一.SD/MMC卡介绍

1.1.什么是MMC卡

MMC:MMC就是MultiMediaCard的缩写,即多媒体卡。它是一种非易失性存储器件,体积小巧(24mm*32mm*1.4mm),容量大,耗电量低,传输速度快,广泛应用于消费类电子产品中。

1.2.什么是SD卡

SD:SD卡为Secure Digital Memory Card, 即安全数码卡。它在MMC的基础上发展而来,增加了两个主要特色:SD卡强调数据的安全安全,可以设定所储存的
使用权限,防止数据被他人复制;另外一个特色就是传输速度比2.11版的MMC卡快。在数据传输和物理规范上,SD卡(24mm*32mm*2.1mm,比MMC卡更厚一点),向前兼容了MMC卡.所有支持SD卡的设备也支持MMC卡。SD卡和2.11版的MMC卡完全兼容。

1.3.什么是SDIO

SDIO:SDIO是在SD标准上定义了一种外设接口,它和SD卡规范间的一个重要区别是增加了低速标准。在SDIO卡只需要SPI和1位SD传输模式。低速卡的目标应用是以最小的硬件开销支持低速IO能力。

1.4.什么是MCI

MCI:MCI是Multimedia Card Interface的简称,即多媒体卡接口。上述的MMC,SD,SDI卡定义的接口都属于MCI接口。MCI这个术语在驱动程序中经常使用,很多文件,函数名字都包括”mci”.

1.5.MMC/SD/SDIO卡的区别

二.SD/MMC协议与命令

1.SD/MMC卡相关寄存器

SD卡内部有7个寄存器.其中OCR,CID,CSD和SCR寄存器保存卡的配置信息;RCA寄存器保存着通信过程中卡当前暂时分配的地址(只适合SD模式);卡状态(Card Status)和SD状态(SD Status)寄存器保存着卡的状态(例如,是否写成功,通信的CRC校验是否正确等),这两个寄存器的内容与通信模式(SD模式或SPI模式)相关.MMC卡没有SCR和SD Status寄存器.如下表1所示:

表1 SD卡内部7个寄存器

1.1.OCR寄存器

OCR寄存器保存着SD/MMC卡的供电电允许范围.如下表2所示:如果OCR寄存器的某位为1,表示卡支持该位对应的电压。最后一位表示卡上电后的状态(是否处于”忙状态”),如果该位为0,表示忙,如果为1,表示处于空闲状态(MMC/SD协议P60)。

表2 OCR寄存器

1.2.CID寄存器

CID为一个16个字节的寄存器,该寄存器包含一个独特的卡标识号。如下表3所示:

表3 CID寄存器

1.3.CSD寄存器

CSD寄存器(卡特殊数据寄存器)包含访问卡存储时需要的相关信息。如下表4所示:

表4 CSD寄存器

1.4.SCR寄存器

SCR寄存器提供SD卡的特殊特性信息,其大小为64位。该寄存器由厂商编程,主机不能对它进行编程。MMC卡没有SCR。如下表5所示:

表 5 SCR寄存器

1.5. RCA寄存器

该16位卡地址寄存器保存了在卡识别过程中卡发布的器件地址。该地址用于在卡识别后主机利用该地址与卡进行通信。该寄存器只有在SD总线模式下才有效。

二. SD卡的引脚图

三.SD卡的命令

3.1.SD卡的命令格式:

SD卡的指令由6字节(Byte)组成,如下:

Byte1:0 1 x x x x x x(命令号,由指令标志定义CMD39为100111即16进制0x27,那么完整的CMD39第一字节为01100111,即0x27+0x40)。

Byte2-5:Command Arguments,命令参数,有些命令没有参数。

Byte6:前7位为CRC(Cyclic Redundacy Check,循环冗余校验)校验位,最后一位为停止位0。

3.2. SD卡的命令

SD卡命令共分为12类,分别为class0到Class11.

3.2.1. Class0 :(卡的识别、初始化等基本命令集)

CMD0:复位SD 卡。
CMD1:读OCR寄存器。
CMD9:读CSD寄存器。
CMD10:读CID寄存器。
CMD12:停止读多块时的数据传输。
CMD13:读 Card_Status 寄存器。

3.2.2.Class2 (读卡命令集):

CMD16:设置块的长度。
CMD17:读单块。
CMD18:读多块,直至主机发送CMD12为止 。

3.2.3.Class4(写卡命令集) :

CMD24:写单块。
CMD25:写多块。
CMD27:写CSD寄存器 。

3.2.4.Class5 (擦除卡命令集):

CMD32:设置擦除块的起始地址。
CMD33:设置擦除块的终止地址。
CMD38: 擦除所选择的块。

3.2.5.Class6(写保护命令集):

CMD28:设置写保护块的地址。
CMD29:擦除写保护块的地址。
CMD30: Ask the card for the status of the write protection bits

class7:卡的锁定,解锁功能命令集。

class8:申请特定命令集 。

class10 -11 :保留。

3.3.SD卡的工作流程

首先看下脱离操作系统如何在ARM处理器上实现SD卡的读写。过程可以分为3个大的步骤:初始化sd卡、写sd卡、读sd卡。

3.3.1.工作条件检测

卡在识别模式下的命令流程如图3.1所示(英文版见标准SD卡协议P24)

图3.1 卡在识别模式下的命令流程

1)在主机和SD卡进行任何通信之前,主机不知道SD卡支持的工作电压范围,卡也不知道是否支持主机当前提供的电压。因此主机首先使用默认的电压发送一条reset指令(CMD0)。

2)为了验证SD卡的接口操作状态,主机发送SEND_IF_COND(CMD8),用于取得SD卡支持工作的电压范围数据。SD卡通过检测CMD8的参数部分来检查主机使用的工作电压,主机通过分析回传的CMD8参数部分来校验SD卡是否可以在所给电压下工作,如果SD卡可以在指定电压下工作,则它回送CMD8的命令响应字 。如果不支持所给电压,则SD卡不会给出任何响应信息,并继续处于IDLE状态。

3)在发送ACMD41命令初始化高容量的SD卡前,需要强制发送CMD8命令。强制低电压主机在发送CMD8前发送ACMD41,万一双重电压SD卡没有收到CMD8命令且工作在高电压状态,在这种情况下,低电压主机不能不发送CMD8命令给卡,则收到ACMD41后进
入无活动状态。

4)SD_SEND_OP_COND(ACMD)命令是为SD卡主机识别卡或者电压不匹配时拒绝卡的机制设计的。主机发送命令操作数代表要求的电压窗口大小。如果SD卡在所给的范围内不能实现数据传输,将放弃下一步的总线操作而进入无活动。操作状态寄存器也将被定义。

5)在主机发出复位命令(CMD0)后,主机将先发送CMD8再发送ACMD41命令重新初始化SD卡。

3.3.2.卡的初始化和识别处理

当总线被激合后,主机就开始卡的初始化和识别3处理。初始化处理设置它的操作状态和是设置OCR中的HCS比特命令SD_SEND_OP_COND(ACMD41)开始。HCS比特位被设置为1表示主机支持高容量SD卡。HCS被设置为0表示主机不支持高容量SD卡。
卡的初始化和识别流程见图3.2

图 3.2卡的初始化和识别流程

3.3.3.数据传输模式

卡在识别模式结束后,主机时钟fpp(数据传输时钟频率)将保存为fod(卡识别模式下的时钟),由于有些卡对操作时钟有限制。主机必须发送SEND_CSD(CMD9)来获得卡规格数据积存器内容,如块大小,卡容量。广播命令SET_DSR(CMD4)配置所有识别卡的驱动阶段。它对DSR积存器进行编程以适应应用总线布局,总线上的卡数目和数据传输频率。

SD卡数据传输模式的流程图(英文版协议P26)如图3.3所示

图3.3 SD卡数据传输模式的流程图

1)CMD7命令用来选择某个SD卡,使其进入Transfer状态,在指定时间段内,只有一个卡能处于Transfer状态。当某个先前被选中的处于Transfer状态的SD卡接收到CMD7之后,会释放与控制器的连接,并进入Stand-by态。当CMD7使用保留地址0x0000时,所有的SD卡都会进入Stand-by状态 。

2)所有的数据读命令都可以被停止命令(CMD12)在任意时刻终止。数据传输会终止,SD卡返回Transfer状态。读命令有:块读操作(CMD17)、多块读操作(CMD18)、发送写保护(CMD30)、发送scr(ACMD51)以及读模式下的普通命令
(CMD56)。

3)所有的数据写命令都可以被停止命令(CMD12)在任意时刻终止。写命令也会在取消选择命令(CMD7)之前停止。写命令有:块写操作(CMD24,CMD25)、编程命令(CMD27)、锁定/解锁命令(CMD42)以及写模式下的普通命令(CMD56)。

4)数据传输一旦完成,SD卡会退出数据写状态,进入Programming状态(传输成功)或者Transfer状态(传输失败)。

四.Linux中SD/MMC设备驱动流程

4.1.MMC子系统的基本框架

4.1.1.MMC子系统的代码在kernel/driver/MMC下面,目前MMC子系统支持一些形式的记忆卡:SD,SDIO,MMC。

4.1.2.HOST:针对不同主机的驱动程序,这一部分需要根据自己的特定平台来完成。

4.1.3.CORE:这是整个MMC的核心层,这部分完成了不同协议和规范的实现,并且为HOST层的驱动提供接口函数。

4.1.4.CARD:因为这些记忆卡都是块设备,当然需要提供块设备的驱动程序,这部分就是实现了将SD卡如何实现为块设备的。

4.1.5.各层之间的关系

4.2.重要的结构体

4.2.1. struct mmc_host 用来描述卡控制器位kernel/include/linux/mmc/host.h下面。

4.2.2.struct mmc_card 用来描述卡位于kernel/include/linux/mmc/card.h下面

4.2.3.struct mmc_driver 用来描述mmc卡驱动在kernel/include/linux/mmc/card.h下面。

4.2.4.struct mmc_host_ops用来描述卡控制器操作集,用于从主机控制器向core层注册操作函数,从而将core层与具体的主机控制器隔离。也就是说core要操作主机控制器,就是这个ops当中给的函数指针操作,不能直接调用具体主控制器的函数。
位于kernel/include/linux/mmc/host.h下面。

2.5.struct mmc_ios用于描述了控制器对卡的I/O状态。位于kernel/include/linux/mmc/host.h下面。

4.2.6.struct mmc_request用于描述读写MMC卡的请求,它包括命令,数据以及请求完成后的回调函数。位于kernel/include/linux/mmc/core.h中。

4.2.7.struct mmc_queue是MMC的请求队列结构,它封装了通用请求队列结构,加入了MMC卡相关结构。位于kernel/drivers/mmc/card/queue.h中。

4.2.8.struct mmc_data描述了MMC卡读写的数据相关信息,如:请求,操作命令,数据以及状态等。位于kernel/include/linux/mmc/core.h中。

4.2.9.struct mmc_command描述了MMC卡操作相关命令及数据,状态信息等。位于kernel/include/linux/mmc/core.h中。

4.3.host,core以及card之间的关联和处理流程

4.3.1总体的流程如下图所示

4.3.2.数据.命令的处理流程在代码分析那里会仔细分析

4.4:核心任务
MMC/SD卡的驱动整个构架由三个文件组成,其实一共就做了两件事件:
1).卡的检测。
2).卡数据的读取。

4.4.1.卡的检测中涉及到的函数
tcc_mmc_probe(host/tcc_sdhc.c)
mmc_alloc_host(core/core.c)
mmc_rescan(core/core.c)
mmc_attach_mmc(core/mmc.c)
mmc_init_card(core/mmc.c)
mmc_add_card(core/bus.c)
device_add
mmc_bus_match(core/bus.c)
mmc_bus_probe(core/bus.c) mmc_blk_probe(card/block.c)
alloc_disk/add_disk

4.4.2.卡中数据读写涉及到的函数
mmc_blk_issue_rq(card/block.c)
mmc_wait_for_req(core/core.c)
mmc_start_request(core/core.c)
host->ops->requset(host,mrq)
//tcc_sdhc.c中的tcc_mmc_request

SD 卡驱动程序分析相关推荐

  1. linux内核mtd驱动程序与sd卡驱动程序,Linux内核MTD驱动程序与SD卡驱动程序.docx

    Linux内核MTLB动程序与SD卡驱动程序 flash闪存设备和SD?卡设备是嵌入式设备用到的主要存储设备,它们相当丁 PC机的硬盘.在嵌入设备特别是手持设备中,flash闪存是焊接在嵌入设备主板 ...

  2. Linux SD卡驱动开发(五) —— SD 卡驱动分析Core补充篇

    Core层中有两个重要函数 mmc_alloc_host 用于构造host,前面已经学习过,这里不再阐述:另一个就是 mmc_add_host,用于注册host 前面探测函数s3cmci_probe, ...

  3. SD卡驱动分析(一)

    Android下的SD卡驱动与标准LINUX下的SD卡驱动好像没有太大的区别,这里就以高通的ANDROID 2.3以代表,来简要分析一下LINUX下SD卡驱动的写法.由于小弟的技术有限,分析的有错的地 ...

  4. Linux SD卡驱动开发(二) —— SD 卡驱动分析HOST篇

    回顾一下前面的知识,MMC 子系统范围三个部分: HOST 部分是针对不同主机的驱动程序,这一部是驱动程序工程师需要根据自己的特点平台来完成的. CORE 部分: 这是整个MMC 的核心存,这部分完成 ...

  5. linux SD卡驱动分析

    1. 硬件基础: SD/MMC/SDIO 概念区分概要 SD (Secure Digital )与 MMC (Multimedia Card ) SD 是一种 flash memory card 的标 ...

  6. SD卡驱动分析(二)

    三.下面分析一下高通的android2.3的代码中SD卡驱动的流程. 在kernel中,SD卡是作为平台设备加入到内核中去的,在/kernel/arch/arm/mach-msm/devices-ms ...

  7. 第十一天: SD卡原理分析及SD卡启动详解

    主流的外存设备 内存和外存的区别: 一般是把这种(random access memory,随机访问存储器,特点是任意字节读写,掉电丢失)叫内存,把ROM(read only memory,只读存储器 ...

  8. S3C2440上MMC/SD卡驱动分析(二)

    下面的文章主要是转载的,先记录下自己的经验. MMC/SD驱动有两种模式:FIFO和DMA.在代码中两种方式都予以了实现,在make menuconfig时候,可以选择是使用fifo方式还是DMA方式 ...

  9. OK6410开发板Uboot学习总结----(三)从SD卡启动分析

    前面讲了Uboot启动流程和如何修改调试串口,相信大家对Uboot已经有了初步的了解,今天来进行更深一点的分析.上篇文章 OK6410开发板Uboot学习总结----(二)修改调试打印串口 遗留一个问 ...

最新文章

  1. 程序员搞事!动手实战优化自己公司线上系统JVM,结果。。。
  2. linux 挂载硬盘_Linux系列教程(十八)——Linux文件系统管理之文件系统常用命令...
  3. 在Entity Framework中使用存储过程(一):实现存储过程的自动映射
  4. 380v pcb 接线端子_插拔式PCB接线端子选型参考
  5. java aio为什么不稳定_为什么我不提倡在Java中使用static
  6. part-time job
  7. react-redux图解_如何将React连接到Redux —图解指南
  8. jQuery动态设置样式List item
  9. Docker网络代理配置
  10. decimal.tostring()格式
  11. java基础七--网络编程(1)
  12. Github大盘点!2021年最惊艳的38篇AI论文
  13. Lenovo System X3850 X5 服务器管理口IMM被锁定无法登录的故障处理
  14. 【计算机组成原理】内存与CPU的连接
  15. 基于单片机的GPS开发 (four) GPS基础知识
  16. Cortex-M3 (NXP LPC1788)之外部中断操作
  17. 【多目标追踪算法】多目标跟踪评价指标
  18. 服务器出现漏洞如何处理
  19. 前馈神经网络练习:使用tensorflow进行葡萄酒种类识别
  20. js 预编译 AO对象跟GO对象

热门文章

  1. 46家著名公司的技术类笔试真题
  2. 2022国赛中职网搭 windows组策略
  3. 《计算机科学与探索,《计算机科学与探索》唯一官方网站
  4. 图像类找工作面试题(二)——常见问题大总结
  5. Linux系统调用 - 文件操作
  6. 分布式认知工业互联网如何赋能工业企业数字化转型?
  7. 阻碍NFT进一步发展的绊脚石都有哪些?从6个方面切入分析
  8. 物联卡是正规卡还是漏洞卡?一篇最简单明了的解释!
  9. ClickHouse副本表ReplicatedMergeTree实操
  10. linux的passive用法,get的被动用法(get-passive)