CVPR-2018

1.CodeSlam:对单目slam算法的关键帧进行深度估计,使用网络架构对单目图像进行处理

2.MapNet:去中心化的环境建图,并且能够完成重定位,使用RNN网络

3.P2P-flyingcamera:飞行图像合成中的p2p问题求解

4.Unknown-Principal-Point:主点位置未知的相机位姿估计

5.GeoNet:使用无监督学习的方法估计单目图像深度,计算单目视频中的光流和相机位姿

6.Nonminimal-Global-Optimal-Solution:Non-Minimal相对位姿问题的可证明的全局最优解

7.HybridPoseEstimation:2D-3D匹配和2D-2D匹配的混合位姿估计方法

8.PolarimetricSLAM:利用Polarimetric相机的稠密单目SLAM算法。

9.ICE-BA:针对VI-SLAM的一种BA算法。

10.Geometric-MapNet:自监督,利用图像几何约束的建图工作,用于相机定位

11.SingleCameraLocalization:给定3D建筑物和单帧图像,预测相机拍摄时所在的位置,CNN

12.DeLS-3D:多传感器融合算法,GPS/IMU给定粗略的相机位姿,投影出一个3D语义地图,label map和图像送到CNN网络得到粗略的Pose,再利用RNN算法得到精确的Pose,最后把Pose和图像送到segment CNN生成像素级别的语义分割

13.Semantic-Localization:一种生成式模型用于描述子学习,可以表征3D几何信息和语义信息,用于视觉定位

14.inLoc:稠密的特征提取和匹配方法,用于室内场景的相机定位

15.BenchmarkLocalization:Benchmark,用于相机定位,同一场景的条件有巨大变化

references

[1]Bloesch M, Czarnowski J, Clark R, et al. CodeSLAM-Learning a Compact, Optimisable Representation for Dense Visual SLAM[J]. arXiv preprint arXiv:1804.00874, 2018.

[2]Henriques J F, Vedaldi A. Mapnet: An allocentric spatial memory for mapping environments[C]//proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8476-8484.

[3]Lan Z, Hsu D, Lee G H. Solving the Perspective-2-Point Problem for Flying-Camera Photo Composition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 4588-4596.

[4]Larsson V, Kukelova Z, Zheng Y. Camera Pose Estimation With Unknown Principal Point[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2984-2992.

[5]Yin Z, Shi J. GeoNet: Unsupervised Learning of Dense Depth, Optical Flow and Camera Pose[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018, 2.

[6]Briales J, Kneip L, Gonzalez-Jimenez J. A Certifiably Globally Optimal Solution to the Non-Minimal Relative Pose Problem[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 145-154.

[7]Camposeco F, Cohen A, Pollefeys M, et al. Hybrid Camera Pose Estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 136-144.

[8]Yang L, Tan F, Li A, et al. Polarimetric Dense Monocular SLAM[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 3857-3866.

[9]Liu H, Chen M, Zhang G, et al. ICE-BA: Incremental, Consistent and Efficient Bundle Adjustment for Visual-Inertial SLAM[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 1974-1982.

[10]Brahmbhatt S, Gu J, Kim K, et al. Geometry-Aware Learning of Maps for Camera Localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 2616-2625.

[11]Brachmann E, Rother C. Learning less is more-6d camera localization via 3d surface regression[C]//Proc. CVPR. 2018, 8.

[12]Wang P, Yang R, Cao B, et al. Dels-3d: Deep localization and segmentation with a 3d semantic map[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 5860-5869.

[13]Schönberger J L, Pollefeys M, Geiger A, et al. Semantic Visual Localization[J]. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS), 2018.

[14]Taira H, Okutomi M, Sattler T, et al. InLoc: Indoor Visual Localization with Dense Matching and View Synthesis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7199-7209.

[15]Sattler T, Maddern W, Toft C, et al. Benchmarking 6dof outdoor visual localization in changing conditions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 8601-8610.

CVPR-2017

1.NID-SLAM:使用Normalised information distance度量的单目slam算法,避免了photometric度量的诸如光照、天气、环境结构变化带来的影响。

2.CNN-SLAM:CNN预测深度,并且和测量深度相融合的单目直接法slam

3.MistyThreePoints:水下图像,使用三个点求解相机相对位姿

4.RegressionForests:使用一个预训练的regression forests做camera relocalization。

5.RankConstraintFMatrix:Multi-view中秩约束的基础矩阵,并将其应用到camera location恢复。

6.GeometricLossLocalization:深度学习,利用几何冲投影误差的损失函数,用于camera pose regression

7.EventVIO:使用EKF框架,event相机的VIO算法

8.3D-ModelsAreNotNecessary:相机的定位不依赖高精度的3D模型,只需要图像数据库和局部的三维重建即可实现visual localization。

9.ContextualFeatureReweight:图像的Geo-localization,知道图像拍摄的地理位置(和位姿不一样),使用contextual reweight network预测图像中的哪个部分更重要。

10.Cross-View-ImageMatching:不同视角的图像匹配,用于image geo-localization。

11.TwoPointsLocalization:在一个3D场景中定位一个query image,2D-3D的匹配问题,两对对应点可以将相机的位置约束在一个圆环面上,增加一个direction of triangulation就可以近似得到相机的位置。

12.DSAC:camera localization,将RANSAC中的deterministic hypothesis selection替换为 probabilistic selection,这种方法被称为RANSAC的可微副本,应用该方法解决camera localization的问题。

references

[1]Pascoe G, Maddern W, Tanner M, et al. NID-SLAM: Robust Monocular SLAM Using Normalised Information Distance[C]//Conference on Computer Vision and Pattern Recognition. 2017.

[2]Tateno K, Tombari F, Laina I, et al. CNN-SLAM: Real-time dense monocular SLAM with learned depth prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017, 2.

[3]Palmér T, Astrom K, Frahm J M. The Misty Three Point Algorithm for Relative Pose[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2786-2794.

[4]Cavallari T, Golodetz S, Lord N A, et al. On-the-fly adaptation of regression forests for online camera relocalisation[C]//CVPR. 2017, 2(4): 7.

[5]Sengupta S, Amir T, Galun M, et al. A New Rank Constraint on Multi-view Fundamental Matrices, and Its Application to Camera Location Recovery[C]//CVPR. 2017: 2413-2421.

[6]Kendall A, Cipolla R. Geometric loss functions for camera pose regression with deep learning[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 6555-6564.

[7]Zhu A Z, Atanasov N, Daniilidis K. Event-Based Visual Inertial Odometry[C]//CVPR. 2017: 5816-5824.

[8]Sattler T, Torii A, Sivic J, et al. Are large-scale 3D models really necessary for accurate visual localization?[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 6175-6184.

[9]Kim H J, Dunn E, Frahm J M. Learned Contextual Feature Reweighting for Image Geo-Localization[C]//CVPR. 2017: 3251-3260.

[10]Tian Y, Chen C, Shah M. Cross-view image matching for geo-localization in urban environments[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017: 1998-2006.

[11]Camposeco F, Sattler T, Cohen A, et al. Toroidal constraints for two-point localization under high outlier ratios[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 6700-6708.

[12]Brachmann E, Krull A, Nowozin S, et al. DSAC—Differentiable RANSAC for camera localization[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 2492-2500.

ICCV-2017

1.StereoDSO:双目相机的DSO算法

2.VO-PPA:像素处理器阵列上的VO

3.ScaleRecovery:利用deep Convolutional Neural Fields估计深度,并实现单目VO中的尺度恢复

4.SpaceTimeLocalizationMapping:对动态场景进行建图,引入了一个4D结构的生成概率模型来说明位置、空间和时间范围

5.Global2D-3DMatching:大场景3D地图中,用于相机定位的全局2D-3D匹配算法,在3D地图上构建了Markov网络,考虑了不仅仅时视觉相似性,同时还有全局一致性

6.InlierSetMaximization:单帧图像与3D场景的对应,提出了一个全局最优的inlier set cardinality maximisation联合估计最优相机位姿和最优的点对应。另外还利用了BnB搜索6D空间,这个和发表在T-PAMI上的Go-ICP算法类似。

7.DistributedOptimizationBA:大场景下的SfM中的分布式BA算法,从经典的ADMM优化算法中推导一个分布式的formulation。

8.P4PfrMinimalSolvers:一个P4Pfr的minimal solvers。

9.EdgeSLAM:检测图像中的Edge点并使用光流法跟踪,并利用three views的几何关系去优化点的对应

10.DepthPredictions:CNN深度预测,sparse 点跟踪的单目slam,使用3D mesh的地图表示方法使得尽可能刚性地更新变换。

11.IntegerArithmetic:在EKF SfM的基础上提出了平方根滤波算法,能够用整数运算替代浮点型运算。

references

[1]Wang R, Schworer M, Cremers D. Stereo dso: Large-scale direct sparse visual odometry with stereo cameras[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3903-3911.

[2]Bose L, Chen J, Carey S J, et al. Visual Odometry for Pixel Processor Arrays[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 4604-4612.

[3]Yin X, Wang X, Du X, et al. Scale Recovery for Monocular Visual Odometry Using Depth Estimated with Deep Convolutional Neural Fields[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 5870-5878.

[4]Lee M, Fowlkes C C. Space-Time Localization and Mapping[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3912-3921.

[5]Liu L, Li H, Dai Y. Efficient global 2d-3d matching for camera localization in a large-scale 3d map[C]//Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017: 2391-2400.

[6]Campbell D, Petersson L, Kneip L, et al. Globally-optimal inlier set maximisation for simultaneous camera pose and feature correspondence[C]//The IEEE International Conference on Computer Vision (ICCV). 2017, 1(3).

[7]Zhang R, Zhu S, Fang T, et al. Distributed very large scale bundle adjustment by global camera consensus[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 29-38.

[8]Larsson V, Kukelova Z, Zheng Y. Making minimal solvers for absolute pose estimation compact and robust[C]//2017 IEEE International Conference on Computer Vision (ICCV). IEEE, 2017: 2335-2343.

[9]Maity S, Saha A, Bhowmick B. Edge SLAM: Edge Points Based Monocular Visual SLAM[C]//ICCV Workshops. 2017: 2408-2417.

[10]Mukasa T, Xu J, Bjorn S. 3D Scene Mesh from CNN Depth Predictions and Sparse Monocular SLAM[C]//Computer Vision Workshop (ICCVW), 2017 IEEE International Conference on. IEEE, 2017: 912-919.

[11]Ahuja N A, Subedar M, Tickoo O, et al. A Factorization Approach for Enabling Structure-from-Motion/SLAM Using Integer Arithmetic[C]//Computer Vision Workshop (ICCVW), 2017 IEEE International Conference on. IEEE, 2017: 554-562.

ECCV-2018

1.SemanticMatch:visual localization的问题,用语义信息来匹配

2.EventSemi-Dense:双目Event相机的半稠密3D重建

3.TimeOffset:建模变化的camera-IMU时间偏移,提出了基于优化的VIO算法

4.GoodLineCutting:提出了一种提取most-informative子线段的方法,主要研究在基于之间的最小二乘问题中,line cutting对位姿估计中信息增益的影响

5.Shape-from-Template:Rolling Shutter的畸变可以被解释为Global shutter相机采集模板的虚拟畸变。类似于Shape-from-Template,提出使用局部微分约束

6.PointsLinesMinimalSolution:使用点和线的minimal solver问题,提出了闭合形式的解

7.VSO:使用语义信息实现medium-term的点的tracking。帧与帧之间的trackin是short-term,loop closure是long-term。

8.RollingShutterDSO:Rolling shutter 相机的DSO算法

9.DeepTAM:基于关键帧的稠密相机跟踪和深度map估计都是通过学习的方式得到的,利用学习的方法估计当前图像和合成的视点之间的小的位姿增量,生成大量的位姿假设会得到更精确的预测;地图构建过程使用了学习的方法进行深度预测

10.DeepDSO:深度学习的方法depth prediction,DSO算法

11.ADVIO:一个可靠的VIO数据集

12.LinearRGBDSLAM:基于线性EKF框架的RGBD slam算法,旋转是非线性的,利用曼哈顿世界的structural regularity可以实现线性化

references

[1]Toft C, Stenborg E, Hammarstrand L, et al. Semantic match consistency for long-term visual localization[C]//European Conference on Computer Vision. Springer, Cham, 2018: 391-408.

[2]Zhou Y, Gallego G, Rebecq H, et al. Semi-dense 3d reconstruction with a stereo event camera[C]//European Conference on Computer Vision. Springer, Cham, 2018: 242-258.

[3]Ling Y, Bao L, Jie Z, et al. Modeling Varying Camera-IMU Time Offset in Optimization-Based Visual-Inertial Odometry[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 484-500.

[4]Zhao Y, Vela P A. Good Line Cutting: Towards Accurate Pose Tracking of Line-Assisted VO/VSLAM[C]//European Conference on Computer Vision. Springer, Cham, 2018: 527-543.

[5]Lao Y, Ait-Aider O, Bartoli A. Rolling Shutter Pose and Ego-motion Estimation using Shape-from-Template[C]//European Conference on Computer Vision. Springer, Cham, 2018: 477-492.

[6]Miraldo P, Dias T, Ramalingam S. A Minimal Closed-Form Solution for Multi-Perspective Pose Estimation using Points and Lines[C]//European Conference on Computer Vision. Springer, Cham, 2018: 490-507.

[7]Lianos K N, Schonberger J L, Pollefeys M, et al. VSO: Visual Semantic Odometry[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 234-250.

[8]Schubert D, Demmel N, Usenko V, et al. Direct Sparse Odometry with Rolling Shutter[C]//European Conference on Computer Vision. Springer, Cham, 2018: 699-714.

[9]Zhou H, Ummenhofer B, Brox T. Deeptam: Deep tracking and mapping[C]//European Conference on Computer Vision. Springer, Cham, 2018: 851-868.

[10]Yang N, Wang R, Stückler J, et al. Deep virtual stereo odometry: Leveraging deep depth prediction for monocular direct sparse odometry[C]//European Conference on Computer Vision. Springer, Cham, 2018: 835-852.

[11]Cortés S, Solin A, Rahtu E, et al. ADVIO: An authentic dataset for visual-inertial odometry[C]//European Conference on Computer Vision. Springer, Cham, 2018: 425-440.

[12]Kim P, Coltin B, Jin Kim H. Linear RGB-D SLAM for Planar Environments[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 333-348.

cvpr 深度估计_近两年 CVPR ICCV ECCV 相机位姿估计、视觉定位、SLAM相关论文汇总...相关推荐

  1. 【SLAM文献】2017-2018 CVPR ICCV ECCV 相机位姿估计、视觉定位、SLAM相关论文综述

    作者:变胖是梦想2014 来源链接:https://www.jianshu.com/p/22151f39b50c 目录 CVPR-2018 references CVPR-2017 reference ...

  2. 相机计算坐标公式_相机位姿估计3:根据两幅图像的位姿估计结果求某点的世界坐标...

    关键词:相机位姿估计,单目尺寸测量,环境探知 用途:基于相机的环境测量,SLAM,单目尺寸测量 文章类型:原理说明.Demo展示 @Author:VShawn @Date:2016-11-28 @La ...

  3. 【radar】毫米波雷达-相机-激光雷达融合相关论文汇总(特征融合、RPN融合、弱监督融合、决策融合、深度估计、跟踪)(5)

    [radar]毫米波雷达-相机-激光雷达融合相关论文汇总(特征融合.RPN融合.弱监督融合.决策融合.深度估计.跟踪)(5) Radar Camera Fusion Feature-level Fus ...

  4. 《增强现实:原理、算法与应用》读书笔记(5)运动恢复结构(上)初始化、相机位姿估计、集束调整

    <增强现实:原理.算法与应用>读书笔记(5)运动恢复结构(上)初始化.相机位姿估计.集束调整 运动恢复结构(SfM)是一种从运动的相机拍摄的图像或视频序列中自动地恢复出相机运动轨迹以及场景 ...

  5. 相机位姿估计2:[应用]实时位姿估计与三维重建相机姿态

    关键词:相机位姿估计 OpenCV::solvePnP labview三维图片 文章类型:应用展示+Demo演示 @Author:VShawn(singlex@foxmail.com) @Date:2 ...

  6. c++/opencv利用相机位姿估计实现2D图像像素坐标到3D世界坐标的转换

    最近在做自动泊车项目中的车位线检测,用到了将图像像素坐标转换为真实世界坐标的过程,该过程可以通过世界坐标到图像像素坐标之间的关系进行求解,在我的一篇博文中已经详细讲解了它们之间的数学关系,不清楚的童鞋 ...

  7. CVPR 2021 | 国防科大:基于几何稳定性分析的物体位姿估计方法

    作者|机器之心编辑部 来源|机器之心 物体 6D 姿态估计是机器人抓取.虚拟现实等任务中的核心研究问题.近些年来,随着深度学习技术和图像卷积神经网络的快速发展,在提取物体的几何特征方面出现了许多需要改 ...

  8. CVPR 2021|三维视觉相关论文汇总

    作者丨Tom Hardy@知乎 来源丨https://zhuanlan.zhihu.com/p/355149511 编辑丨3D视觉工坊 1.GDR-Net: Geometry-Guided Direc ...

  9. 动作分析 姿态估计_单人或多人的人体姿态骨架估计算法概述

    原标题:单人或多人的人体姿态骨架估计算法概述 如何在大片中实现人物的特效,最终应用人体姿态估计.本博客介绍了使用深度学习技术及其应用的多人姿势估计方法. 人体骨骼骨架以图形格式表达人体运动.基本上,它 ...

  10. 动作分析 姿态估计_关于大片人物特效少不了的人体姿态估计,这里有一份综述文章...

    大片中的人物特效如何实现,少不了应用人体姿态估计.这篇博客简介了使用深度学习技术的多人姿态估计方法,及其应用. 人体姿态骨架图 (skeleton) 用图形格式表示人的动作.本质上,它是一组坐标,连接 ...

最新文章

  1. html 物理引擎,在物理引擎中画圆弧
  2. 2.1 二元分类-深度学习-Stanford吴恩达教授
  3. 容联雷辉:视频系统由标清进入到移动高清时代
  4. 2013长春区域赛总结
  5. SQL语句中LEFT JOIN、JOIN、INNER JOIN、RIGHT JOIN的区别?
  6. c 语言实例大全,c语言实例大全
  7. abap调用Linux命令,ABAP中输入write命令使用
  8. Android之用SingleTask和TaskAffinity解决手机截取的项目启动页面问题
  9. td 内单选框不可用_在TD,我和曾经的老师变成了同事,也收获了最满意的“课外活动”...
  10. oracle保存时间到数据库
  11. 【分享】4412开发板-嵌入式Linux开发须要掌握的基础知识和技能
  12. Android 拷贝Asset目录下文件或者文件夹
  13. Sql2000数据库的备份文件恢复到Sql2005的方法
  14. 智慧食堂安全管控系统解决方案
  15. stats | 广义线性模型(一)——广义线性模型的基本结构及与线性模型的比较...
  16. 关于向外借货品的库存盘点
  17. 什么是opt文件,plg,ncb等
  18. **Mybatis怎么自动生成Mapper文件和实体类**
  19. JavaScript系列之内置对象Object
  20. 泛泰A900 刷4.4专用中文TWRP2.7.1.1版 支持自己主动识别手机版本号(全球首创)...

热门文章

  1. 【转载】WAMP5:PHP环境整合安装(图解)及密码设置图解
  2. EasyExcel 读.CSV 文件数据为null或乱码问题
  3. java渗透_java 渗透模型
  4. 人脸对齐:Wing Loss人脸关键点检测算法2018
  5. python合并word表格_python docx处理word文档中表格合并问题
  6. ChucK初步(4)
  7. HTML5期末大作业:商城网站设计——仿天猫商城(9页) HTML+CSS大作业: 网页制作作业_疫情防控网页设计...
  8. 圣诞献礼 | AI、微服务、DevOps、企业架构文章合集
  9. 元宇宙来袭的五个趋势
  10. Android音视频之不同设备之间的视频通话(webSocket)