【机器学习实验】scikit-learn的主要模块和基本使用

引言

对于一些开始搞机器学习算法有害怕下手的小朋友,该如何快速入门,这让人挺挣扎的。
在从事数据科学的人中,最常用的工具就是R和Python了,每个工具都有其利弊,但是Python在各方面都相对胜出一些,这是因为scikit-learn库实现了很多机器学习算法。

加载数据(Data Loading)

我们假设输入时一个特征矩阵或者csv文件。
首先,数据应该被载入内存中。
scikit-learn的实现使用了NumPy中的arrays,所以,我们要使用NumPy来载入csv文件。
以下是从UCI机器学习数据仓库中下载的数据。

import numpy as np
import urllib
# url with dataset url = "http://archive.ics.uci.edu/ml/machine-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data" # download the file raw_data = urllib.urlopen(url) # load the CSV file as a numpy matrix dataset = np.loadtxt(raw_data, delimiter=",") # separate the data from the target attributes X = dataset[:,0:7] y = dataset[:,8]

我们要使用该数据集作为例子,将特征矩阵作为X,目标变量作为y。

数据归一化(Data Normalization)

大多数机器学习算法中的梯度方法对于数据的缩放和尺度都是很敏感的,在开始跑算法之前,我们应该进行归一化或者标准化的过程,这使得特征数据缩放到0-1范围中。scikit-learn提供了归一化的方法:

from sklearn import preprocessing
# normalize the data attributes
normalized_X = preprocessing.normalize(X)
# standardize the data attributes standardized_X = preprocessing.scale(X)

特征选择(Feature Selection)

在解决一个实际问题的过程中,选择合适的特征或者构建特征的能力特别重要。这成为特征选择或者特征工程。
特征选择时一个很需要创造力的过程,更多的依赖于直觉和专业知识,并且有很多现成的算法来进行特征的选择。
下面的树算法(Tree algorithms)计算特征的信息量:

from sklearn import metrics
from sklearn.ensemble import ExtraTreesClassifier model = ExtraTreesClassifier() model.fit(X, y) # display the relative importance of each attribute print(model.feature_importances_)

算法的使用

scikit-learn实现了机器学习的大部分基础算法,让我们快速了解一下。

逻辑回归

大多数问题都可以归结为二元分类问题。这个算法的优点是可以给出数据所在类别的概率。

from sklearn import metrics
from sklearn.linear_model import LogisticRegression model = LogisticRegression() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted))

结果:

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
intercept_scaling=1, penalty=l2, random_state=None, tol=0.0001)
precision recall f1-score support

   0.0       0.79      0.89      0.84       5001.0       0.74      0.55      0.63       268

avg / total 0.77 0.77 0.77 768

[[447 53]
[120 148]]

朴素贝叶斯

这也是著名的机器学习算法,该方法的任务是还原训练样本数据的分布密度,其在多类别分类中有很好的效果。

from sklearn import metrics
from sklearn.naive_bayes import GaussianNB model = GaussianNB() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted))

结果:

GaussianNB()
precision recall f1-score support

   0.0       0.80      0.86      0.83       5001.0       0.69      0.60      0.64       268

avg / total 0.76 0.77 0.76 768

[[429 71]
[108 160]]

k近邻

k近邻算法常常被用作是分类算法一部分,比如可以用它来评估特征,在特征选择上我们可以用到它。

from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier # fit a k-nearest neighbor model to the data model = KNeighborsClassifier() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted))

结果:

KNeighborsClassifier(algorithm=auto, leaf_size=30, metric=minkowski,
n_neighbors=5, p=2, weights=uniform)
precision recall f1-score support

   0.0       0.82      0.90      0.86       5001.0       0.77      0.63      0.69       268

avg / total 0.80 0.80 0.80 768

[[448 52]
[ 98 170]]

决策树

分类与回归树(Classification and Regression Trees ,CART)算法常用于特征含有类别信息的分类或者回归问题,这种方法非常适用于多分类情况。

from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier # fit a CART model to the data model = DecisionTreeClassifier() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted))

结果:

DecisionTreeClassifier(compute_importances=None, criterion=gini,
max_depth=None, max_features=None, min_density=None,
min_samples_leaf=1, min_samples_split=2, random_state=None,
splitter=best)
precision recall f1-score support

   0.0       1.00      1.00      1.00       5001.0       1.00      1.00      1.00       268

avg / total 1.00 1.00 1.00 768

[[500 0]
[ 0 268]]

支持向量机

SVM是非常流行的机器学习算法,主要用于分类问题,如同逻辑回归问题,它可以使用一对多的方法进行多类别的分类。

from sklearn import metrics
from sklearn.svm import SVC # fit a SVM model to the data model = SVC() model.fit(X, y) print(model) # make predictions expected = y predicted = model.predict(X) # summarize the fit of the model print(metrics.classification_report(expected, predicted)) print(metrics.confusion_matrix(expected, predicted))

结果:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,
kernel=rbf, max_iter=-1, probability=False, random_state=None,
shrinking=True, tol=0.001, verbose=False)
precision recall f1-score support

   0.0       1.00      1.00      1.00       5001.0       1.00      1.00      1.00       268

avg / total 1.00 1.00 1.00 768

[[500 0]
[ 0 268]]

除了分类和回归算法外,scikit-learn提供了更加复杂的算法,比如聚类算法,还实现了算法组合的技术,如Bagging和Boosting算法。

如何优化算法参数

一项更加困难的任务是构建一个有效的方法用于选择正确的参数,我们需要用搜索的方法来确定参数。scikit-learn提供了实现这一目标的函数。
下面的例子是一个进行正则参数选择的程序:

import numpy as np
from sklearn.linear_model import Ridge from sklearn.grid_search import GridSearchCV # prepare a range of alpha values to test alphas = np.array([1,0.1,0.01,0.001,0.0001,0]) # create and fit a ridge regression model, testing each alpha model = Ridge() grid = GridSearchCV(estimator=model, param_grid=dict(alpha=alphas)) grid.fit(X, y) print(grid) # summarize the results of the grid search print(grid.best_score_) print(grid.best_estimator_.alpha)

结果:

GridSearchCV(cv=None,
estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, solver=auto, tol=0.001),
estimator__alpha=1.0, estimator__copy_X=True,
estimator__fit_intercept=True, estimator__max_iter=None,
estimator__normalize=False, estimator__solver=auto,
estimator__tol=0.001, fit_params={}, iid=True, loss_func=None,
n_jobs=1,
param_grid={'alpha': array([ 1.00000e+00, 1.00000e-01, 1.00000e-02, 1.00000e-03,
1.00000e-04, 0.00000e+00])},
pre_dispatch=2*n_jobs, refit=True, score_func=None, scoring=None,
verbose=0)
0.282118955686
1.0

有时随机从给定区间中选择参数是很有效的方法,然后根据这些参数来评估算法的效果进而选择最佳的那个。

import numpy as np
from scipy.stats import uniform as sp_rand from sklearn.linear_model import Ridge from sklearn.grid_search import RandomizedSearchCV # prepare a uniform distribution to sample for the alpha parameter param_grid = {'alpha': sp_rand()} # create and fit a ridge regression model, testing random alpha values model = Ridge() rsearch = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=100) rsearch.fit(X, y) print(rsearch) # summarize the results of the random parameter search print(rsearch.best_score_) print(rsearch.best_estimator_.alpha)

结果:

RandomizedSearchCV(cv=None,
estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=False, solver=auto, tol=0.001),
estimator__alpha=1.0, estimator__copy_X=True,
estimator__fit_intercept=True, estimator__max_iter=None,
estimator__normalize=False, estimator__solver=auto,
estimator__tol=0.001, fit_params={}, iid=True, n_iter=100,
n_jobs=1,
param_distributions={'alpha': <scipy.stats.distributions.rv_frozen object at 0x04B86DD0>},
pre_dispatch=2*n_jobs, random_state=None, refit=True,
scoring=None, verbose=0)
0.282118643885
0.988443794636

小结

我们总体了解了使用scikit-learn库的大致流程,希望这些总结能让初学者沉下心来,一步一步尽快的学习如何去解决具体的机器学习问题。

作者Jason Ding及其出处
GitCafe博客主页(http://jasonding1354.gitcafe.io/)
Github博客主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
百度搜索jasonding1354进入我的博客主页

 ML Experiments

转载于:https://www.cnblogs.com/Justsoso-WYH/p/7784966.html

【机器学习实验】scikit-learn的主要模块和基本使用相关推荐

  1. 机器学习与Scikit Learn学习库

    摘要: 本文介绍机器学习相关的学习库Scikit Learn,包含其安装及具体识别手写体数字案例,适合机器学习初学者入门Scikit Learn. 在我科研的时候,机器学习(ML)是计算机科学领域中最 ...

  2. [转载]Scikit Learn: 在python中机器学习

    原址:http://my.oschina.net/u/175377/blog/84420 目录[-] Scikit Learn: 在python中机器学习 载入示例数据 一个改变数据集大小的示例:数码 ...

  3. Scikit Learn: 在python中机器学习

    Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Ga ...

  4. scikit - learn 做文本分类

    文章来源: https://my.oschina.net/u/175377/blog/84420 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自 ...

  5. Azure机器学习实验

    实验背景 [实验简介] Azure Machine Learning(简称"AML")是微软在其公有云Azure上推出的基于Web使用的一项机器学习服务,机器学习属人工智能的一个分 ...

  6. Azure机器学习入门(三)创建Azure机器学习实验

    在此动手实践中,我们将在Azure机器学习Studio中一步步地开发预测分析模型,首先我们从UCI机器学习库的链接下载普查收入数据集的样本并开始动手实践: http://archive.ics.uci ...

  7. 机器学习实验:使用sklearn的决策树算法对葡萄酒数据集进行分类

    机器学习实验:使用sklearn的决策树算法对葡萄酒数据集进行分类 问题如下: 使用sklearn的决策树算法对葡萄酒数据集进行分类,要求: ①划分训练集和测试集(测试集占20%) ②对测试集的预测类 ...

  8. 【scikit-learn】如何用Python和SciKit Learn 0.18实现神经网络

    本教程的代码和数据来自于 Springboard 的博客教程.本文的作者为 Jose Portilla,他是网络教育平台 Udemy 一门数据科学类课程的讲师. GitHub 链接:https://g ...

  9. python scikit learn 关闭开源_scikit learn 里没有神经网络?

    本教程的代码和数据来自于 Springboard 的博客教程,希望能为你提供帮助.作者为 Jose Portilla,他是网络教育平台 Udemy 一门数据科学类课程的讲师. GitHub 链接:ht ...

最新文章

  1. Jquery性能优化(转自蓝色理想)
  2. 读书笔记 --- [基础知识点] 小结2
  3. WordPress中使主题支持小工具以及添加插件启用函数
  4. java 对象序列化 数组_序列化-将任何对象转换为j中的字节数组
  5. Bootstrap3 弹出提示插件的选项
  6. 理解CSS3属性transition
  7. 财经直播搭建干货分享,系统该如何搭建?整套流程及配套细节说明
  8. 毕设-周报-20150520
  9. 数字图像处理,中值滤波和均值滤波及其改进算法的C++实现
  10. 淘宝大数据,打假新武器
  11. 笔记本电池电量保持在50~55%可延长电池寿命
  12. CF1526C2 Potions (Hard Version) (贪心 + 线段树)
  13. 做自媒体短视频,最简单的赚钱方法,就是做流量收益
  14. 有限等距性质RIP理解
  15. 【Laravel】Laravel使用总结(一)
  16. Jetson设备下使用docker报错的排错过程完整记录,failed to create shim: OCI runtime create failed: container_linux.go:38
  17. 数千亿汽车后市场亟待标准化 车小亮模式极具想象空间
  18. Kotlin第4篇 【Kotlin】进阶视频课程-关东升-专题视频课程
  19. R语言基础之用R语言绘制各类函数图像
  20. SQL Server调用excel文件

热门文章

  1. SVM原理以及Tensorflow 实现SVM分类(附代码)
  2. 一文带你了解目前的“光伏母亲公路” 能照明充电和融雪
  3. Java API —— ArrayList类 Vector类 LinkList类
  4. jquery[学习心得]ajax的注意点
  5. 一道实用linux运维问题的9种shell解答方法!
  6. erlang在mac上安装
  7. Javascript中的单例和模块模式
  8. ext2删除文件恢复笔记
  9. 蓝桥杯 ALGO-47 算法训练 蜜蜂飞舞
  10. [Java] 蓝桥杯ALGO-143 算法训练 字符串变换