ARM926EJ-S/ARM920T 协处理器 CP14, CP15详解

ARM 微处理器可支持多达 16 个协处理器,用于各种协处理操作,在程序执行的过程中,每个协处理器只执行针对自身的协处理指令,忽略 ARM 处理器和其他协处理器的指令。ARM 的协处理器指令主要用于 ARM 处理器初始化 ARM 协处理器的数据处理操作,以及在ARM 处理器的寄存器和协处理器的寄存器之间传送数据,和在 ARM 协处理器的寄存器和存储器之间传送数据。 ARM 协处理器指令包括以下 5 条:

CDP 协处理器数操作指令

LDC 协处理器数据加载指令

STC 协处理器数据存储指令

MCR ARM 处理器寄存器到协处理器寄存器的数据传送指令

MRC 协处理器寄存器到ARM 处理器寄存器的数据传送指令

1CDP 指令

CDP 指令的格式为:

CDP{条件} 协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理 器操作码2 CDP 指令用于ARM 处理器通知ARM 协处理器执行特定的操作,若协处理器不能成功完成特定的操作,则产生未定义指令异常。其中协处理器操作码1 和协处理器操作码2 为协处理器将要执行的操作,目的寄存器和源寄存器均为协处理器的寄存器,指令不涉及ARM 处理器的寄存器和存储器。

指令示例:

CDP P3 2 C12 C10 C3 4 ;该指令完成协处理器 P3 的初始化

2LDC 指令

LDC 指令的格式为:

LDC{条件}{L} 协处理器编码,目的寄存器,[源寄存器]

LDC 指令用于将源寄存器所指向的存储器中的字数据传送到目的寄存器中,若协处理器不能成功完成传送操作,则产生未定义指令异常。其中,{L}选项表示指令为长读取操作,如用于双精度数据的传输。

指令示例:

LDC P3 C4 [R0] ;将 ARM 处理器的寄存器 R0 所指向的存储器中的字数据传送到协处理器 P3 的寄存器 C4 中。

3STC 指令

STC 指令的格式为:

STC{条件}{L} 协处理器编码,源寄存器,[目的寄存器]

STC 指令用于将源寄存器中的字数据传送到目的寄存器所指向的存储器中,若协处理器不能成功完成传送操作,则产生未定义指令异常。其中,{L}选项表示指令为长读取操作,如用于双精度数据的传输。

指令示例:

STC P3 C4 [R0] ;将协处理器 P3 的寄存器 C4 中的字数据传送到 ARM 处理器的寄存器R0 所指向的存储器中。

4MCR 指令

MCR 指令的格式为:

MCR{条件} 协处理器编码,协处理器操作码1,源寄存器,目的寄存器1,目的寄存器2,协处理器操作码2

MCR 指令用于将ARM 处理器寄存器中的数据传送到协处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1 和协处理器操作码2 为协处理器将要执行的操作,源寄存器为ARM 处理器的寄存器,目的寄存器1 和目的寄存器2 均为协处理器的寄存器。

指令示例:

MCR P33R0C4C56;该指令将 ARM 处理器寄存器 R0 中的数据传送到协处理器 P3 的寄存器 C4 C5 中。

5MRC 指令

MRC 指令的格式为:

MRC{条件} 协处理器编码,协处理器操作码1,目的寄存器,源寄存器1,源寄存器2,协处理器操作码2

MRC 指令用于将协处理器寄存器中的数据传送到ARM 处理器寄存器中,若协处理器不能成功完成操作,则产生未定义指令异常。其中协处理器操作码1 和协处理器操作码2 为协处理器将要执行的操作,目的寄存器为ARM 处理器的寄存器,源寄存器1 和源寄存器2 均为协处理器的寄存器。

指令示例:

MRC P33R0C4C56;该指令将协处理器 P3 的寄存器中的数据传送到 ARM 处理器寄存器中.

The ARM920T 有两个具体协处理器

CP14调试通信通道协处理器

调试通信通道协处理器DCC(the Debug Communications Channel)提供了两个32bits寄存器用于传送数据,还提供了6bits通信数据控制寄存器控制寄存器中的两个位提供目标和主机调试器之间的同步握手。

通信数据控制寄存器

以下指令在 Rd 中返回控制寄存器的值:

MRC p14, 0, Rd, c0, c0

此控制寄存器中的两个位提供目标和主机调试器之间的同步握手:

1W 位)从目标的角度表示通信数据写入寄存器是否空闲:

W = 0 目标应用程序可以写入新数据。

W = 1 主机调试器可以从写入寄存器中扫描出新数据。

0R 位)从目标的角度表示通信数据读取寄存器中是否有新数据:

R = 1 有新数据,目标应用程序可以读取。

R = 0 主机调试器可以将新数据扫描到读取寄存器中。

注意

调试器不能利用协处理器 14 直接访问调试通信通道,因为这对调试器无意义。 但调试器可使用扫描链读写 DCC 寄存器。 DCC 数据和控制寄存器可映射到 EmbeddedICE 逻辑单元中的地址。 若要查看 EmbeddedICE 逻辑寄存器,请参阅您的调试器和调试目标的相关文档。

通信数据读取寄存器

用于接收来自调试器的数据的 32 位宽寄存器。 以下指令在 Rd 中返

回读取寄存器的值:

MRC p14, 0, Rd, c1, c0

通信数据写入寄存器

用于向调试器发送数据的 32 位宽寄存器。 以下指令将 Rn 中的值写

到写入寄存器中:

MCR p14, 0, Rn, c1, c0

注意

有关访问 ARM10 ARM11 内核 DCC 寄存器的信息,请参阅相应的技术参考手册。 ARM9 之后的各处理器中,所用指令、状态位位置以及对状态位的解释都有所不同。

目标到调试器的通信

这是运行于 ARM 内核上的应用程序与运行于主机上的调试器之间的通信事件

顺序:

1. 目标应用程序检查 DCC 写入寄存器是否空闲可用。 为此,目标应用程序使

MRC 指令读取调试通信通道控制寄存器,以检查 W 位是否已清除。

2. 如果 W 位已清除,则通信数据写入寄存器已清空,应用程序对协处理器 14

使用 MCR 指令将字写入通信数据写入寄存器。 写入寄存器操作会自动设置

W 位。如果 W 位已设置,则表明调试器尚未清空通信数据写入寄存器。此

时,如果应用程序需要发送另一个字,它必须轮询 W 位,直到它已清除。

3. 调试器通过扫描链 2 轮询通信数据控制寄存器。 如果调试器发现 W 位已设

置,则它可以读 DCC 数据寄存器,以读取应用程序发送的信息。 读取数据

的进程会自动清除通信数据控制寄存器中的 W 位。

以下代码显示了这一过程

AREA OutChannel, CODE, READONLY

ENTRY

MOV   r1,#3          ; Number of words to send

ADR   r2, outdata    ; Address of data to send

pollout

MRC   p14,0,r0,c0,c0 ; Read control register

TST   r0, #2

BNE   pollout        ; if W set, register still full

write

LDR   r3,[r2],#4     ; Read word from outdata

; into r3 and update the pointer

MCR   p14,0,r3,c1,c0 ; Write word from r3

SUBS r1,r1,#1       ; Update counter

BNE   pollout        ; Loop if more words to be written

MOV   r0, #0x18      ; Angel_SWIreason_ReportException

LDR   r1, =0x20026   ; ADP_Stopped_ApplicationExit

SVC   0x123456       ; ARM semihosting (formerly SWI)

outdata

DCB "Hello there!"

END

调试器到目标的通信

这是运行于主机上的调试器向运行于内核上的应用程序传输消息的事件顺序:

1. 调试器轮询通信数据控制寄存器的 R 位。 如果 R 位已清除,则通信数据读

取寄存器已清空,可将数据写入此寄存器,以供目标应用程序读取。

2. 调试器通过扫描链 2 将数据扫描到通信数据读取寄存器中。 此操作会自动

设置通信数据控制寄存器中的 R 位。

3. 目标应用程序轮询通信数据控制寄存器中的 R 位。 如果该位已经设置,则

通信数据读取寄存器中已经有数据,应用程序可使用 MRC 指令从协处理器

14 读取该数据。 同时,读取指令还会清除 R 位。

以下显示的目标应用程序代码演示了这一过程

AREA InChannel, CODE, READONLY

ENTRY

MOV   r1,#3          ; Number of words to read

LDR   r2, =indata    ; Address to store data read

pollin

MRC   p14,0,r0,c0,c0 ; Read control register

TST   r0, #1

BEQ   pollin         ; If R bit clear then loop

read

MRC   p14,0,r3,c1,c0 ; read word into r3

STR   r3,[r2],#4     ; Store to memory and

; update pointer

SUBS r1,r1,#1       ; Update counter

BNE   pollin         ; Loop if more words to read

MOV   r0, #0x18      ; Angel_SWIreason_ReportException

LDR   r1, =0x20026   ; ADP_Stopped_ApplicationExit

SVC   0x123456       ; ARM semihosting (formerly SWI)

AREA Storage, DATA, READWRITE

indata

DCB   "Duffmessage#"

END

CP15系统控制协处理器

CP15 —系统控制协处理器 the system control coprocessor)他通过协处理器指令MCRMRC提供具体的寄存器来配置和控制cachesMMU、保护系统、配置时钟模式(在bootloader时钟初始化用到)

CP15的寄存器只能被MRCMCRMove to Coprocessor from ARM Register )指令访问

MCR{cond} p15,<Opcode_1>,<Rd>,<CRn>,<CRm>,<Opcode_2>

MRC{cond} p15,<Opcode_1>,<Rd>,<CRn>,<CRm>,<Opcode_2>

其中L位用来区分MCR(L=1)MRC(L=0)操作. CP15包括15个具体的寄存器如下:

-R0ID号寄存器

-R0:缓存类型寄存器

-R1:控制寄存器

-R2:转换表基址寄存器(Translation Table Base --TTB

-R3:域访问控制寄存器(Domain access control

-R4:保留

-R5:异常状态寄存器(fault status -FSR

-R6:异常地址寄存器(fault address -FAR

-R7:缓存操作寄存器

-R8TLB操作寄存器

-R9:缓存锁定寄存器

-R10TLB 锁定寄存器

-R11-12&14:保留

-R13:处理器ID

-R15:测试配置寄存器 2-24

要注意有2R0,根据MCR操作数的不同传送不同的值,这也一个只读寄存器

-R0ID号寄存器 这是一个只读寄存器,返回一个32位的设备ID号,具体功能参考ARM各个系列型号的的CP15 Register 0说明.

MRC p15, 0, <Rd>, c0, c0, {0, 3-7} ;returns ID

以下为ID Code详细描叙(ARM926EJ-S); ARM920T Part Number0x920,Architecture (ARMv4T) 为0x2具体可参照ARM各型号.

-R0:缓存类型寄存器(CACHE TYPE REGISTER),包含了caches的信息。读这个寄存器的方式是通过设置协处理操作码为1.

MRC p15, 0, <Rd>, c0, c0, 1; returns cache details

以下为CP15的一些应用示例

U32 ARM_CP15_DeviceIDRead(void)

{

U32 id;

__asm { MRC P15, 0, id, c0, c0; }

return id;

}

void ARM_CP15_SetPageTableBase(P_U32 TableAddress)

{

__asm { MCR P15, 0, TableAddress, c2, c0, 0; }

}

void ARM_CP15_SetDomainAccessControl(U32 flags)

{

__asm { MCR P15, 0, flags, c3, c0, 0; }

}

void ARM_CP15_ICacheFlush()

{

unsigned long dummy;

__asm { MCR p15, 0, dummy, c7, c5, 0; }

}

void ARM_CP15_DCacheFlush()

{

unsigned long dummy;

__asm { MCR p15, 0, dummy, c7, c6, 0; }

}

void ARM_CP15_CacheFlush()

{

unsigned long dummy;

__asm { MCR p15, 0, dummy, c7, c7, 0; }

}

void ARM_CP15_TLBFlush(void)

{

unsigned long dummy;

__asm { MCR P15, 0, dummy, c8, c7, 0; }

}

void ARM_CP15_ControlRegisterWrite(U32 flags)

{

__asm { MCR P15, 0, flags, c1, c0; }

}

void ARM_CP15_ControlRegisterOR(U32 flag)

{

__asm {

mrc p15,0,r0,c1,c0,0

mov r2,flag

orr r0,r2,r0

mcr p15,0,r0,c1,c0,0

}

}

void ARM_CP15_ControlRegisterAND(U32 flag)

{

__asm {

mrc p15,0,r0,c1,c0,0

mov r2,flag

and r0,r2,r0

mcr p15,0,r0,c1,c0,0

}

}

void ARM_MMU_Init(P_U32 TableAddress)

{

ARM_CP15_TLBFlush();

ARM_CP15_CacheFlush();

ARM_CP15_SetDomainAccessControl(0xFFFFFFFF);

ARM_CP15_SetPageTableBase(TableAddress);

}

void Enable_MMU (void)

{

__asm {

mrc p15,0,r0,c1,c0,0

mov r2, #0x00000001

orr r0,r2,r0

mcr p15,0,r0,c1,c0,0

}

printf("MMU enabled\n");

}

void Disable_MMU (void)

{

__asm {

mrc p15,0,r0,c1,c0,0

mov r2, #0xFFFFFFFE

and r0,r2,r0

mcr p15,0,r0,c1,c0,0

}

printf("MMU disabled\n");

}

转载自:http://blog.csdn.net/force_eagle/archive/2008/07/03/2608368.aspx

转载于:https://www.cnblogs.com/sql4me/archive/2010/08/04/1792464.html

ARM926EJ-S/ARM920T 协处理器 CP14, CP15详解(转载)相关推荐

  1. arm 协处理器cp14 cp15

    ARM926EJ-S/ARM920T 协处理器 CP14, CP15详解 ARM 微处理器可支持多达 16 个协处理器,用于各种协处理操作,在程序执行的过程中,每个协处理器只执行针对自身的协处理指令, ...

  2. spring依赖注入原理详解(转载)

    spring依赖注入原理详解----转载 所谓依赖注入就是指:在运行期,由外部容器动态地将依赖对象注入到组件中.当spring容器启动后,spring容器初始化,创建并管理bean对象,以及销毁它.所 ...

  3. Executor框架的详解(转载)

    在Java中,使用线程来异步执行任务.Java线程的创建与销毁需要一定的开销,如果我们为每一个任务创建一个新线程来执行,这些线程的创建与销毁将消耗大量的计算资源.同时,为每一个任务创建一个新线程来执行 ...

  4. vsftpd配置文件详解[转载]

    vsftpd配置文件详解 1.默认配置: 1>允许匿名用户和本地用户登陆.      anonymous_enable=YES      local_enable=YES 2>匿名用户使用 ...

  5. SqlHelper详解(转载)

    SqlHelper 类实现详细信息 SqlHelper 类用于通过一组静态方法来封装数据访问功能.该类不能被继承或实例化,因此将其声明为包含专用构造函数的不可继承类. 在 SqlHelper 类中实现 ...

  6. FPgrwoth详解(转载+修改一处图片问题)

    FP-growth算法,fpgrowth算法详解 下面使用的最小支持度是2,也就是说最小等于2算达标,对应代码中则是>minSup=1 使用FP-growth算法来高效发现频繁项集 前言 你用过 ...

  7. HTTP详解(转载)

    HTTP是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990年提出,经过几年的使用与发展,得到不断地完善和扩展.目前在WWW中使用的是HTTP/1.0的第 ...

  8. ntp 配置详解(转载后整理汇总)

    ntp 配置详解 一.时间和时区 在LINUX系统中,有许多场合都使用时间戳的方式表示时间,即从1970年1月1日起至当前的天数或秒数. 世界遵循一个标准UTC,中国的标准是CST(北京时间)中国处于 ...

  9. MySQL Installer 8.0.21安装教程图文详解 转载

    MySQL Installer 8.0.21安装教程图文详解 原地址 1. 缘由 刚好需要在新系统上重新安装MySQL,便写了一份的下载安装教程,供查阅,以防日后细节有所遗忘. 2. 版本说明 MyS ...

  10. c语言path环境变量,Windows下PATH等环境变量详解(转载)

    在学习JAVA的过程中,涉及到多个环境变量(environment variable)的概念,如PATH.正确地配置这些环境变量,是能够顺利学习.开发的前提.而经常出现的问题是:有的学习者能够按照提示 ...

最新文章

  1. linux系统编程需要什么,若想成为一名Linux下编程高手,必须能对各种系统调用有透彻的了解...
  2. JavaScript实现重置表单(reset)的方法
  3. Class.newInstance()与new、Constructor.newInstance()的区别
  4. 一位产品总监打算这样管国家:首先得让大家交得起税。
  5. AutoML - 数据增广
  6. python基础——递归函数
  7. 计算机处理负数加法,怎么让加法器实现两个负数相加
  8. 分区助手找不到盘_C盘的概述与分区
  9. dfs深度优先搜索_图的深度优先搜索(DFS)
  10. 问题六十二:怎么求一元十次方程在区间内的所有不相等的实根(2)——修正“区间端点零值”问题
  11. cisco 的端口聚合
  12. 回归分析常数项t值没有显著异于零怎么办_线性回归分析思路总结!简单易懂又全面!...
  13. jquery实现注册表单验证
  14. 软件安全实验——lab7(缓冲区溢出3:返回导向编程技术ROP)
  15. AWS解决方案架构师薪资平均159,033 美元
  16. ansible一键部署脚本
  17. h5盲盒商城源码完整版-附带详细教程
  18. 【系统分析与验证笔记】Transition System模型知识点
  19. 开发互联网医院系统创造智慧医疗新篇章|互联网系统源码搭建
  20. IBM power小型机更换硬盘步骤

热门文章

  1. ECHART基本使用,折线图,柱状图,散点图,饼图,盒形图5分钟上手
  2. 【高等数学】高阶偏导数与隐函数的高阶偏导数的深度辨析
  3. sync.Once 使用及解析
  4. 鼎信诺虚拟服务器导数,鼎信诺审计软件常见问题
  5. ORA-01045:user C##KD lacks CREATE SESSION privilege;logon denied
  6. 计算机用户没有管理员权限,电脑没有管理员权限怎么办
  7. IMX8MQ MEK 开发板安卓 8.1-2.0.0 环境搭建过程记录
  8. 拼接字符串Joiner的用法
  9. 平面纹理坐标和球面坐标互相转换
  10. MAC Photoshop标题栏不见了