【第六步】当收到Accept通知时 _DoAccept()

在用户收到AcceptEx的完成通知时,需要后续代码并不多,但却是逻辑最为混乱,最容易出错的地方,这也是很多用户为什么宁愿用效率低下的accept()也不愿意去用AcceptEx的原因吧。

和普通的Socket通讯方式一样,在有客户端连入的时候,我们需要做三件事情:

(1) 为这个新连入的连接分配一个Socket;

(2) 在这个Socket上投递第一个异步的发送/接收请求;

(3) 继续监听。

其实都是一些很简单的事情但是由于“单句柄数据”和“单IO数据”的加入,事情就变得比较乱。因为是这样的,让我们一起缕一缕啊,最好是配合代码一起看,否则太抽象了……

(1) 首先,_Worker线程通过GetQueuedCompletionStatus()里会收到一个lpCompletionKey,这个也就是PER_SOCKET_CONTEXT,里面保存了与这个I/O相关的Socket和Overlapped还有客户端发来的第一组数据等等,对吧?但是这里得注意,这个SOCKET的上下文数据,是关于监听Socket的,而不是新连入的这个客户端Socket的,千万别弄混了……

(2) 所以,AcceptEx不是给咱们新连入的这个Socket早就建好了一个Socket吗?所以这里,我们需要再用这个新Socket重新为新客户端建立一个PER_SOCKET_CONTEXT,以及下面一系列的新PER_IO_CONTEXT,千万不要去动传入的这个Listen Socket上的PER_SOCKET_CONTEXT,也不要用传入的这个Overlapped信息,因为这个是属于AcceptEx I/O操作的,也不是属于你投递的那个Recv I/O操作的……,要不你下次继续监听的时候就悲剧了……

(3) 等到新的Socket准备完毕了,我们就赶紧还是用传入的这个Listen Socket上的PER_SOCKET_CONTEXT和PER_IO_CONTEXT去继续投递下一个AcceptEx,循环起来,留在这里太危险了,早晚得被人给改了……

(4) 而我们新的Socket的上下文数据和I/O操作数据都准备好了之后,我们要做两件事情:一件事情是把这个新的Socket和我们唯一的那个完成端口绑定,这个就不用细说了,和前面绑定监听Socket是一样的;然后就是在这个Socket上投递第一个I/O操作请求,在我的示例代码里投递的是WSARecv()。因为后续的WSARecv,就不是在这里投递的了,这里只负责第一个请求。

但是,至于WSARecv请求如何来投递的,我们放到下一节中去讲,这一节,我们还有一个很重要的事情,我得给大家提一下,就是在客户端连入的时候,我们如何来获取客户端的连入地址信息。

这里我们还需要引入另外一个很高端的函数,GetAcceptExSockAddrs(),它和AcceptEx()一样,都是微软提供的扩展函数,所以同样需要通过下面的方式来导入才可以使用……

[cpp] view plaincopy

WSAIoctl(

m_pListenContext->m_Socket,

SIO_GET_EXTENSION_FUNCTION_POINTER,

&GuidGetAcceptExSockAddrs,

sizeof(GuidGetAcceptExSockAddrs),

&m_lpfnGetAcceptExSockAddrs,

sizeof(m_lpfnGetAcceptExSockAddrs),

&dwBytes,

NULL,

NULL);

和导出AcceptEx一样一样的,同样是需要用其GUID来获取对应的函数指针 m_lpfnGetAcceptExSockAddrs 。

说了这么多,这个函数究竟是干嘛用的呢?它是名副其实的“AcceptEx之友”,为什么这么说呢?因为我前面提起过AcceptEx有个很神奇的功能,就是附带一个神奇的缓冲区,这个缓冲区厉害了,包括了客户端发来的第一组数据、本地的地址信息、客户端的地址信息,三合一啊,你说神奇不神奇?

这个函数从它字面上的意思也基本可以看得出来,就是用来解码这个缓冲区的,是的,它不提供别的任何功能,就是专门用来解析AcceptEx缓冲区内容的。例如如下代码:

[cpp] view plaincopy

PER_IO_CONTEXT* pIoContext = 本次通信用的I/O Context

SOCKADDR_IN* ClientAddr = NULL;

SOCKADDR_IN* LocalAddr = NULL;

int remoteLen = sizeof(SOCKADDR_IN), localLen = sizeof(SOCKADDR_IN);

m_lpfnGetAcceptExSockAddrs(pIoContext->m_wsaBuf.buf, pIoContext->m_wsaBuf.len - ((sizeof(SOCKADDR_IN)+16)*2),  sizeof(SOCKADDR_IN)+16, sizeof(SOCKADDR_IN)+16, (LPSOCKADDR*)&LocalAddr, &localLen, (LPSOCKADDR*)&ClientAddr, &remoteLen);

解码完毕之后,于是,我们就可以从如下的结构体指针中获得很多有趣的地址信息了:

inet_ntoa(ClientAddr->sin_addr) 是客户端IP地址

ntohs(ClientAddr->sin_port) 是客户端连入的端口

inet_ntoa(LocalAddr ->sin_addr) 是本地IP地址

ntohs(LocalAddr ->sin_port) 是本地通讯的端口

pIoContext->m_wsaBuf.buf 是存储客户端发来第一组数据的缓冲区

自从用了“AcceptEx之友”,一切都清净了….

【第七步】当收到Recv通知时, _DoRecv()

在讲解如何处理Recv请求之前,我们还是先讲一下如何投递WSARecv请求的。

WSARecv大体的代码如下,其实就一行,在代码中我们可以很清楚的看到我们用到了很多新建的PerIoContext的参数,这里再强调一下,注意一定要是自己另外新建的啊,一定不能是Worker线程里传入的那个PerIoContext,因为那个是监听Socket的,别给人弄坏了……:

[cpp] view plaincopy

int nBytesRecv = WSARecv(pIoContext->m_Socket, pIoContext ->p_wbuf, 1, &dwBytes, 0, pIoContext->p_ol, NULL);

这里,我再把WSARev函数的原型再给各位讲一下

int WSARecv(

SOCKET s,                      // 当然是投递这个操作的套接字

LPWSABUF lpBuffers,            // 接收缓冲区

// 这里需要一个由WSABUF结构构成的数组

DWORD dwBufferCount,           // 数组中WSABUF结构的数量,设置为1即可

LPDWORD lpNumberOfBytesRecvd,  // 如果接收操作立即完成,这里会返回函数调用所接收到的字节数

LPDWORD lpFlags,               // 说来话长了,我们这里设置为0 即可

LPWSAOVERLAPPED lpOverlapped,  // 这个Socket对应的重叠结构

NULL                           // 这个参数只有完成例程模式才会用到,

// 完成端口中我们设置为NULL即可

);

其实里面的参数,如果你们熟悉或者看过我以前的重叠I/O的文章,应该都比较熟悉,只需要注意其中的两个参数:

LPWSABUF lpBuffers;

这里是需要我们自己new 一个 WSABUF 的结构体传进去的;

如果你们非要追问 WSABUF 结构体是个什么东东?我就给各位多说两句,就是在ws2def.h中有定义的,定义如下:

[cpp] view plaincopy

typedef struct _WSABUF {

ULONG len; /* the length of the buffer */

__field_bcount(len) CHAR FAR *buf; /* the pointer to the buffer */

} WSABUF, FAR * LPWSABUF;

而且好心的微软还附赠了注释,真不容易….

看到了吗?如果对于里面的一些奇怪符号你们看不懂的话,也不用管他,只用看到一个ULONG和一个CHAR*就可以了,这不就是一个是缓冲区长度,一个是缓冲区指针么?至于那个什么 FAR…..让他见鬼去吧,现在已经是32位和64位时代了……

这里需要注意的,我们的应用程序接到数据到达的通知的时候,其实数据已经被咱们的主机接收下来了,我们直接通过这个WSABUF指针去系统缓冲区拿数据就好了,而不像那些没用重叠I/O的模型,接收到有数据到达的通知的时候还得自己去另外recv,太低端了……这也是为什么重叠I/O比其他的I/O性能要好的原因之一。

LPWSAOVERLAPPED lpOverlapped

这个参数就是我们所谓的重叠结构了,就是这样定义,然后在有Socket连接进来的时候,生成并初始化一下,然后在投递第一个完成请求的时候,作为参数传递进去就可以,

[cpp] view plaincopy

OVERLAPPED* m_pol = new OVERLAPPED;

eroMemory(m_pol, sizeof(OVERLAPPED));

在第一个重叠请求完毕之后,我们的这个OVERLAPPED 结构体里,就会被分配有效的系统参数了,并且我们是需要每一个Socket上的每一个I/O操作类型,都要有一个唯一的Overlapped结构去标识。

这样,投递一个WSARecv就讲完了,至于_DoRecv()需要做些什么呢?其实就是做两件事:

(1) 把WSARecv里这个缓冲区里收到的数据显示出来;       (2) 发出下一个WSARecv();        至此,我们终于深深的喘口气了,完成端口的大部分工作我们也完成了,也非常感谢各位耐心的看我这么枯燥的文字一直看到这里,真是一个不容易的事情!!

【第八步】如何关闭完成端口 休息完毕,我们继续……  各位看官不要高兴得太早,虽然我们已经让我们的完成端口顺利运作起来了,但是在退出的时候如何释放资源咱们也是要知道的,否则岂不是功亏一篑。        从前面的章节中,我们已经了解到,Worker线程一旦进入了GetQueuedCompletionStatus()的阶段,就会进入睡眠状态,INFINITE的等待完成端口中,如果完成端口上一直都没有已经完成的I/O请求,那么这些线程将无法被唤醒,这也意味着线程没法正常退出。

熟悉或者不熟悉多线程编程的朋友,都应该知道,如果在线程睡眠的时候,简单粗暴的就把线程关闭掉的话,那是会一个很可怕的事情,因为很多线程体内很多资源都来不及释放掉,无论是这些资源最后是否会被操作系统回收,我们作为一个C++程序员来讲,都不应该允许这样的事情出现。   所以我们必须得有一个很优雅的,让线程自己退出的办法。       这时会用到我们这次见到的与完成端口有关的最后一个API,叫 PostQueuedCompletionStatus(),从名字上也能看得出来,这个是和 GetQueuedCompletionStatus() 函数相对的,这个函数的用途就是可以让我们手动的添加一个完成端口I/O操作,这样处于睡眠等待的状态的线程就会有一个被唤醒,如果为我们每一个Worker线程都调用一次PostQueuedCompletionStatus()的话,那么所有的线程也就会因此而被唤醒了。

PostQueuedCompletionStatus()函数的原型是这样定义的:

[cpp] view plaincopy

BOOL WINAPI PostQueuedCompletionStatus(

__in      HANDLE CompletionPort,

__in      DWORD dwNumberOfBytesTransferred,

__in      ULONG_PTR dwCompletionKey,

__in_opt  LPOVERLAPPED lpOverlapped

);

我们可以看到,这个函数的参数几乎和GetQueuedCompletionStatus()的一模一样,都是需要把我们建立的完成端口传进去,然后后面的三个参数是 传输字节数、结构体参数、重叠结构的指针.

注意,这里也有一个很神奇的事情,正常情况下,GetQueuedCompletionStatus()获取回来的参数本来是应该是系统帮我们填充的,或者是在绑定完成端口时就有的,但是我们这里却可以直接使用PostQueuedCompletionStatus()直接将后面三个参数传递给GetQueuedCompletionStatus(),这样就非常方便了       例如,我们为了能够实现通知线程退出的效果,可以自己定义一些约定,比如把这后面三个参数设置一个特殊的值,然后Worker线程接收到完成通知之后,通过判断这3个参数中是否出现了特殊的值,来决定是否是应该退出线程了。       例如我们在调用的时候,就可以这样:

for (int i = 0; i < m_nThreads; i++)

{

PostQueuedCompletionStatus(m_hIOCompletionPort, 0, (DWORD) NULL, NULL);

}

为每一个线程都发送一个完成端口数据包,有几个线程就发送几遍,把其中的dwCompletionKey参数设置为NULL,这样每一个Worker线程在接收到这个完成通知的时候,再自己判断一下这个参数是否被设置成了NULL,因为正常情况下,这个参数总是会有一个非NULL的指针传入进来的,如果Worker发现这个参数被设置成了NULL,那么Worker线程就会知道,这是应用程序再向Worker线程发送的退出指令,这样Worker线程在内部就可以自己很“优雅”的退出了……        学会了吗?

但是这里有一个很明显的问题,聪明的朋友一定想到了,而且只有想到了这个问题的人,才算是真正看明白了这个方法。

我们只是发送了m_nThreads次,我们如何能确保每一个Worker线程正好就收到一个,然后所有的线程都正好退出呢?是的,我们没有办法保证,所以很有可能一个Worker线程处理完一个完成请求之后,发生了某些事情,结果又再次去循环接收下一个完成请求了,这样就会造成有的Worker线程没有办法接收到我们发出的退出通知。

所以,我们在退出的时候,一定要确保Worker线程只调用一次GetQueuedCompletionStatus(),这就需要我们自己想办法了,各位请参考我在Worker线程中实现的代码,我搭配了一个退出的Event,在退出的时候SetEvent一下,来确保Worker线程每次就只会调用一轮 GetQueuedCompletionStatus() ,这样就应该比较安全了。

另外,在Vista/Win7系统中,我们还有一个更简单的方式,我们可以直接CloseHandle关掉完成端口的句柄,这样所有在GetQueuedCompletionStatus()的线程都会被唤醒,并且返回FALSE,这时调用GetLastError()获取错误码时,会返回ERROR_INVALID_HANDLE,这样每一个Worker线程就可以通过这种方式轻松简单的知道自己该退出了。当然,如果我们不能保证我们的应用程序只在Vista/Win7中,那还是老老实实的PostQueuedCompletionStatus()吧。

最后,在系统释放资源的最后阶段,切记,因为完成端口同样也是一个Handle,所以也得用CloseHandle将这个句柄关闭,当然还要记得用closesocket关闭一系列的socket,还有别的各种指针什么的,这都是作为一个合格的C++程序员的基本功,在这里就不多说了,如果还是有不太清楚的朋友,请参考我的示例代码中的 StopListen() 和DeInitialize() 函数。

六. 完成端口使用中的注意事项

终于到了文章的结尾了,不知道各位朋友是基本学会了完成端口的使用了呢,还是被完成端口以及我这么多口水的文章折磨得不行

最后再补充一些前面没有提到了,实际应用中的一些注意事项吧。

1. Socket的通信缓冲区设置成多大合适?

在x86的体系中,内存页面是以4KB为单位来锁定的,也就是说,就算是你投递WSARecv()的时候只用了1KB大小的缓冲区,系统还是得给你分4KB的内存。为了避免这种浪费,最好是把发送和接收数据的缓冲区直接设置成4KB的倍数。

2.  关于完成端口通知的次序问题

这个不用想也能知道,调用GetQueuedCompletionStatus() 获取I/O完成端口请求的时候,肯定是用先入先出的方式来进行的。

但是,咱们大家可能都想不到的是,唤醒那些调用了GetQueuedCompletionStatus()的线程是以后入先出的方式来进行的。

比如有4个线程在等待,如果出现了一个已经完成的I/O项,那么是最后一个调用GetQueuedCompletionStatus()的线程会被唤醒。平常这个次序倒是不重要,但是在对数据包顺序有要求的时候,比如传送大块数据的时候,是需要注意下这个先后次序的。

-- 微软之所以这么做,那当然是有道理的,这样如果反复只有一个I/O操作而不是多个操作完成的话,内核就只需要唤醒同一个线程就可以了,而不需要轮着唤醒多个线程,节约了资源,而且可以把其他长时间睡眠的线程换出内存,提到资源利用率。

3.  如果各位想要传输文件…

如果各位需要使用完成端口来传送文件的话,这里有个非常需要注意的地方。因为发送文件的做法,按照正常人的思路来讲,都会是先打开一个文件,然后不断的循环调用ReadFile()读取一块之后,然后再调用WSASend ()去发发送。

但是我们知道,ReadFile()的时候,是需要操作系统通过磁盘的驱动程序,到实际的物理硬盘上去读取文件的,这就会使得操作系统从用户态转换到内核态去调用驱动程序,然后再把读取的结果返回至用户态;同样的道理,WSARecv()也会涉及到从用户态到内核态切换的问题 --- 这样就使得我们不得不频繁的在用户态到内核态之间转换,效率低下……

而一个非常好的解决方案是使用微软提供的扩展函数TransmitFile()来传输文件,因为只需要传递给TransmitFile()一个文件的句柄和需要传输的字节数,程序就会整个切换至内核态,无论是读取数据还是发送文件,都是直接在内核态中执行的,直到文件传输完毕才会返回至用户态给主进程发送通知。这样效率就高多了。

4. 关于重叠结构数据释放的问题

我们既然使用的是异步通讯的方式,就得要习惯一点,就是我们投递出去的完成请求,不知道什么时候我们才能收到操作完成的通知,而在这段等待通知的时间,我们就得要千万注意得保证我们投递请求的时候所使用的变量在此期间都得是有效的。

例如我们发送WSARecv请求时候所使用的Overlapped变量,因为在操作完成的时候,这个结构里面会保存很多很重要的数据,对于设备驱动程序来讲,指示保存着我们这个Overlapped变量的指针,而在操作完成之后,驱动程序会将Buffer的指针、已经传输的字节数、错误码等等信息都写入到我们传递给它的那个Overlapped指针中去。如果我们已经不小心把Overlapped释放了,或者是又交给别的操作使用了的话,谁知道驱动程序会把这些东西写到哪里去呢?岂不是很崩溃……

暂时我想到的问题就是这么多吧,如果各位真的是要正儿八经写一个承受很大访问压力的Server的话,你慢慢就会发现,只用我附带的这个示例代码是不够的,还得需要在很多细节之处进行改进,例如用更好的数据结构来管理上下文数据,并且需要非常完善的异常处理机制等等,总之,非常期待大家的批评和指正。

谢谢大家看到这里!!!

完成端口(CompletionPort)详解 - 手把手教你玩转网络编程系列之三2-转相关推荐

  1. (转载)完成端口(CompletionPort)详解 - 手把手教你玩转网络编程系列之三

    手把手叫你玩转网络编程系列之三 完成端口(Completion Port)详解 ----- By PiggyXP(小猪) 前 言 本系列里完成端口的代码在两年前就已经写好了,但是由于许久没有写东西了, ...

  2. 完成端口(CompletionPort)详解 - 手把手教你玩转网络编程系列之三 1-转

    完成端口(Completion Port)详解 本系列里完成端口的代码在两年前就已经写好了,但是由于许久没有写东西了,不知该如何提笔,所以这篇文档总是在酝酿之中--酝酿了两年之后,终于决定开始动笔了, ...

  3. 完毕port(CompletionPort)具体解释 - 手把手教你玩转网络编程系列之三

       手把手叫你玩转网络编程系列之三    完毕port(Completion Port)具体解释                                                    ...

  4. 手把手叫你玩转网络编程系列之三 完成端口(Completion Port)详解

    2019独角兽企业重金招聘Python工程师标准>>> 前 言 本系列里完成端口的代码在两年前就已经写好了,但是由于许久没有写东西了,不知该如何提笔,所以这篇文档总是在酝酿之中--酝 ...

  5. 手把手教你玩转网络编程模型之完成例程(Completion Routine)篇(下)-转

    续 手把手教你玩转网络编程模型之完成例程(Completion Routine)篇(上) 四.         完成例程的实现步骤 基础知识方面需要知道的就是这么多,下面我们配合代码,来一步步的讲解如 ...

  6. 手把手教你玩转网络编程模型之完成例程(Completion Routine)篇(上)-转

    手把手教你玩转网络编程模型之完成例程(Completion Routine)篇 前  言 记得写这个系列的上一篇文章的时候已经是四年前了,准确的说是四年半以前了,翻开我尘封已久的IO模型里面的&quo ...

  7. 手把手教你玩转网络编程模型之完成例程(Completion Routine)

    前  言 记得写这个系列的上一篇文章的时候已经是四年前了,准确的说是四年半以前了,翻开我尘封已久的IO模型里面的"完成例程"的实现方式及示例代码. 本文凝聚着笔者心血,如要转载,请 ...

  8. tfrecord原理详解 手把手教生成tfrecord文件与解析tfrecord文件

    1.什么是tfrecord TFRecord 是Google官方推荐的一种数据格式,是Google专门为TensorFlow设计的一种数据格式. TFRecord本质上是二进制文件,目的是更好的利用内 ...

  9. NIO详解(一):java网络编程IO总结(BIO、NIO、AIO)

    1.基本概念 在Java网络通信中,最基本的概念就是Socket编程了.Socket又称"套接字" 向网络发出请求或者应答网络请求. Socket 和ServerSocket类库位 ...

最新文章

  1. Springboot结合 framework 加载静资源 出现404 问题解决 记录
  2. LCA 朴素算法+树差分倍增+Tarjan算法 三种算法实现c++代码实现
  3. Windows10 右键 cmd
  4. 20162305 2016-2017-2《程序设计与数据结构》课程总结
  5. 【数字信号处理】相关系数 ( 相关系数概念解析 | 信号能量常数 | 共轭序列 | 序列在相同时刻的相关性 )
  6. 工商企业管理对计算机水平的要求,对工商企业管理的分析
  7. 济南泉水与城市生态主题 第四届泉水文化论坛第二次会议
  8. 此microsoft fix it不适用于您的操作系统 解决方案
  9. gulpfile php,Laravel利用gulp如何构建前端资源详解
  10. 关于hadoop HDFS进行读写文件操作的问题
  11. 基于公网smtp协议实现邮件服务器
  12. python处理csv文件计算均值_PYTHON实现对CSV文件多维不同单位数据的归一化处理
  13. 使用C++进行SVG开发
  14. javplayer 使用教程_「松下A6系列伺服使用手册」6.出现问题时
  15. 简单迭代法和牛顿迭代法matlab程序设计(含例题)
  16. 贾跃亭个人破产内幕曝光 差一点获得中东土豪投资
  17. setprecision、setw、fixed详解
  18. android 路由跟踪,手机移动端网络路由跟踪探测方式
  19. Android逆向分析案例——某点评APP登陆请求数据解密
  20. 比 Navicat 还要好用,功能还很强大的数据库管理工具!

热门文章

  1. 项目团队中的五种人(之一)
  2. 在行进中开火 Fire and Motion By Joel Spolsky
  3. 表头样式_1分钟学会制作Word两栏、三栏表头
  4. try...catch...finally的陷阱——加锁的线程开发经验分享
  5. android 4.0 屏蔽home键实现
  6. 批评一下 dearbook
  7. Python 处理 CSV/EXCEL 表格文件
  8. 2014.10.1 Form中显示pdf文件
  9. sed命令在文件头部插入文本---BSD和GNU版本通用写法
  10. 用C#把文件转换为XML