 虚拟局域网管理 VTP
    • VLAN间的通信
    • DHCP、DNS及Web服务器简单配置
    • WLAN初步配置

实验内容

本部分实验共有 15 个,需使用 Cisco Packet Tracer 软件完成。

准备阶段

1、了解 VLSM、CIDR、RIP、OSPF、VLAN、STP、NAT 及 DHCP 等概念,以便能够进行网络规划和配置。
2、 了解CPT的基本使用

实验内容

直接连接两台 PC 构建 LAN

将两个计算机直接连通,设置好ip地址后相互ping,能够成功ping通,说明成功连接。



用交换机构建 LAN

建立拓扑图如下

网络配置:

name ip
pc0 192.168.1.1
pc1 192.168.1.2
pc2 192.168.2.1
pc3 192.168.2.2

1、 PC0 能否 ping 通 PC1、PC2、PC3 ?
答:PC0能ping通PC1,但不能ping通PC2、PC3。
2、 PC3 能否 ping 通 PC0、PC1、PC2 ?为什么?
3、 将 4 台 PC 的掩码都改为 255.255.0.0 ,它们相互能 ping 通吗?为什么?
答:相互之间能ping通。如果掩码为255.255.255.0,PC0、PC1和PC2、PC3不是同一局域网,他们之间不能互通。而掩码改为255.255.0.0,他们之间属于同一局域网下,可以互通。
4、使用二层交换机连接的网络需要配置网关吗?为什么?
答:需要,在二层交换机配置网关网络互联。没有网关,本机所辖主机,无法与其它网络通信,所以需要网关。
5、集线器 Hub 是工作在物理层的多接口设备,它与交换机的区别是什么?
答:集线器Hub是工作在物理层,而交换机则是工作在物理层和数据链路层。两种工作的区域不同。

交换机接口地址列表

二层交换机是一种即插即用的多接口设备,它对于收到的帧有 3 种处理方式:广播、转发和丢弃(请弄清楚何时进行何种操作)。那么,要转发成功,则交换机中必须要有接口地址列表即 MAC 表,该表是交换机通过学习自动得到的!

仍然构建上图的拓扑结构,并配置各计算机的 IP 在同一个一个子网,使用工具栏中的放大镜点击某交换机如左边的 Switch3,选择 MAC Table,可以看到最初交换机的 MAC 表是空的,也即它不知道该怎样转发帧(那么它将如何处理?),用 PC0 访问(ping)PC1 后,再查看该交换机的 MAC 表,现在有相应的记录,请思考如何得来。随着网络通信的增加,各交换机都将生成自己完整的 MAC 表,此时交换机的交换速度就是最快的!
没有ping的MAC表:

ping后的MAC表:

你还可以使用 CPT 的 Simulation 模式即模拟方式进一步看清楚这个过程!

生成树协议(Spanning Tree Protocol)

交换机在目的地址未知或接收到广播帧时是要进行广播的。如果交换机之间存在回路/环路,那么就会产生广播循环0风暴,从而严重影响网络性能。
而交换机中运行的 STP 协议能避免交换机之间发生广播循环风暴。
只使用交换机,构建如下拓扑:


这是初始时的状态。我们可以看到交换机之间有回路,这会造成广播帧循环传送即形成广播风暴,严重影响网络性能。
随后,交换机将自动通过生成树协议(STP)对多余的线路进行自动阻塞(Blocking),以形成一棵以 Switch0 为根的具有唯一路径树即生成树!
经过一段时间,随着 STP 协议成功构建了生成树后,Switch3和Switch1 的两个接口当前物理上是连接的,但逻辑上是不通的,处于Blocking状态(桔色)如下图所示:


在网络运行期间,假设某个时候 Switch0与 Switch1 之间的物理连接出现问题,则该生成树将自动发生变化。Switch1 上方先前 Blocking 的那个接口现在活动了(绿色),但Switch3下方那个接口仍处于 Blocking 状态(桔色)。如下图所示:

路由器配置初步

模拟两个学校的连接,构建拓扑图如下:

配置数据

PC配置数据:

name ip 网关
pc7 192.168.1.2/24 192.168.1.1
pc8 192.168.1.3/24 192.168.1.1
pc9 192.168.3.2/24 192.168.3.1
pc10 192.168.3.3/24 192.168.3.1

端口配置数据:

接口 ip 子网掩码
重庆交通大学Router0以太网口 192.168.1.1 255.255.255.0
重庆交通大学Router0广域网口 192.168.2.1 255.255.255.0
重庆大学Router1以太网口 192.168.3.1 255.255.255.0
重庆大学Router1广域网口 192.168.2.2 255.255.255.0

下面对广域网中模块的连接及配置做一些说明:

说明一

交通大学与重庆大学处于不同子网,需通过路由器进行通信。路由器的每个接口下至少是一个子网,图中我们简单的规划了 3 个子网:

1、左边路由器是交通大学的,其下使用交换机连接交通大学的网络,分配网络号 192.168.1.0/24,该路由器接口也是交通大学网络的网关,分配 IP 为 192.168.1.1
2、右边路由器是重庆大学的,其下使用交换机连接重庆大学的网络,分配网络号 192.168.3.0/24,该路由器接口也是重庆大学网络的网关,分配 IP 为 192.168.3.1
3、两个路由器之间使用广域网接口相连,也是一个子网,分配网络号 192.168.2.0/24

说明二

现实中,交通大学和重庆大学的连接是远程的。该连接要么通过路由器的光纤接口,要么通过广域网接口即所谓的 serial 口(如拓扑图所示)进行,一般不会通过双绞线连接,因为双绞线一般用于短距离连接,不超过100m。

路由器的广域网口连接进行相关配置,过程如下。

原因在于默认的2621XM路由器端口不够用,我们需要在设备互连前要添加所需的路由器模块(添加模块时注意要关闭电源)。我们为 Router 0添加NM-4E模块

说明三

在模拟的广域网连接中需注意 DCE 和 DTE 端(连线时线路上有提示,带一个时钟标志的是 DCE 端。)
DCE(数据通信设备或者数据电路终端设备):该设备和其与通信网络的连接构成了网络终端的用户网络接口,时钟频率为64000。
DTE(数据终端设备):指的是位于用户网络接口用户端的设备,它能够作为信源、信宿或同时为二者。

说明四

路由器有多种命令行配置模式,每种模式对应不同的提示符及相应的权限。

  • User mode:用户模式
  • Privileged mode:特权模式
  • Global configuration mode:全局配置模式
  • Interface mode:接口配置模式
  • Subinterface mode:子接口配置模式

说明五

在路由器的 CLI 界面中,可看到路由器刚启动成功后,因为无任何配置,将会提示是否进行对话配置(Would you like to enter the initial configuration dialog?),因其步骤繁多,请选择 NO。

说明六

重庆交通大学路由器基本配置如下:
以太网接口:

Router>enable   // 从普通模式进入特权模式
Router#configure terminal   // 进入全局配置模式
Rcqouter(config)#interface f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 192.168.1.1 255.255.255.0   // 配置该接口的 IP
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式

广域网接口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 192.168.2.1 255.255.255.0   //配置该接口的 IP
Router(config-if)#clock rate 64000    // 其为 DCE 端,配置时钟频率
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式

重庆大学路由器基本配置如下:
以太网接口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 192.168.3.1 255.255.255.0   // 配置该接口的 IP
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式

广域网接口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 192.168.2.2 255.255.255.0   //配置该接口的 IP
Router(config-if)#no shutdown   // 激活接口
Router(config-if)#^z   // 直接退到特权模式

现在交通大学内的各 PC 及网关相互能 ping 通,重庆大学也类似。但不能从交大的 PC ping 通重大的 PC,反之亦然,也即不能跨子网。为什么?
答:因为此时路由表里为空,没有能够到达对方的路径,可以通过静态路由、动态路由RIP、动态路由SOSPF来解决这个问题。

静态路由

静态路由是非自适应性路由协议,是由网络管理人员手动配置的,不能够根据网络拓扑的变化而改变。 因此,静态路由简单高效,适用于结构非常简单的网络。

重庆交通大学路由器静态路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#ip route 192.168.3.0 255.255.255.0 192.168.2.2   // 告诉交通大学路由器到 192.168.3.0 这个网络的下一跳是 192.168.2.2
Router(config)#exit   //退到特权模式
Router#show ip route    //查看路由表

重庆大学路由器静态路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
// 告诉重庆大学路由器到 192.168.1.0 这个网络的下一跳是 192.168.2.1
Router(config)#ip route 192.168.1.0 255.255.255.0 192.168.2.1
Router(config)#exit   //退到特权模式
Router#show ip route    //查看路由表

查看路由表你可看到标记为 S 的一条路由,S 表示 Static 。至此,这些 PC 能全部相互 ping 通

动态路由RIP

动态路由协议采用自适应路由算法,能够根据网络拓扑的变化而重新计算机最佳路由。
RIP 的全称是 Routing Information Protocol,是距离矢量路由的代表(目前虽然淘汰,但可作为我们学习的对象)。使用 RIP 协议只需要告诉路由器直接相连有哪些网络即可,然后 RIP 根据算法自动构建出路由表。

因为我们模拟的网络非常简单,不能同时使用静态和动态路由,否则看不出效果,所以我们需要把刚才配置的静态路由先清除掉。
清除静态路由配置的两个方法:

  • 直接关闭路由器电源。相当于没有保存任何配置,然后各接口再按照前面基本配置所述重新配置 IP等参数(推荐此方法,可以再熟悉一下接口的配置命令);
  • 使用 no 命令清除静态路由。在全局配置模式下,交通大学路由器使用:no ip route 192.168.3.0 255.255.255.0 192.168.2.2,重庆大学路由器使用:no ip route 192.168.1.0 255.255.255.0 192.168.2.1 。相当于使用 no 命令把刚才配置的静态路由命令给取消。
    重庆交通大学路由器 RIP 路由配置:
Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router rip   // 启用 RIP 路由协议,注意是 router 命令
Router(config-router)#network 192.168.1.0   // 网络 192.168.1.0 与我直连
Router(config-router)#network 192.168.2.0   // 网络 192.168.2.0 与我直连
Router(config-router)#^z   //直接退到特权模式
Router#show ip route    //查看路由表

重庆大学路由器 RIP 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router rip   // 启用RIP路由协议,注意是 router 命令
Router(config-router)#network 192.168.3.0   // 网络 192.168.3.0 与我直连
Router(config-router)#network 192.168.2.0   // 网络 192.168.2.0 与我直连
Router(config-router)#^z   //直接退到特权模式
Router#show ip route    //查看路由表

查看路由表你可看到标记为 R 的一条路由,R 表示 RIP 。至此,这些 PC 也能全部相互 ping 通!

动态路由OSPF

OSPF(Open Shortest Path First 开放式最短路径优先)是一个内部网关协议(Interior Gateway Protocol,简称 IGP), 用于在单一自治系统(Autonomous System,AS)内决策路由。OSPF 性能优于 RIP,是当前域内路由广泛使用的路由协议。
同样的,我们需要把刚才配置的 RIP 路由先清除掉:

  • 直接关闭路由器电源。相当于没有保存任何配置,然后各接口再按照前面基本配置所述重新配置 IP 等参数
  • 使用 no 命令清除 RIP 路由。在全局配置模式下,各路由器都使用:no router rip 命令进行清除
    重庆交通大学路由器 OSPF 路由配置:
Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1(可暂不理会进程号概念)
Router(config-router)#network 192.168.1.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.1.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 192.168.2.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.2.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#^z   //直接退到特权模式
Router#show ip route    //查看路由表

重庆大学路由器 OSPF 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1
Router(config-router)#network 192.168.3.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.3.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 192.168.2.0 0.0.0.255 area 0   // 自治域0中的属于 192.168.2.0/24 网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#^z   //直接退到特权模式
Router#show ip route    //查看路由表

查看路由表你可看到标记为 O 的一条路由,O 表示 OSPF 。至此,这些 PC 能全部相互 ping 通!

可以在特权模式下使用 debug ip ospf events 开启 OSPF 诊断(no debug ip ospf events 关闭诊断), 可看到路由器之间发送的 Hello 信息用以诊断当前的链路是否发生改变以便进行路由调整(事件触发而非定时更新!)

反向掩码

我们常见的子网掩码是所谓的正向掩码,用连续的 1 和 0 来表示,其中 1 表示需精确匹配, 0 则无需,以此得到网络号。类似的,反向掩码也使用连续的 1 和 0 来表示,但相反,其中 0 表示需精确匹配, 1 则无需,以此得到相关的 IP,主要用于 OSPF 中。
还有一个通配符掩码,也采用与反向掩码相似的规则,主要用于访问控制列表 ACL 中。

基于端口的网络地址翻译 PAT

网络地址转换(NAT,Network Address Translation)被各个 Internet 服务商即 ISP 广泛应用于它们的网络中,也包括 WiFi 网络。 NAT 不仅完美地解决了 lP 地址不足的问题,而且还能够有效地避免来自网络外部的攻击,隐藏并保护网络内部的计算机。

NAT 的实现方式一般有三种:

  • 静态转换: Static NAT
  • 动态转换: Dynamic NAT
  • 端口多路复用: OverLoad
    端口多路复用使用最多也最灵活。指不仅改变发向 Internet 数据包的源 IP 地址,同时还改变其源端口,即进行了端口地址转换(PAT,Port Address Translation)。

采用端口多路复用方式,内部网络的所有主机均可共享一个合法外部 IP 地址实现对 Internet 的访问,从而可以最大限度地节约IP地址资源。 同时,又可隐藏网络内部的所有主机,有效避免来自 Internet 的攻击。因此,目前网络中应用最多的就是端口多路复用方式。

我们仍然使用重庆交通大学和重庆大学两个学校的拓扑进行 PAT 实验。我们需要保证两个学校的路由已经配置成功,无论使用静态路由还是动态路由,以下我们给出完整的配置过程:设定这两个学校的路由器使用 OSPF 协议,模拟交通大学使用内部 IP 地址(192.168.1.0/24),模拟重庆大学使用外部 IP 地址(8.8.8.0/24),两个路由器之间使用外部 IP 地址(202.202.240.0/24),在交通大学的出口位置即广域网口实施 PAT。
拓扑图中各 PC 配置数据:

pc ip 网关
重庆交通大学PC7 192.168.1.2/24 192.168.1.1
重庆交通大学PC8 192.168.1.3/24 192.168.1.1
重庆大学PC9 8.8.8.2/24 8.8.8.1
重庆大学PC10 8.8.8.3/24 8.8.8.1

路由器接口配置数据:

pc ip 网关
重庆交通大学Router0以太网口 192.168.1.1 255.255.255.0
重庆交通大学Router0广域网口 202.202.240.1 255.255.255.0
重庆大学Router1以太网口 8.8.8.1 255.255.255.0
重庆大学Router1广域网口 202.202.240.2 255.255.255.0

重庆交通大学路由器接口配置:
以太网接口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 192.168.1.1 255.255.255.0   // 配置 IP
Router(config-if)#no shutdown   // 激活接口

广域网接口

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 202.202.240.1 255.255.255.0   //配置 IP
Router(config-if)#clock rate 64000    // 其为 DCE 端,配置时钟频率
Router(config-if)#no shutdown   // 激活接口

重庆大学路由器接口配置:
以太网接口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int f0/0   // 进入配置以太网口模式
Router(config-if)#ip address 8.8.8.1 255.255.255.0   // 配置 IP
Router(config-if)#no shutdown   // 激活接口

广域网接口:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#int s0/0   // 进入配置广域网口模式
Router(config-if)#ip address 202.202.240.2 255.255.255.0   // 配置 IP
Router(config-if)#no shutdown   // 激活接口

重庆交通大学路由器 OSPF 路由配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1(可暂不理会进程号概念)
Router(config-router)#network 192.168.1.0 0.0.0.255 area 0   // 自治域0中的属于192.168.1.0/24网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 202.202.240.0 0.0.0.255 area 0   // 自治域0中的属于202.202.240.0/24网络的所有主机(反向掩码)参与 OSPF
重庆大学路由器 OSPF 路由配置:
Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#router ospf 1   // 启用 OSPF 路由协议,进程号为1
Router(config-router)#network 202.202.240.0 0.0.0.255 area 0   // 自治域0中的属于202.202.240.0/24网络的所有主机(反向掩码)参与 OSPF
Router(config-router)#network 8.8.8.0 0.0.0.255 area 0   // 自治域0中的属于8.8.8.0/24网络的所有主机(反向掩码)参与 OSPF

此时,这些任意两台PC 能全部相互 ping 通!如在交通大学内部使用 PC0(192.168.1.2)来 ping 重庆大学的PC2(8.8.8.2)应该成功。
下面我们将重庆大学的路由器看着 Internet 中的骨干路由器,那么这些路由器将不会转发内部/私有 IP 地址的包(直接丢弃)。我们通过在重庆大学路由器上实施访问控制 ACL ,即丢弃来自交通大学(私有 IP 地址)的包来模拟这个丢包的过程。

重庆大学路由器丢包的配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#access-list 1 deny 192.168.1.0 0.0.0.255  // 创建 ACL 1,丢弃/不转发来自 192.168.1.0/24 网络的所有包
Router(config)#access-list 1 permit any  // 添加 ACL 1 的规则,转发其它所有网络的包
Router(config)#int s0/0   // 配置广域网口
Router(config-if)#ip access-group 1 in  // 在广域网口上对进来的包实施 ACL 1 中的规则,实际就是广域网口如果收到来自 192.168.1.0/24 IP的包即丢弃

此时,再使用交通大学内部的 PC0(192.168.1.2)来 ping 重庆大学的 PC2(8.8.8.2)就不成功了,会显示目的主机不可到达(Destination host unreachable)信息。
下面,我们就开始实施 PAT。即:我们将会在交通大学路由器的出口上将内部/私有 IP 地址转换为外部/公开 IP,从而包的源 IP 发生了改变,就不会被重庆大学路由器丢弃,因此网络连通。

重庆交通大学路由器 PAT 配置:

Router>en   // 从普通模式进入特权模式
Router#conf t   // 进入全局配置模式
Router(config)#access-list 1 permit 192.168.1.0 0.0.0.255  // 创建 ACL 1,允许来自 192.168.1.0/24 网络的所有包
Router(config)#ip nat inside source list 1 interface s0/0 overload  // 来自于 ACL 中的 IP 将在广域网口实施 PAT
Router(config)#int f0/0   // 配置以太网口
Router(config-if)#ip nat inside   // 配置以太网口为 PAT 的内部
Router(config)#int s0/0   // 配置广域网口
Router(config-if)#ip nat outside   // 配置广域网口为 PAT 的外部

现在,再次使用交通大学内部的 PC7(192.168.1.2)来 ping 重庆大学的PC9(8.8.8.2)

ping 成功后,在交通大学路由器特权配置模式下使用 show ip nat translations 可查看这个翻译的过程!

虚拟局域网VLAN

VLAN(Virtual Local Area Network)即虚拟局域网。通过划分 VLAN,我们可以把一个物理网络划分为多个逻辑网段即多个子网。
划分 VLAN 后可以杜绝网络广播风暴,增强网络的安全性,便于进行统一管理等。
在 CPT 中构建如下图所示拓扑:

Cisco 2960 交换机是支持 VLAN 的交换机,共有 24 个 100M 和 2 个 1000M 以太网口。默认所有的接口都在 VLAN 1 中,故此时连接上来的计算机都处于同一 VLAN,可以进行通信。

下面我们就该交换机的 24 个 100M 接口分为 3 个部分,划分到 3 个不同的 VLAN 中,id 号分别设为 10、20、30,且设置别名(computer、communication、electronic)以利于区分和管理。
交换机 VLAN 配置:

Switch>en
Switch#conf t
Switch(config)#vlan 10    // 创建 id 为 10 的 VLAN(缺省的,交换机所有接口都属于VLAN 1,不能使用)
Switch(config-vlan)#name computer    // 设置 VLAN 的别名
Switch(config-vlan)#exit
Switch(config)#int vlan 10    // 该 VLAN 为一个子网,设置其 IP,作为该子网网关
Switch(config-if)#ip address 192.168.0.1 255.255.255.0
Switch(config-if)#exit
Switch(config)#vlan 20    // 创建 id 为 20 的 VLAN
Switch(config-vlan)#name communication    //设置别名
Switch(config-vlan)#exit
Switch(config)#int vlan 20
Switch(config-if)#ip addr 192.168.1.1 255.255.255.0
Switch(config-if)#exit
Switch(config)#vlan 30    // 创建 id 为 20 的 VLAN
Switch(config-vlan)#name electronic    // 设置别名
Switch(config-vlan)#exit
Switch(config)#int vlan 30
Switch(config-if)#ip add 192.168.2.1 255.255.255.0
Switch(config-if)#exit
Switch(config)#int range f0/1-8    // 成组配置接口(1-8)
Switch(config-if-range)#switchport mode access    // 设置为存取模式
Switch(config-if-range)#switchport access vlan 10    // 划归到 VLAN 10 中
Switch(config-if-range)#exit
Switch(config)#int range f0/9-16
Switch(config-if-range)#switchport mode access
Switch(config-if-range)#switchport access vlan 20
Switch(config-if-range)#exit
Switch(config)#int range f0/17-24
Switch(config-if-range)#switchport mode access
Switch(config-if-range)#switchport access vlan 30
Switch(config-if-range)#^Z
Switch#show vlan // 查看 VLAN 的划分情况

至此,在该交换机上我们就划分了 3 个 VLAN(不包括缺省的 VLAN 1)。
各 VLAN 下 PC 的网络配置及连接的交换机接口如下表:

name 连接口 所属VLAN ip 网关
pc0 F0/1 VLAN10 192.168.0.2/24 192.168.0.1
pc1 F0/2 VLAN10 192.168.0.3/24 192.168.0.1
pc2 F0/17 VLAN30 192.168.2.2/24 192.168.2.1
pc3 F0/9 VLAN20 192.168.1.2/24 192.168.1.1
pc4 F0/10 VLAN20 192.168.1.3/24 192.168.1.1
pc5 F0/18 VLAN30 192.168.2.3/24 192.168.2.1
pc6 F0/19 VLAN30 192.168.2.4/24 192.168.2.1

vlan 划分情况

用PC0(ip 192.168.0.2) ping PC5(ip 192.168.2.2)ping不通,但是ping vlan内的pc1(ip 192.168.0.3)可以ping通

通过划分vlan,同一个vlan中的端口可以不通过路由器直接通信,而不同vlan之间则需要路由器进行路由,所以不能通信。这里面的路由器(交换机)就是网关。广播测试是在每一个vlan之中进行的。vlan作用就是隔离广播,避免发生广播风暴。

虚拟局域网管理 VTP

VTP(VLAN Trunk Protocol)即 VLAN 中继协议。统一的规划和管理VLAN的划分。VTP 通过 ISL 帧或 Cisco 私有 DTP 帧(可查阅相关资料了解)保持 VLAN 配置统一性,也被称为虚拟局域网干道协议,它是思科私有协议。 VTP 统一管理、增加、删除、调整VLAN,自动地将信息向网络中其它的交换机广播。

此外,VTP 减小了那些可能导致安全问题的配置,只要在 VTP Server 做相应设置,VTP Client 会自动学习 VTP Server 上的 VLAN 信息。

为演示 VTP,重新构建如下拓扑结构:

在新建两个 VLAN,然后让 PC0 和 PC1 属于 VLAN 2,PC1 和 PC3 属于 VLAN 3。
3560 VTP Server 配置:

Switch>en
Switch#conf t
Switch(config)#hostname 3560    // 更改交换机名称(可选)
3560(config)#vtp domain cqjtu   // 设置 VTP 域名称为 cqjtu
3560(config)#vtp mode server    // 设置其为 VTP 服务器模式
3560(config)#vlan 2             // 新建VLAN 2
3560(config-vlan)#name computer // 设置 VLAN 2 的别名(可选)
3560(config-vlan)#exit
3560(config)#vlan 3             // 再建 VLAN 3
3560(config-vlan)#name communication    //设置 VLAN 2 的别名(可选)
3560(config-vlan)#exit
3560(config)#int vlan 2    // 配置接口 VLAN 2,它将是该子网(左边)的网关
3560(config-if)#ip address 192.168.1.1 255.255.255.0
3560(config-if)#exit
3560(config)#int vlan 3    // 配置接口 VLAN 3,它将是该子网(右边)的网关
3560(config-if)#ip address 192.168.2.1 255.255.255.0

2960A(左边) VTP Client 配置:

Switch>en
Switch#conf t
Switch(config)#hostname 2960A    // 更改交换机名称(可选)
2960A(config)#vtp domain cqjtu   // 加入名为 cqjtu 的 VTP 域
2960A(config)#vtp mode client    // 设置模式为 VTP 客户
2960A(config)#int g0/1    // 配置与核心交换机 3560 连接的 g0/1 千兆接口
2960A(config-if)#switchport mode trunk    // 设置该接口为中继(trunk)模式
2960A(config-if)#switchport trunk allowed vlan all  // 允许为所有的 VLAN 中继
2960A(config-if)#exit
2960A(config)#int f0/1    // 配置接口 1
2960A(config-if)#switchport mode access    // 设置该接口为正常访问模式
2960A(config-if)#switchport access vlan 2  // 将接口划分到 VLAN 2
2960A(config-if)#exit
2960A(config)#int f0/2    // 配置接口 2
2960A(config-if)#switchport mode access    // 设置该接口为正常访问模式
2960A(config-if)#switchport access vlan 3  // 将接口划分到 VLAN 3

2960B(右边) VTP Client 配置:

Switch>en
Switch#conf t
Switch(config)#hostname 2960B    // 更改交换机名称(可选)
2960B(config)#vtp domain cqjtu   // 加入名为 cqjtu 的 VTP 域
2960B(config)#vtp mode client    // 设置模式为 VTP 客户
2960B(config)#int g0/1    // 配置与核心交换机 3560 连接的 g0/1 千兆接口
2960B(config-if)#switchport mode trunk    // 设置该接口为中继(trunk)模式
2960B(config-if)#switchport trunk allowed vlan all  // 允许为所有的 VLAN 中继
2960B(config-if)#exit
2960B(config)#int f0/1    // 配置接口 1
2960B(config-if)#switchport mode access    // 设置该接口为正常访问模式
2960B(config-if)#switchport access vlan 2  // 将接口划分到 VLAN 2
2960B(config-if)#exit
2960B(config)#int f0/2    // 配置接口 2
2960B(config-if)#switchport mode access    // 设置该接口为正常访问模式
2960B(config-if)#switchport access vlan 3  // 将接口划分到 VLAN 3

至此,各交换机配置完毕。
各 PC 连接的交换机和接口以及网络配置如下:

name 连接的交换机接口 所属VLAN ip 网关
pc0 2960A-F0/1 VLAN 2 192.168.1.2/24 192.168.1.1
pc1 2960A-F0/2 VLAN 3 192.168.2.2/24 192.168.1.1
pc2 2960A-F0/1 VLAN 2 192.168.1.3/24 192.168.1.1
pc3 2960A-F0/2 VLAN 3 192.168.2.3/24 192.168.1.1

PC0(192.168.1.2) ping PC1(192.168.2.2)ping通

PC2(192.168.1.3)ping不通

VLAN间的通信

默认VLAN 间是不允许进行通信。此时我们需要所谓的独臂路由器在 VLAN 间为其进行转发!
我们使用的核心交换机 3560 是个 3 层交换机,可工作在网络层,也称路由交换机,即具有路由功能,能进行这种转发操作。
3560 交换机配置:

3560>en
3560#conf t
3560(config)#int g0/1    // 配置连接左边 2960A 交换机的接口
3560(config-if)#switchport trunk encapsulation dot1q    // 封装 VLAN 协议
3560(config-if)#switchport mode trunk     // 设置为中继模式
3560(config-if)#switchport trunk allowed vlan all     // 在所有 VLAN 间转发
3560(config-if)#exit
3560(config)#int g0/2    // 配置连接右边 2960B 交换机的接口
3560(config-if)#switchport trunk encapsulation dot1q    //封装 VLAN 协议
3560(config-if)#switchport mode trunk     // 设置为中继模式
3560(config-if)#switchport trunk allowed vlan all     // 在所有 VLAN 间转发
3560(config-if)#exit
3560(config)#ip routing    // 启用路由转发功能

至此,各 VLAN 间及VLAN内的各个 PC 可以正常通信。

DHCP、DNS及Web服务器简单配置

建立如下拓扑图:
该拓扑中,服务器及客户机都连在同一交换机上。为简单起见,服务器 Server-PT 同时作为 DHCP、DNS 以及 Web 服务器,各客户机无需配置,将自动获取网络配置。

点击 CPT 拓扑图中的 Server 图标,设置其静态 IP 地址为 19.89.6.4/24,然后选择 Service 进行如下相关配置:

机器名 配置项目 说明
Server HTTP 开启即可
Server DNS 19.89.6.4:www.google.com、www.baidu.com
Server DNS 地址池开始地址:19.89.6.10/24,并返回DNS地址
PC 网络配置 自动获取

根据表项完成配置后,打开主机的web browser便可得到默认的 Server-PT 这个 Web 服务器的主页。

WLAN初步配置

WLAN 即 WiFi 当前也是广泛的应用在各种场景。
我们通过构建如下拓扑的一个家庭 WLAN 来练习一下其相关的配置:

笔记本及台式机默认只有有线网卡,请先关机,在关机状态下删除有线网卡,添加无线网卡,然后再开机。
一般地,我们需要配置无线路由器的基本网络配置(IP、掩码、网关、DNS 等,现实中多为自动获取),然后再配置无线路由器的无线访问部分如连接密码及加密类型等,并开启 DHCP 功能等。有关配置请参考相关资料。

泡芙噶的计算机网络(3)-扑朔迷离的Cisco Packet Tracer实验相关推荐

  1. 计算机网络实验--Cisco Packet Tracer 实验

    计算机网络实验--Cisco Packet Tracer 实验 直接连接两台 PC 构建 LAN 用交换机构建 LAN 交换机接口地址列表 生成树协议(Spanning Tree Protocol) ...

  2. 计算机网络实验三—— Cisco Packet Tracer 实验

    计算机网络实验三-- Cisco Packet Tracer 实验 CPT 软件使用简介 一.直接连接两台 PC 构建 LAN 二.用交换机构建 LAN 机器名 IP 子网掩码 ✎ 问题 ✎ 试一试 ...

  3. 计算机网络实验(Cisco Packet Tracer 实验)

    计算机网络实验(Cisco Packet Tracer 实验) 文章目录 计算机网络实验(Cisco Packet Tracer 实验) 前言 Cisco Packet Tracer 实验 预备知识: ...

  4. 计算机网络---Cisco Packet Tracer 实验

    目录 Cisco Packet Tracer 实验 CPT 软件使用简介 一.直接连接两台 PC 构建 LAN 二.用交换机构建 LAN 三.交换机接口地址列表 四.生成树协议(Spanning Tr ...

  5. 计算机网络学习④——Cisco Packet Tracer 实验

    Cisco Packet Tracer 实验 本部分实验共有 15 个,需使用 Cisco Packet Tracer 软件完成. 请大家先了解 VLSM.CIDR.RIP.OSPF.VLAN.STP ...

  6. 计算机网络实验-Cisco Packet Tracer 实验

    文章目录 Cisco Packet Tracer 实验 直接连接两台 PC 构建 LAN 用交换机构建 LAN 交换机接口地址列表 生成树协议(Spanning Tree Protocol) 路由器配 ...

  7. cisco packet tracer实验案例-重置路由器ENABLE特权密码

    cisco packet tracer实验案例-重置路由器ENABLE特权密码 0 文章标签:cisco, 路由器 cisco路由器ENABLE密码忘记了怎么办?通过本实验你将熟悉当cisco路由器E ...

  8. Cisco Packet Tracer实验————组建虚拟局域网

    前言 大三局域网实验,使用Cisco Packer Tracer模拟软件,本篇内容为组建虚拟局域网 Cisco Packet Tracer实验----组建虚拟局域网 您好,我的博客是不周阁 实验目的 ...

  9. Cisco Packet Tracer实验及实训

    Title:<Cisco Packet Tracer实验及实训> Author:Hugu StartedDate:Oct. 10th. 2019 FinishedDate:Oct. 24t ...

最新文章

  1. 2017-9-17pat甲级 A
  2. 英特尔的VT-x技术是什么?
  3. 在JSF 2中对定制验证器进行参数化
  4. 河北软件职业技术学院计算机专业分数线,河北软件职业技术学院历年分数线 2021河北软件职业技术学院录取分数线...
  5. HTC公布第二款区块链手机Exodus 1s:或将于9月前发售
  6. 异步回调发展(地狱回调)
  7. Java反射机制demo(三)—获取类中的构造函数
  8. schema中字段类型的定义
  9. python: ubuntu下把py2.7改成py3
  10. 微信小程序文件实现下载并预览(ios及安卓手机)
  11. 冰点下载器手机版apk_冰点下载器官网
  12. 69. Sqrt(x)
  13. 数学建模入门-python实现单目标模糊综合评价法
  14. CyanogenMod编译
  15. Autovue Client/Server 性能优化
  16. iOS报错 之 The app delegate must implement the window property if it wants to use
  17. 为啥linux识别螃蟹驱动,螃蟹卡 RTL8168 更新驱动解决 BBR 单线程限速
  18. Java实现蓝桥杯分金币
  19. Java 超全面试题
  20. 解决“A problem occurred starting process 'command ''D:\AndroidSdk\..\mips64el-linux-android-strip''的问题

热门文章

  1. Boost:shared_memory_object --- 共享内存
  2. 英语专家谈英语学习方法
  3. Microsoft SQL Server笔记整理
  4. Luat Inside | 致敬经典,使用Air724UG制作简易贪吃蛇
  5. 联想win10进bios的正确方式,并不是按键!!!!!
  6. 台式机的无线网卡连接wifi,能连上但丢包严重,无法上网
  7. 关于ROS+Gazebo通过cmd_vel或键盘控制节点发布速度消息时,仿真小车运动速度相反问题
  8. 坚果Pro和罗永浩的锤子梦
  9. 敏捷项目如何保证测试质量
  10. vue项目 - 封装loding组件