为何会内存溢出

我们知道JVM根据generation(代)来进行GC,根据下图所示,一共被分为young generation(年轻代)、tenured generation(老年代)、permanent generation(永久代, perm gen),perm gen(或称Non-Heap 非堆)是个异类,稍后会讲到。注意,heap空间不包括perm gen。

绝大多数的对象都在young generation被分配,也在young generation被收回,当young generation的空间被填满,GC会进行minor collection(次回收),这次回收不涉及到heap中的其他generation,minor collection根据weak generational hypothesis(弱年代假设)来假设younggeneration中大量的对象都是垃圾需要回收,minor collection的过程会非常快。young generation中未被回收的对象被转移到tenured generation,然而tenured generation也会被填满,最终触发major collection(主回收),这次回收针对整个heap,由于涉及到大量对象,所以比minor collection慢得多。

JVM有三种垃圾回收器,分别是throughputcollector,用来做并行young generation回收,由参数-XX:+UseParallelGC启动;concurrent low pause collector,用来做tenuredgeneration并发回收,由参数-XX:+UseConcMarkSweepGC启动;incremental lowpause collector,可以认为是默认的垃圾回收器。不建议直接使用某种垃圾回收器,最好让JVM自己决断,除非自己有足够的把握。

Heap中各generation空间是如何划分的?通过JVM的-Xmx=n参数可指定最大heap空间,而-Xms=n则是指定最小heap空间。在JVM初始化的时候,如果最小heap空间小于最大heap空间的话,如上图所示JVM会把未用到的空间标注为Virtual。除了这两个参数还有-XX:MinHeapFreeRatio=n和-XX:MaxHeapFreeRatio=n来分别控制最大、最小的剩余空间与活动对象之比例。在32位Solaris SPARC操作系统下,默认值如下,在32位windows xp下,默认值也差不多。

参数

默认值

MinHeapFreeRatio

40

MaxHeapFreeRatio

70

-Xms

3670k

-Xmx

64m

由于tenured generation的major collection较慢,所以tenured generation空间小于young generation的话,会造成频繁的major collection,影响效率。Server JVM默认的young generation和tenured generation空间比例为1:2,也就是说young generation的eden和survivor空间之和是整个heap(当然不包括perm gen)的三分之一,该比例可以通过-XX:NewRatio=n参数来控制,而Client JVM默认的-XX:NewRatio是8。至于调整young generation空间大小的NewSize=n和MaxNewSize=n参数就不讲了,请参考后面的资料。

young generation中幸存的对象被转移到tenuredgeneration,但不幸的是concurrent collector线程在这里进行major collection,而在回收任务结束前空间被耗尽了,这时将会发生Full Collections(Full GC),整个应用程序都会停止下来直到回收完成。FullGC是高负载生产环境的噩梦……

现在来说说异类perm gen,它是JVM用来存储无法在Java语言级描述的对象,这些对象分别是类和方法数据(与class loader有关)以及interned strings(字符串驻留)。一般32位OS下perm gen默认64m,可通过参数-XX:MaxPermSize=n指定,JVM Memory Structure一文说,对于这块区域,没有更详细的文献了,神秘。

回到问题“为何会内存溢出?”。

要回答这个问题又要引出另外一个话题,既什么样的对象GC才会回收?当然是GC发现通过任何reference chain(引用链)无法访问某个对象的时候,该对象即被回收。名词GC Roots正是分析这一过程的起点,例如JVM自己确保了对象的可到达性(那么JVM就是GC Roots),所以GC Roots就是这样在内存中保持对象可到达性的,一旦不可到达,即被回收。通常GC Roots是一个在current thread(当前线程)的call stack(调用栈)上的对象(例如方法参数和局部变量),或者是线程自身或者是system class loader(系统类加载器)加载的类以及native code(本地代码)保留的活动对象。所以GC Roots是分析对象为何还存活于内存中的利器。知道了什么样的对象GC才会回收后,再来学习下对象引用都包含哪些吧。

从最强到最弱,不同的引用(可到达性)级别反映了对象的生命周期。

l  Strong Ref(强引用):通常我们编写的代码都是Strong Ref,于此对应的是强可达性,只有去掉强可达,对象才被回收。

l  Soft Ref(软引用):对应软可达性,只要有足够的内存,就一直保持对象,直到发现内存吃紧且没有Strong Ref时才回收对象。一般可用来实现缓存,通过java.lang.ref.SoftReference类实现。

l  Weak Ref(弱引用):比Soft Ref更弱,当发现不存在Strong Ref时,立刻回收对象而不必等到内存吃紧的时候。通过java.lang.ref.WeakReference和java.util.WeakHashMap类实现。

l  Phantom Ref(虚引用):根本不会在内存中保持任何对象,你只能使用Phantom Ref本身。一般用于在进入finalize()方法后进行特殊的清理过程,通过java.lang.ref.PhantomReference实现。

有了上面的种种我相信很容易就能把heap和perm gen撑破了吧,是的利用Strong Ref,存储大量数据,直到heap撑破;利用interned strings(或者class loader加载大量的类)把perm gen撑破。

关于shallowsize、retained size

Shallow size就是对象本身占用内存的大小,不包含对其他对象的引用,也就是对象头加成员变量(不是成员变量的值)的总和。在32位系统上,对象头占用8字节,int占用4字节,不管成员变量(对象或数组)是否引用了其他对象(实例)或者赋值为null它始终占用4字节。故此,对于String对象实例来说,它有三个int成员(3*4=12字节)、一个char[]成员(1*4=4字节)以及一个对象头(8字节),总共3*4 +1*4+8=24字节。根据这一原则,对String a=”rosen jiang”来说,实例a的shallow size也是24字节(很多人对此有争议,请看官甄别并留言给我)。

Retained size是该对象自己的shallow size,加上从该对象能直接或间接访问到对象的shallow size之和。换句话说,retained size是该对象被GC之后所能回收到内存的总和。为了更好的理解retained size,不妨看个例子。

把内存中的对象看成下图中的节点,并且对象和对象之间互相引用。这里有一个特殊的节点GC Roots,正解!这就是reference chain的起点。

从obj1入手,上图中蓝色节点代表仅仅只有通过obj1才能直接或间接访问的对象。因为可以通过GC Roots访问,所以图中的obj5不是蓝色节点;

所以对于图中,obj1的retained size是obj1、obj2、obj3、obj4的shallow size总和;

Heap Dump

heap dump是特定时间点,java进程的内存快照。有不同的格式来存储这些数据,总的来说包含了快照被触发时java对象和类在heap中的情况。由于快照只是一瞬间的事情,所以heap dump中无法包含一个对象在何时、何地(哪个方法中)被分配这样的信息。

在不同平台和不同java版本有不同的方式获取heap dump,而MAT需要的是HPROF格式的heap dump二进制文件。想无需人工干预的话,要这样配置JVM参数:-XX:-HeapDumpOnOutOfMemoryError,当错误发生时,会自动生成heapdump,在生产环境中,只有用这种方式。如果你想自己控制什么时候生成heap dump,在Windows+JDK6环境中可利用JConsole工具,而在Linux或者Mac OS X环境下均可使用JDK5、6自带的jmap工具。当然,还可以配置JVM参数:-XX:+HeapDumpOnCtrlBreak,也就是在控制台使用Ctrl+Break键来生成heap dump。由于我是windows+JDK5,所以选择了-XX:-HeapDumpOnOutOfMemoryError这种方式,更多配置请参考MAT Wiki。

参考资料

MAT Wiki

Interned Strings

Strong,Soft,Weak,Phantom Reference

Tuning GarbageCollection with the 5.0 Java[tm] Virtual Machine

Permanent Generation

UnderstandingWeak References译文

JavaHotSpot VM Options

Shallow and retained sizes

JVM Memory Structure

GC roots

内存泄漏(OOM)产生原因相关推荐

  1. Java中关于内存泄漏出现的原因以及如何避免内存泄漏

    转账自:http://blog.csdn.net/wtt945482445/article/details/52483944 Java 内存分配策略 Java 程序运行时的内存分配策略有三种,分别是静 ...

  2. (转载)Java中关于内存泄漏出现的原因以及如何避免内存泄漏

    原文链接 Android 内存泄漏总结 内存管理的目的就是让我们在开发中怎么有效的避免我们的应用出现内存泄漏的问题.内存泄漏大家都不陌生了,简单粗俗的讲,就是该被释放的对象没有释放,一直被某个或某些实 ...

  3. Android Others部分内存泄漏 OOM分析

    本周公司项目解决内存泄漏,使用Android studio profiler工具进行分析. 在人工monkey测试点击管理页面各项菜单后,工具内存查看页面看到内存有增长不是释放的情况.但是dump后未 ...

  4. android 内存分析 郭霖_android 内存泄漏(OOM)问题总结

    对于Java来说,就是new出来的Object 放在Heap上无法被GC回收 Paste_Image.png Context Context Context类本身是一个纯abstract类,它有两个具 ...

  5. C++ 内存管理中内存泄漏问题产生原因以及解决方法

    C++内存管理中内存泄露(memory leak)一般指的是程序在申请内存后,无法释放已经申请的内存空间,内存泄露的积累往往会导致内存溢出. 一.内存分配方式 通常内存分配方式有以下三种: (1)从静 ...

  6. Android内存泄漏的各种原因详解

    转自:http://mobile.51cto.com/abased-406286.htm 1.资源对象没关闭造成的内存泄漏 描述: 资源性对象比如(Cursor,File文件等)往往都用了一些缓冲,我 ...

  7. gateway 内存溢出问题_内存溢出和内存泄漏、产生原因以及解决方案

    内存泄露是每个开发者最终都要面对的问题,它是许多问题的根源:反应迟缓,崩溃,高延迟,以及其他应用问题. JavaScript 内存管理 JavaScript 是一种垃圾回收语言.垃圾回收语言通过周期性 ...

  8. WPF应用程序内存泄漏的一些原因

    原文:Finding Memory Leaks in WPF-based applications There are numbers of blogs that folks wrote about ...

  9. Android 中内存泄漏的原因和解决方案

    之前研究过一段时间关于 Android 内存泄漏的知识,大致了解了导致内存泄漏的一些原因,但是没有深入去探究,很多细节也理解的不够透彻,基本上处于一种似懂非懂的状态,最近又研究了一波,发现有很多新的收 ...

最新文章

  1. 海南大学2020年申请考核博士研究生招生工作办法
  2. const类型限定符
  3. CTF加解密/编码常用在线网址
  4. java控制系统音量_Java 控制 Windows 系统音量-Go语言中文社区
  5. 骆驼和春天的Drools决策表
  6. Java获取当前日期的前一个月,前一天的时间
  7. 《大型网站技术架构:核心原理与案例分析》-- 读书笔记 (2) : 大型网站核心架构要素(1) -- 性能...
  8. linux系统基础与应用,Linux操作系统:基础、原理与应用
  9. [转载]Linux批量替换不同文件中的相同字符串
  10. 总结并发编程常见面试题
  11. .5-浅析express源码之Router模块(1)-默认中间件
  12. Crush Crouse 心理学笔记
  13. 网上零食销售系统(Java;JSP;JDBC)附源码+数据库+论文
  14. PTES标准中的渗透测试阶段(要点)
  15. 智能硬件市场与产品概况整理
  16. linux动态库so更新
  17. 第一章 银联8583报文解析
  18. 微村:做APP里的掌上村长
  19. 用C语言程序实现两个字符串的连接
  20. linux---中国格局

热门文章

  1. 1.2句柄及 WinMain函数
  2. 多线程学习(二)----AfxBeginThread
  3. 在Android中使用Protocol Buffers
  4. 数据结构与算法 | 二分查找
  5. docker学习笔记(六)docker-compose
  6. 如何从0搭建公司的后端技术栈
  7. 裂墙推荐!IntelliJ IDEA 常用插件一览,让效率成为习惯
  8. Kafka消息序列化和反序列化(下)
  9. 美摄 - 助力打造完善的音视频解决方案
  10. LiveVideoStack线上分享第四季(二):基于内容的自适应视频传输算法及其应用...