论文:A large Budget-Constrained Causal Forest Algorithm

论文:http://export.arxiv.org/pdf/2201.12585v2.pdf

目录

0 摘要

1 介绍

2 问题的制定

3策略评价

4 方法

4.1现有方法的局限性。

4.2提出的LBCF算法

5验证

5.1合成数据

5.2离线生成TestRCT数据。

5.3在线AB测试设置

6预算受限的治疗选择

7结论

8阅读理解

Readme

0 摘要

向用户提供奖励(例如亚马逊的优惠券,优步的折扣和抖音的视频奖金)是在线平台用来提高用户粘性和平台收入的常用策略。尽管这些营销激励已被证明是有效的,但如果使用不当,会产生不可避免的成本,并可能导致低ROI(投资回报)。另一方面,不同的用户对这些激励措施的反应不同,例如,有些用户从未在没有优惠券的情况下购买某些产品,而另一些用户则无论如何都会购买。因此,如何在预算限制下为每个用户选择合适的激励(即待遇)是一个具有重大现实意义的重要研究问题。在本文中,我们称这种问题为预算约束的治疗选择问题。挑战是如何有效地解决大规模数据集上的BTS问题,并获得比现有技术更好的结果。本文提出了一种预算约束下基于树的治疗选择算法,称为大规模预算约束因果森林(large BudgetConstrained Causal Forest, LBCF)算法,该算法也是一种适用于现代分布式计算系统的有效治疗选择算法。本文还提出了一种新的离线评估方法,以克服在随机对照试验(RCT)数据中评估BTS问题解决方案性能的内在挑战。我们将我们的方法部署在一个大型视频平台的现实场景中,该平台为了增加用户的活动参与时间而赠送奖金。仿真分析、离线和在线实验都表明,我们的方法优于各种基于树的最先进的基线1。该提议的方法目前正在为平台上的数亿用户提供服务,并在这几个月里实现了最大的改进之一。

KEYWORDS:Personalization, Heterogeneous causal effects, Constraint optimization, Treatment Selection, Distributed Computing

关键词个性化,异质因果效应,约束优化,处理选择,分布式计算

1 介绍

通过赠送奖励来开展营销活动是提高用户粘性和平台收入的一种流行而有效的方式,例如共享出行中的折扣[13](优步[31],滴滴)和电子商务中的优惠券[29](阿里巴巴[29],Booking.com[6,14])。

在工业环境中,这些营销活动受到有限的预算限制,因此有效地分配有限的激励至关重要。其中最具挑战性的任务是识别具有异质性的目标用户,即不同用户对不同级别的优惠券(如9折,8折等)的反应不同。换句话说,一些用户在没有优惠券的情况下从不购买某些产品,而另一些用户则会购买。因此,研究如何将有限的激励预算分配给具有异质性的用户,以最大化整体回报(如用户粘性、平台收益等)是一个重要的研究问题。最近的研究开始使用因果分析框架来解决这一问题,将激励和回报分别视为“治疗”和“结果”。在本文中,我们将这类问题视为预算约束的治疗选择问题(BTS)。

方法:现有的许多技术都可以解决BTS问题。挑战是如何有效地解决大规模数据集上的BTS问题,并获得比现有技术更好的结果。本文主要研究基于树的技术,因为它在工业上具有良好的性能。这些技术可以分为两类。

第一类是带贪婪处理选择的隆起随机森林。在得到所有处理的异质处理效果(本文中处理效果和隆升是可交换的)估计后,这些解,如隆升随机森林,在上下文治疗选择(Contextual Treatment Selection, CTS)[30]上,只需为每个用户选择治疗效果最大的治疗[7,17]。我们称这种治疗选择策略为贪婪治疗选择策略。在4.1.1节中,通过一个简单的例子,我们证明了这种贪婪的处理选择策略对于BTS问题是次优的。

第二类是Tu等人最近提出的最优治疗选择算法[26]。该算法有两个局限性,特别是对于大规模的BTS问题。首先,在大规模数据集上,由于缺乏大规模线性规划优化求解器,作者建议采用队列级优化代替成员级优化。其次,为了利用二元因果森林(见Athey et al. [2]) (BCF)实现多处理效果估计,Tu et al.[26]提出分别训练多个二元因果森林(MBCF),每个BCF对应一个处理。尽管如此,在这种分治方法中,用户可能属于每个二进制模型中的不同叶节点(见图2a)。因此,在估计不同处理的处理效果或提升时,我们正在观察不同的特征空间(见图1a)。因此,所获得的治疗效果在不同治疗之间没有严格的可比性。此外,如果我们有多个模型同时服务,它是计算消耗和难以维护。

在本文中,我们提出了一种大规模预算约束因果森林(LBCF)算法来克服上述限制。LBCF由两部分组成:成员级治疗效果估计和预算约束优化。对于第一个组件,我们设计了一个新的分割标准,允许来自多个治疗组的类似用户驻留在同一个节点上。提出的分割准则允许我们用统一的模型处理多个处理(图2b),这样就可以在相同的特征空间内估计不同激励水平下的处理效果(图1b)。

为此,除了节点间的异质性,我们提出的方法还鼓励节点内处理效果的异质性,以促进下游预算受限的优化任务。对于另一个组成部分,在获得用户对不同激励水平的处理效果后,我们可以将预算约束优化任务制定为多选择背包问题(MCKP)[10,15,22]。尽管MCKP已经被研究了几十年(例如经典的线性时间近似算法,Dyer-Zemel算法[4]),但现有的优化方法并不是为现代基础设施设计的,特别是分布式计算框架,如Tensorflow[1]和Spark。因此,这些方法无法扩展到今天的大规模在线平台。在这项工作中,我们利用MCKP的拉格朗日对偶的凸性,设计了一种高效的可并行平分搜索算法,称为对偶梯度平分(DGB)。与其他最先进的近似优化方法相比,DGB可以更容易地部署在分布式计算系统中。(?)时间复杂度和不需要额外的超参数调优作为其基于梯度下降的替代方案。

政策评估。对防弹少年团的离线评价也是一个难题。现有的BTS问题评价方法存在诸多局限性。其中一种方法,如AUUC[8,21,23]、Qini-curve[16]和AUCC[3],在多治疗情况下,根据评分对所有用户进行排序,评分是所有可能的治疗分配中预测治疗效果最大的。然而,待评估策略并不一定选择,最大的治疗。另一种方法是Zhao等人提出的预期结果度量。在这个指标中,被评估的用户并不是全部的RCT用户,这导致消费预算随着不同的治疗选择策略而变化。为了克服这些现有评估方法的局限性,我们提出了一种新的评估指标,称为百分比平均增益(PMG)用于BTS问题。我们的指标能够对治疗选择政策进行更全面的评估。

数据集和测试。为了充分验证我们的LBCF算法的性能,我们进行了三种测试:模拟测试、在实词数据集上的离线测试和在线AB测试。在模拟测试中,我们使用与Tu et al.[26]相同的方法生成合成的RCT数据集。为了得出令人信服的结果,我们还使用Tu et al.[26]中定义的相同测量指标:个性化治疗效果的归一化平均值(ITE)。我们将提出的LBCF算法与五种基于树的基线方法进行比较:基于欧几里得距离(ED)的抬升随机森林[7,17],卡方(Chi)和上下文处理选择(CTS),这些方法都来自CausalML包;随机优化因果树(CT.ST)和确定性优化因果森林(CF.DT)是Tu et al.[26].推荐的两种方法。仿真结果表明,LBCF算法在不同噪声水平下具有良好的性能。

在离线测试中,我们首先从视频流媒体平台收集了一个网络规模的RCT数据集。数据集记录了用户在七个随机登记的激励组中的活动参与时间(即“结果”),每个组提供不同级别的奖金(即“多重待遇”)。有了我们发布的完整数据集和提议的评估协议PMG,我们社区的更多研究人员可以潜在地参与相关研究。我们进一步在平台上部署了建议的方法。在线A/B实验表明,在活动参与持续时间方面,在相同的预算下,我们的算法可以显著优于基线方法至少0.9%,这是这几个月的巨大进步。在线实验也证明了LBCF算法的可扩展性。目前,LBCF算法为数亿用户提供服务。

综上所述,本文的贡献可以概括为以下几点:

  • 我们提出了一种预算约束下基于树的处理选择技术,称为大规模预算约束因果森林(LBCF)算法。所提出的方法已经部署在一个服务于数亿用户的真实大型平台上。
  • 我们提出了一种新的用于预算约束治疗选择(BTS)问题的离线评估方法,称为百分比平均增益(PMG),该方法解决了使用随机对照试验(RCT)收集的离线数据集评估BTS问题解决方案的内在局限性。
  • 我们进行了一系列广泛的实验,包括在公共合成数据集上的模拟测试,在收集的真实数据集上的离线测试,以及在大型视频平台上的在线AB测试。结果证明了该方法的有效性,并证明了其在大规模工业应用场景下的可扩展性。

2 问题的制定

在这项工作中,我们专注于最大化总体回报,同时决定如何提供激励以遵守全球预算约束。我们采用潜在结果框架[20,24]来表达激励对回报的治疗效果,其中激励和回报分别被视为“治疗”和“结果”。我们用大写字母表示随机变量,用小写字母表示它们的实现。我们用粗体表示向量,用普通字体表示标量。

假设我们有一个大小的数据集?包含(X,?, ?)收集自随机对照试验。我们使用上标?为了索引样本,(xi, ?吗?,吗??),吗?= 1,…,吗?. ? 吗?∈{0,1,…,吗?}。我们假设潜在结果的存在?吗?(?吗?= ?)然后呢?吗?(?吗?= 0)与我们在治疗分配中观察到的结果相对应?吗?= ?还是?吗?= 0,并尝试估计条件平均处理效果(CATE)函数,假设它们具有相同的特征值xi:

吗?吗?. 另外,我们考虑随机变量?,代表与治疗相关的费用。我们假设没有成本,如果?= 0,成本呢?吗?吗?如何应用每种治疗方法?给每个用户?是事先知道的。让吗?表示总预算。然后给出(X, ?,吗?, ?)手动设定预算呢?,我们的目标是最大化

3策略评价

BTS(budget-constrained treatment selection)问题的第一个挑战是如何评估解决方案,这是一个困难的任务,因为缺少反事实的结果,例如,如果我们选择治疗,我们无法观察到客户潜在的结果变化(即治疗效果)?(例如九折优惠券)而不是治疗?(例如,没有优惠券)。在本节中,我们提出了一种新的BTS问题的评价方法。

现有方法的局限性。最近研究了两种评价方法。

第一种方法是利用从随机对照试验(RCT)中收集的用户数据,使用隆起曲线下的度量面积(AUUC)[21]来评估治疗效果[11,12,25,28]。在多重治疗的情况下,这种方法要求将所有用户按评分降序排列,评分是所有可能的治疗分配中预测的最大治疗效果。但是,待评价策略并不一定选择最大处理,因为最大处理不一定是最优处理。

第二个是[30]提出的预期结果度量。它通过汇总RCT和政策处理匹配的用户的加权结果来估计预期结果(图3)。对于我们的BTS问题,这个指标的主要局限性是被评估的用户不是整个RCT用户。因此,预期结果并不是整个RCT使用者的平均结果,这就导致了不同治疗选择政策的消费预算的变化。两个具有不同消费预算的政策是不具有可比性的。

考虑到上述两种方法的局限性,我们针对BTS问题提出了一种新的策略评估指标,称为百分比平均增益(PMG)。

4 方法

我们比较了几种常见的基于树的方法来解决BTS问题,并介绍了一种称为大规模预算约束因果森林(LBCF)算法的新方法。

4.1现有方法的局限性。

4.1.1隆升随机森林。

在处理方法的选择上,大多数隆升随机林方法只是简单地选择处理效果最大的处理。我们称这种治疗选择策略为贪婪治疗选择策略。在下面,通过一个简单的例子,我们表明在给定的预算下,这种贪婪的治疗选择策略是次优的。

 

理解:贪心不考虑后续,不是全局最优。

4.1.2最优处理选择算法。

Tu等人最近提出的最优处理选择算法[26]可以用来解决BTS问题,不需要做太多修改。然而,该算法有两个局限性,特别是对于大规模的BTS问题。首先,在大规模数据集上,由于缺乏大规模线性规划优化求解器,作者提出用群体级优化代替成员级优化。然而,正如Tu等人[26]测试的那样,在低噪声级别的数据集上,成员级优化可以生成更个性化的估计。

因此,我们希望开发一种并行算法来解决大规模数据集上BST问题的成员级优化。其次,为了实现多处理效果估计,Tu等。[26]简单地分别训练多个二元因果森林[27](MBCF),即一个因果森林生成一个治疗组与对照组的治疗效果估计。然而,MBCF有两个局限性:

•训练和维护许多二元因果森林(BCF)在计算上很麻烦。

•对于一个用户来说,一个BCF产生的治疗效果估计可能与其他BCF产生的治疗效果估计属于不同的特征空间,这与CATE的定义相矛盾(Eq. 1)。例如(图2a),特征{年龄= 30,收入= 55?}将分别属于BCF1的Leaf11和BCF3的Leaf31,但Leaf11和Leaf31对应不同的特征值。

4.2提出的LBCF算法

我们将BTS问题分解为两个步骤:(i)估计CATE ?吗?吗?在成员级别上只使用一个模型。(ii)通过求解约束优化问题得到最佳处理方案z *。

4.2.1统一判别因果林。

为了克服MBCF(第4.1.2节)的局限性,并在多个处理之间区分处理效果估计,通过修改BCF,我们设计了一个新的多处理因果林模型,该模型具有以下两个特性:

•统一-该模型只构建一个因果林,所有处理被分割在一起并遵循相同的分割规则。

•可区分性——该模型可以区分节点间异构性和节点内异构性。

为了总结上面的两个分割规则,并平衡效率和有效性,特别是在大规模数据集上,我们提出了一个新的因果森林,称为统一判别因果森林(UDCF,图2b),具有两步分割标准:

(i)让?相对于所有可能分裂的总数来说是一个很小的数字。挑顶?根据公式3计算的结果,通过Inter分割规则将候选人从所有可能的分割中分割出来。(ii)从?根据式4计算的结果,用Intra splitrule拆分候选。

Termination Rule and Treatment Effect Estimation. Termination rule for tree split is just the same as BCF. After UDCF is constructed, treatment effect estimation

因果推断10--一种大规模预算约束因果森林算法(LBCF)相关推荐

  1. python 因果推断_KDD 2018:微软推出用于因果推断的Python库

    随着计算机系统在各领域的应用,例如医疗.教育.政府机关,正确预测并理解这些设备的因果影响是非常重要的.没有A/B测试,建立在模式识别和相关性分析上的传统的机器学习方法,是不足以解释因果推理的. 与用来 ...

  2. 【动手学因果推断】(二):潜在因果框架

    [动手学因果推断](二):潜在因果框架

  3. 因果推断笔记——数据科学领域因果推断案例集锦(九)

    文章目录 1 腾讯看点:启动重置问题 1.1 观测数据 . 实验数据的理论介绍 2.2 启动重置问题阐述:短期.长期.异质 2.3 短期影响的解决 2.4 长期影响构造准实验 2.5 异质性用户 1. ...

  4. 丁鹏:多角度回顾因果推断的模型方法

    来源:集智俱乐部本文约23000字,建议阅读20+分钟 本文整理自丁鹏老师的8篇短文,从多角度回顾了因果推断的各种模型方法. [ 导读 ] 推断因果关系,是人类思想史与科学史上的重要主题.现代因果推断 ...

  5. 多角度回顾因果推断的模型方法

    来源:AI干货知识库 推断因果关系,是人类思想史与科学史上的重要主题.现代因果推断的研究,始于约尔-辛普森悖论,经由鲁宾因果模型.随机试验等改进,到朱力亚·珀尔的因果革命,如今因果科学与人工智能的结合 ...

  6. AI研习丨专题:因果推断与因果性学习研究进展

    来源:<中国人工智能学会通讯> 2020年  第10卷  第5期  机器学习及其应用专题 0 引言 因果关系一直是人类认识世界的基本方式和现代科学的基石.爱因斯坦就曾指出,西方科学的发展是 ...

  7. 因果推断笔记——自整理因果推断理论解读(七)

    之前有整理过一篇:因果推断笔记-- 相关理论:Rubin Potential.Pearl.倾向性得分.与机器学习异同(二) 不过,那时候刚刚开始学,只能慢慢理解,所以这边通过一轮的学习再次整理一下手里 ...

  8. 现代统计的思想飞跃,因果推断!

    丁鹏 | 作者 雷博文.孔令仁 | 编辑 <数学文化>2021/第 12 卷第 2 期 | 来源 1. 引言 探求事物的原因,是人类永恒的精神活动之一.从古希腊的哲学到中国先秦的诗歌,都充 ...

  9. 因果推断——现代统计的思想飞跃

    来源:数学文化"公众号 编辑:李达 审核:范杰.李祺垣 1 引言 探求事物的原因,是人类永恒的精神活动之一.从古希腊的哲学到中国先秦的诗歌,都充满了对原因的追问和对因果关系的思考.比如,亚里 ...

最新文章

  1. CSS中一些语法规范和代码风格
  2. 【拓扑排序】【bitset】Gym - 101128A - Promotions
  3. springboot中如何添加第三方的jar包或者说如何配置本地jar
  4. Infortrend的EonStor DS与GS强势进军银行领域
  5. python程序的输入输出(acm的几个小程序)
  6. LeetCode Algorithm 876. 链表的中间结点
  7. Java—— TCP协议(相关代码实现以及相关优化)
  8. Verilog HDL语言实现ROM、RAM+有限状态机
  9. 半自动添加Grafana 模板之 ---- POST提交
  10. HYSPLIT 模型 传输轨迹 使用指南
  11. Lan内部是如何完成通信的
  12. 为什么只有涨价才能救小米?
  13. 光猫,路由器,机顶盒的区别
  14. 复制微信号并跳转到微信界面
  15. nao机器人行走速度_NAO5机器人的一些使用心得
  16. ValueError: Can only save/restore ResourceVariables when executing eagerly, got type: <class ‘tenso
  17. FEKO地平面的设置和计算参数的定义
  18. BIGEMAP教程之Arcg​is进行DEM数据进行水文分析(二)
  19. 白话蓝牙技术之BREDR/BLE
  20. C语言字符加法原理,这个加法原理,在小学阶段一定要弄明白!

热门文章

  1. Nexus 6P获取CSI(含刷机、root)
  2. 21世纪出现的现代「文明病」 五种被社群媒体影响的症状
  3. (17)Redis 服务器
  4. 文件系统(三)—老祖宗长的什么样
  5. Python 元组转换为列表
  6. Arduino IRremoteESP8266库 调用说明以及示例
  7. JAVA SE 接口实现与Comparable接口
  8. 顶配售价 18499 元,用上 M1 的 iPad Pro 性能与价格“直逼”电脑,这届苹果发布会有你喜欢的吗?...
  9. 说说入职字节跳动的感受
  10. 系统分析师上午题,经典易错题目