目录

  • 一、雷诺分解
  • 二、平均运算的性质
  • 三、雷诺方程的推导
  • 四、脉动运动方程的推导
  • 五、雷诺应力输运方程的推导
  • 六、参考资料

一、雷诺分解

对于湍流而言,其流动变量ϕ\phiϕ具有不规则性,常常将其分解为平均量与脉动量之和,即ϕ=ϕ‾+ϕ′=Φ+ϕ′ϕ=<ϕ>+ϕ′\begin{aligned}\phi&=\overline{\phi}+\phi'=\Phi+\phi '\\\phi&=\left<\phi\right>+\phi'\end{aligned}ϕϕ​=ϕ​+ϕ′=Φ+ϕ′=⟨ϕ⟩+ϕ′​平均量常常有系综平均、时间平均和空间平均三种形式,这里不展开介绍其中的细节,只给出前两种的表达式:

  • 系综平均<ϕ>=∫−∞∞ϕp(ϕ)dϕ.\left<\phi\right>=\int_{-\infty}^{\infty}\phi p\left(\phi\right)\rm d\phi.⟨ϕ⟩=∫−∞∞​ϕp(ϕ)dϕ.其中p(ϕ)p\left(\phi\right)p(ϕ)是概率密度。
  • 时间平均:Φ=ϕ‾=1Δt∫0Δtϕdt.\Phi=\overline{\phi}=\frac{1}{\Delta t}\int_0^{\Delta t}\phi {\rm{d}}t.Φ=ϕ​=Δt1​∫0Δt​ϕdt.

二、平均运算的性质

这里简要列举平均运算(系综平均、时间平均、空间平均)的性质,其对于推导雷诺方程及雷诺应力输运方程至关重要:f‾‾=f‾gf‾‾=g‾f‾g+f‾=g‾+f‾f′‾=0fg‾=f‾g‾+f′g′‾∂f∂x‾=∂f‾∂x∂f∂t‾=∂f‾∂tg′f‾‾=0\begin{aligned}\overline{\overline{f}}&=\overline{f}\\ \overline{g\overline{f}}&=\overline{g}\overline{f}\\\overline{g+f}&=\overline{g}+\overline{f}\\ \overline{f'}&=0 \\ \overline{fg}&=\overline{f}\overline{g}+\overline{f'g'}\\ \overline{\frac{\partial f}{\partial x}}&=\frac{\partial \overline f}{\partial x} \\ \overline{\frac{\partial f}{\partial t}}&=\frac{\partial \overline f}{\partial t} \\ \overline{g'\overline{f}}&=0 \end{aligned}f​​gf​​g+f​f′​fg​∂x∂f​​∂t∂f​​g′f​​​=f​=g​f​=g​+f​=0=f​g​+f′g′​=∂x∂f​​=∂t∂f​​=0​上面这些性质对于系综平均是同样适用的,例如:<g′<f>>=0、<∂f∂x>=∂<f>∂x\left<g'\left<f\right>\right>=0、 \left<\frac{\partial f}{\partial x}\right>=\frac{\partial \left<f\right>}{\partial x}⟨g′⟨f⟩⟩=0、⟨∂x∂f​⟩=∂x∂⟨f⟩​。这些性质是简单的积分运算,推导相对容易,这里只证明其中两项:g′f‾‾=g′‾⋅f‾‾=g′‾⋅f‾=0fg‾=(f‾+f′)(g‾+g′)‾=f‾g‾+f‾g′+f′g‾+f′g′‾=f‾g‾‾+f‾g′‾+f′g‾‾+f′g′‾=f‾g‾+f′g′‾\begin{aligned} \overline{g'\overline{f}}&=\overline{g'}\cdot\overline{{\overline{f}}}\\ &=\overline{g'}\cdot\overline{f}\\ &=0\\ \overline{fg}&=\overline{\left(\overline{f}+f'\right)\left(\overline{g}+g'\right)}\\ &=\overline{\overline{f}\overline{g}+\overline{f}g'+f'\overline{g}+f'g'} \\ &=\overline{\overline{f}\overline{g}}+\overline{\overline{f}g'}+\overline{f'\overline{g}}+\overline{f'g'}\\ &=\overline{f}\overline{g}+\overline{f'g'} \end{aligned}g′f​​fg​​=g′​⋅f​​=g′​⋅f​=0=(f​+f′)(g​+g′)​=f​g​+f​g′+f′g​+f′g′​=f​g​​+f​g′​+f′g​​+f′g′​=f​g​+f′g′​​更为详细的推导可以参考博文:湍流模型(2)——雷诺平均方程。

三、雷诺方程的推导

不可压缩牛顿型流体的NS方程为∂ui∂xi=0(1)\frac{\partial u_i}{\partial x_i}=0 \tag{1}∂xi​∂ui​​=0(1)∂ui∂t+uj∂ui∂xj=−1ρ∂p∂xi+ν∂2ui∂xj∂xj+fi(2)\frac{\partial u_i}{\partial t}+ u_j\frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho}\frac{\partial p}{\partial x_i}+ \nu \frac{\partial^2 u_i}{\partial x_j\partial x_j}+f_i \tag{2} ∂t∂ui​​+uj​∂xj​∂ui​​=−ρ1​∂xi​∂p​+ν∂xj​∂xj​∂2ui​​+fi​(2)在下面的推导中我们暂时不考虑体积力项fif_ifi​,即只考虑∂ui∂t+uj∂ui∂xj=−1ρ∂p∂xi+ν∂2ui∂xj∂xj(2)\frac{\partial u_i}{\partial t}+ u_j\frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho}\frac{\partial p}{\partial x_i}+ \nu \frac{\partial^2 u_i}{\partial x_j\partial x_j} \tag{2} ∂t∂ui​​+uj​∂xj​∂ui​​=−ρ1​∂xi​∂p​+ν∂xj​∂xj​∂2ui​​(2)对公式(1)(1)(1)、(2)(2)(2)作平均运算(系综平均):<∂ui∂xi>=0(3)\left<\frac{\partial u_i}{\partial x_i}\right>=0 \tag{3}⟨∂xi​∂ui​​⟩=0(3) <∂ui∂t>+<uj∂ui∂xj>=<−1ρ∂p∂xi>+<ν∂2ui∂xj∂xj>(4)\left<\frac{\partial u_i}{\partial t}\right>+ \left<u_j\frac{\partial u_i}{\partial x_j}\right> = \left<-\frac{1}{\rho}\frac{\partial p}{\partial x_i}\right>+ \left<\nu \frac{\partial^2 u_i}{\partial x_j\partial x_j}\right> \tag{4} ⟨∂t∂ui​​⟩+⟨uj​∂xj​∂ui​​⟩=⟨−ρ1​∂xi​∂p​⟩+⟨ν∂xj​∂xj​∂2ui​​⟩(4)由平均运算的性质有:<∂ui∂xi>=∂<ui>∂xi=0(5)\left<\frac{\partial u_i}{\partial x_i}\right>=\frac{\partial \left<u_i\right>}{\partial x_i}=0 \tag{5}⟨∂xi​∂ui​​⟩=∂xi​∂⟨ui​⟩​=0(5)同理:
<∂ui∂t>=∂<ui>∂t<−1ρ∂p∂xi>=−1ρ∂<p>∂xi<ν∂2ui∂xj∂xj>=ν∂2<ui>∂xj∂xj\begin{aligned}\left<\frac{\partial u_i}{\partial t}\right>&=\frac{\partial \left<u_i\right>}{\partial t}\\ \left<-\frac{1}{\rho}\frac{\partial p}{\partial x_i}\right>&=-\frac{1}{\rho}\frac{\partial \left<p\right>}{\partial x_i}\\ \left<\nu \frac{\partial^2 u_i}{\partial x_j\partial x_j}\right>&=\nu \frac{\partial^2\left< u_i\right>}{\partial x_j\partial x_j}\\ \end{aligned}⟨∂t∂ui​​⟩⟨−ρ1​∂xi​∂p​⟩⟨ν∂xj​∂xj​∂2ui​​⟩​=∂t∂⟨ui​⟩​=−ρ1​∂xi​∂⟨p⟩​=ν∂xj​∂xj​∂2⟨ui​⟩​​对于<uj∂ui∂xj>\left<u_j\frac{\partial u_i}{\partial x_j}\right>⟨uj​∂xj​∂ui​​⟩则有:<uj∂ui∂xj>=<∂uiuj∂xj−ui∂uj∂xj>=<∂uiuj∂xj>−<ui∂uj∂xj>=<∂uiuj∂xj>=∂<uiuj>∂xj=∂<ui><uj>∂xj+∂<ui′uj′>∂xj=<uj>∂<ui>∂xj+∂<ui′uj′>∂xj\begin{aligned} \left<u_j\frac{\partial u_i}{\partial x_j}\right>&=\left<\frac{\partial u_iu_j}{\partial x_j}-u_i\frac{\partial u_j}{\partial x_j}\right>\\ &=\left<\frac{\partial u_iu_j}{\partial x_j}\right>-\left<u_i\frac{\partial u_j}{\partial x_j}\right>\\ &=\left<\frac{\partial u_iu_j}{\partial x_j}\right>\\ &=\frac{\partial \left<u_iu_j\right>}{\partial x_j}\\ &=\frac{\partial \left<u_i\right>\left<u_j\right>}{\partial x_j}+\frac{\partial \left<u_i'u_j'\right>}{\partial x_j}\\ &=\left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}+\frac{\partial \left<u_i'u_j'\right>}{\partial x_j} \end{aligned}⟨uj​∂xj​∂ui​​⟩​=⟨∂xj​∂ui​uj​​−ui​∂xj​∂uj​​⟩=⟨∂xj​∂ui​uj​​⟩−⟨ui​∂xj​∂uj​​⟩=⟨∂xj​∂ui​uj​​⟩=∂xj​∂⟨ui​uj​⟩​=∂xj​∂⟨ui​⟩⟨uj​⟩​+∂xj​∂⟨ui′​uj′​⟩​=⟨uj​⟩∂xj​∂⟨ui​⟩​+∂xj​∂⟨ui′​uj′​⟩​​上面的推导用到了∂<uj>∂xj=0\frac{\partial \left<u_j\right>}{\partial x_j}=0∂xj​∂⟨uj​⟩​=0、∂uj∂xj=0\frac{\partial u_j}{\partial x_j}=0∂xj​∂uj​​=0、<uiuj>=<ui><uj>+<ui′uj′>\left<u_iu_j\right>= \left<u_i\right>\left<u_j\right>+\left<u_i'u_j'\right>⟨ui​uj​⟩=⟨ui​⟩⟨uj​⟩+⟨ui′​uj′​⟩。整理以上各项可得:∂<ui>∂t+<uj>∂<ui>∂xj+∂<ui′uj′>∂xj=−1ρ∂<p>∂xi+ν∂2<ui>∂xj∂xj\frac{\partial \left<u_i\right>}{\partial t}+ \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}+ \frac{\partial \left<u_i'u_j'\right>}{\partial x_j}= -\frac{1}{\rho}\frac{\partial \left<p\right>}{\partial x_i}+ \nu \frac{\partial^2\left< u_i\right>}{\partial x_j\partial x_j}∂t∂⟨ui​⟩​+⟨uj​⟩∂xj​∂⟨ui​⟩​+∂xj​∂⟨ui′​uj′​⟩​=−ρ1​∂xi​∂⟨p⟩​+ν∂xj​∂xj​∂2⟨ui​⟩​将∂<ui′uj′>∂xj\frac{\partial \left<u_i'u_j'\right>}{\partial x_j}∂xj​∂⟨ui′​uj′​⟩​移到右边即有雷诺方程:∂<ui>∂t+<uj>∂<ui>∂xj=−1ρ∂<p>∂xi+ν∂2<ui>∂xj∂xj−∂<ui′uj′>∂xj(6)\frac{\partial \left<u_i\right>}{\partial t}+ \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}= -\frac{1}{\rho}\frac{\partial \left<p\right>}{\partial x_i}+ \nu \frac{\partial^2\left< u_i\right>}{\partial x_j\partial x_j} -\frac{\partial \left<u_i'u_j'\right>}{\partial x_j}\tag{6}∂t∂⟨ui​⟩​+⟨uj​⟩∂xj​∂⟨ui​⟩​=−ρ1​∂xi​∂⟨p⟩​+ν∂xj​∂xj​∂2⟨ui​⟩​−∂xj​∂⟨ui′​uj′​⟩​(6)式中的−<ui′uj′>-\left<u_i'u_j'\right>−⟨ui′​uj′​⟩ 乘上密度ρ\rhoρ便是雷诺应力−ρ<ui′uj′>-\rho\left<u_i'u_j'\right>−ρ⟨ui′​uj′​⟩,可以写成张量形式:(−ρ<u′2>−ρ<u′v′>−ρ<u′w′>−ρ<u′v′>−ρ<v′2>−ρ<v′w′>−ρ<u′w′>−ρ<v′w′>−ρ<w′2>).\begin{pmatrix} -\rho \left<{u^{\prime 2}} \right>& -\rho \left<{u^{\prime }v^{\prime}} \right>& -\rho \left<{u^{\prime }w^{\prime}}\right>\\ -\rho \left<{u^{\prime }v^{\prime}} \right>& -\rho \left<{v^{\prime 2}}\right> & -\rho \left<{v^{\prime }w^{\prime}}\right> \\ -\rho \left<{u^{\prime }w^{\prime}} \right>& -\rho \left<{v^{\prime }w^{\prime}} \right>& -\rho \left<{w^{\prime 2}}\right> \end{pmatrix}. \quad⎝⎛​−ρ⟨u′2⟩−ρ⟨u′v′⟩−ρ⟨u′w′⟩​−ρ⟨u′v′⟩−ρ⟨v′2⟩−ρ⟨v′w′⟩​−ρ⟨u′w′⟩−ρ⟨v′w′⟩−ρ⟨w′2⟩​⎠⎞​.

四、脉动运动方程的推导

将NS方程(1)(1)(1)、(2)(2)(2)减去雷诺方程(5)(5)(5)、(6)(6)(6),并进行一定的整理即可得到脉动运动方程:∂ui′∂xi=0(7)\frac{\partial u_i'}{\partial x_i}=0 \tag{7}∂xi​∂ui′​​=0(7)∂ui′∂t+<uj>∂ui′∂xj+uj′∂<ui>∂xj=−1ρ∂p′∂xi+ν∂2ui′∂xj∂xj−∂∂xj(ui′uj′−<ui′uj′>)(8)\frac{\partial u_i'}{\partial t}+ \left<u_j\right>\frac{\partial u_i'}{\partial x_j} + u_j'\frac{\partial \left<u_i\right>}{\partial x_j}= -\frac{1}{\rho}\frac{\partial p'}{\partial x_i}+ \nu \frac{\partial^2 u_i'}{\partial x_j\partial x_j} - \frac{\partial}{\partial x_j}\left(u_i'u_j'-\left<u_i'u_j'\right>\right)\tag{8} ∂t∂ui′​​+⟨uj​⟩∂xj​∂ui′​​+uj′​∂xj​∂⟨ui​⟩​=−ρ1​∂xi​∂p′​+ν∂xj​∂xj​∂2ui′​​−∂xj​∂​(ui′​uj′​−⟨ui′​uj′​⟩)(8)下面逐项进行推导:∂ui∂xi−∂<ui>∂xi=∂(ui−<ui>)∂xi=∂ui′∂xi\frac{\partial u_i}{\partial x_i}- \frac{\partial \left<u_i\right>}{\partial x_i}= \frac{\partial \left(u_i-\left<u_i\right>\right)}{\partial x_i}= \frac{\partial u_i'}{\partial x_i}∂xi​∂ui​​−∂xi​∂⟨ui​⟩​=∂xi​∂(ui​−⟨ui​⟩)​=∂xi​∂ui′​​故有:∂ui′∂xi=0(9)\frac{\partial u_i'}{\partial x_i}=0\tag{9}∂xi​∂ui′​​=0(9)同理:∂ui∂t−∂<ui>∂t=∂(ui−<ui>)∂t=∂ui′∂t\frac{\partial u_i}{\partial t}- \frac{\partial \left<u_i\right>}{\partial t}= \frac{\partial \left(u_i-\left<u_i\right>\right)}{\partial t}= \frac{\partial u_i'}{\partial t}∂t∂ui​​−∂t∂⟨ui​⟩​=∂t∂(ui​−⟨ui​⟩)​=∂t∂ui′​​−1ρ∂p∂xi+1ρ∂<p>∂xi=−1ρ∂(p−<p>)∂xi=−1ρ∂p′∂xi-\frac{1}{\rho}\frac{\partial p}{\partial x_i}+ \frac{1}{\rho}\frac{\partial \left<p\right>}{\partial x_i}= -\frac{1}{\rho}\frac{\partial \left(p -\left<p\right>\right)}{\partial x_i}= -\frac{1}{\rho}\frac{\partial p'}{\partial x_i}−ρ1​∂xi​∂p​+ρ1​∂xi​∂⟨p⟩​=−ρ1​∂xi​∂(p−⟨p⟩)​=−ρ1​∂xi​∂p′​ν∂2ui∂xj∂xj−ν∂2<ui>∂xj∂xj=ν∂2(ui−<ui>)∂xj∂xj=ν∂2ui′∂xj∂xj\nu \frac{\partial^2 u_i}{\partial x_j\partial x_j}- \nu \frac{\partial^2\left< u_i\right>}{\partial x_j\partial x_j}= \nu \frac{\partial^2\left(u_i-\left< u_i\right>\right)}{\partial x_j\partial x_j}= \nu \frac{\partial^2 u_i'}{\partial x_j\partial x_j}ν∂xj​∂xj​∂2ui​​−ν∂xj​∂xj​∂2⟨ui​⟩​=ν∂xj​∂xj​∂2(ui​−⟨ui​⟩)​=ν∂xj​∂xj​∂2ui′​​另外:uj∂ui∂xj−<uj>∂<ui>∂xj=(<uj>+uj′)∂(<ui>+ui′)∂xj−<uj>∂<ui>∂xj=<uj>∂<ui>∂xj+<uj>∂ui′∂xj+uj′∂<ui>∂xj+uj′∂ui′∂xj−<uj>∂<ui>∂xj=<uj>∂ui′∂xj+uj′∂<ui>∂xj+uj′∂ui′∂xj=<uj>∂ui′∂xj+uj′∂<ui>∂xj+∂ui′uj′∂xj−ui′∂uj′∂xj=<uj>∂ui′∂xj+uj′∂<ui>∂xj+∂ui′uj′∂xj\begin{aligned} u_j\frac{\partial u_i}{\partial x_j}- \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}&= \left(\left<u_j\right>+u_j'\right)\frac{\partial \left(\left<u_i\right>+u_i'\right)}{\partial x_j}- \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}\\&= \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}+ \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}+ u_j'\frac{\partial u_i'}{\partial x_j}- \left<u_j\right>\frac{\partial \left<u_i\right>}{\partial x_j}\\&= \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}+ u_j'\frac{\partial u_i'}{\partial x_j}\\&= \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}+ \frac{\partial u_i'u_j'}{\partial x_j}- u_i'\frac{\partial u_j'}{\partial x_j}\\&= \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}+ \frac{\partial u_i'u_j'}{\partial x_j} \end{aligned}uj​∂xj​∂ui​​−⟨uj​⟩∂xj​∂⟨ui​⟩​​=(⟨uj​⟩+uj′​)∂xj​∂(⟨ui​⟩+ui′​)​−⟨uj​⟩∂xj​∂⟨ui​⟩​=⟨uj​⟩∂xj​∂⟨ui​⟩​+⟨uj​⟩∂xj​∂ui′​​+uj′​∂xj​∂⟨ui​⟩​+uj′​∂xj​∂ui′​​−⟨uj​⟩∂xj​∂⟨ui​⟩​=⟨uj​⟩∂xj​∂ui′​​+uj′​∂xj​∂⟨ui​⟩​+uj′​∂xj​∂ui′​​=⟨uj​⟩∂xj​∂ui′​​+uj′​∂xj​∂⟨ui​⟩​+∂xj​∂ui′​uj′​​−ui′​∂xj​∂uj′​​=⟨uj​⟩∂xj​∂ui′​​+uj′​∂xj​∂⟨ui​⟩​+∂xj​∂ui′​uj′​​​上面的推导用到了∂uj′∂xj=0\frac{\partial u_j'}{\partial x_j}=0∂xj​∂uj′​​=0。最后雷诺应力项−∂<ui′uj′>∂xj-\frac{\partial \left<u_i'u_j'\right>}{\partial x_j}−∂xj​∂⟨ui′​uj′​⟩​符号变为正号,整理各项可得:∂ui′∂t+<uj>∂ui′∂xj+uj′∂<ui>∂xj+∂ui′uj′∂xj=−1ρ∂p′∂xi+ν∂2ui′∂xj∂xj+∂<ui′uj′>∂xj\frac{\partial u_i'}{\partial t}+ \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}+ \frac{\partial u_i'u_j'}{\partial x_j}= -\frac{1}{\rho}\frac{\partial p'}{\partial x_i}+ \nu \frac{\partial^2 u_i'}{\partial x_j\partial x_j}+ \frac{\partial \left<u_i'u_j'\right>}{\partial x_j}∂t∂ui′​​+⟨uj​⟩∂xj​∂ui′​​+uj′​∂xj​∂⟨ui​⟩​+∂xj​∂ui′​uj′​​=−ρ1​∂xi​∂p′​+ν∂xj​∂xj​∂2ui′​​+∂xj​∂⟨ui′​uj′​⟩​将∂ui′uj′∂xj\frac{\partial u_i'u_j'}{\partial x_j}∂xj​∂ui′​uj′​​移到右边可得∂ui′∂t+<uj>∂ui′∂xj+uj′∂<ui>∂xj=−1ρ∂p′∂xi+ν∂2ui′∂xj∂xj−∂∂xj(ui′uj′−<ui′uj′>)(10)\frac{\partial u_i'}{\partial t}+ \left<u_j\right>\frac{\partial u_i'}{\partial x_j}+ u_j'\frac{\partial \left<u_i\right>}{\partial x_j}= -\frac{1}{\rho}\frac{\partial p'}{\partial x_i}+ \nu \frac{\partial^2 u_i'}{\partial x_j\partial x_j}- \frac{\partial}{\partial x_j}\left(u_i'u_j'-\left<u_i'u_j'\right>\right)\tag{10}∂t∂ui′​​+⟨uj​⟩∂xj​∂ui′​​+uj′​∂xj​∂⟨ui​⟩​=−ρ1​∂xi​∂p′​+ν∂xj​∂xj​∂2ui′​​−∂xj​∂​(ui′​uj′​−⟨ui′​uj′​⟩)(10)

五、雷诺应力输运方程的推导

从脉动运动方程(10)(10)(10)出发,在ui′u_i'ui′​脉动方程上乘以uj′u_j'uj′​,uj′u_j'uj′​脉动方程上乘以ui′u_i'ui′​,两式相加后作平均运算,得到雷诺应力输运方程:∂<ui′uj′>∂t+<uk>∂<ui′uj′>∂xk=−<ui′uk′>∂<uj>∂xk−<uj′uk′>∂<ui>∂xk−1ρ(<uj′∂p′∂xi>+<ui′∂p′∂xj>)+ν<uj′∂2ui′∂xk∂xk+ui′∂2uj′∂xk∂xk>−∂∂xk<ui′uj′uk′>\begin{aligned} \frac{\partial\left<u_i'u_j'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_j'\right>}{\partial x_k}=& -\left<u_i'u_k'\right>\frac{\partial\left<u_j\right>}{\partial x_k} -\left<u_j'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} -\frac{1}{\rho}\left(\left<u_j'\frac{\partial p'}{\partial x_i}\right>+\left<u_i'\frac{\partial p'}{\partial x_j}\right>\right)\\&+ \nu\left<u_j'\frac{\partial^2 u_i'}{\partial x_k\partial x_k}+u_i'\frac{\partial^2 u_j'}{\partial x_k\partial x_k}\right>- \frac{\partial }{\partial x_k}\left<u_i'u_j'u_k'\right> \end{aligned}∂t∂⟨ui′​uj′​⟩​+⟨uk​⟩∂xk​∂⟨ui′​uj′​⟩​=​−⟨ui′​uk′​⟩∂xk​∂⟨uj​⟩​−⟨uj′​uk′​⟩∂xk​∂⟨ui​⟩​−ρ1​(⟨uj′​∂xi​∂p′​⟩+⟨ui′​∂xj​∂p′​⟩)+ν⟨uj′​∂xk​∂xk​∂2ui′​​+ui′​∂xk​∂xk​∂2uj′​​⟩−∂xk​∂​⟨ui′​uj′​uk′​⟩​下面逐项进行推导:

  • (1)<uj′∂ui′∂t+ui′∂uj′∂t>=<∂ui′uj′∂t>=∂<ui′uj′>∂t\left<u_j'\frac{\partial u_i'}{\partial t} +u_i'\frac{\partial u_j'}{\partial t}\right>= \left<\frac{\partial u_i'u_j'}{\partial t}\right>= \frac{\partial \left<u_i'u_j'\right>}{\partial t}⟨uj′​∂t∂ui′​​+ui′​∂t∂uj′​​⟩=⟨∂t∂ui′​uj′​​⟩=∂t∂⟨ui′​uj′​⟩​

  • (2)下面已将原式的jjj替换为kkk以符合爱因斯坦求和约定
    uj′<uk>∂ui′∂xk+ui′<uk>∂uj′∂xk=<uk>∂ui′uj′∂xku_j'\left<u_k\right>\frac{\partial u_i'}{\partial x_k} +u_i'\left<u_k\right>\frac{\partial u_j'}{\partial x_k} =\left<u_k\right>\frac{\partial u_i'u_j'}{\partial x_k}uj′​⟨uk​⟩∂xk​∂ui′​​+ui′​⟨uk​⟩∂xk​∂uj′​​=⟨uk​⟩∂xk​∂ui′​uj′​​取时间平均运算有:
    <<uk>∂ui′uj′∂xk>=<uk><∂ui′uj′∂xk>=<uk>∂<ui′uj′>∂xk\left<\left<u_k\right>\frac{\partial u_i'u_j'}{\partial x_k}\right> =\left<u_k\right>\left<\frac{\partial u_i'u_j'}{\partial x_k}\right> =\left<u_k\right>\frac{\partial \left<u_i'u_j'\right>}{\partial x_k}⟨⟨uk​⟩∂xk​∂ui′​uj′​​⟩=⟨uk​⟩⟨∂xk​∂ui′​uj′​​⟩=⟨uk​⟩∂xk​∂⟨ui′​uj′​⟩​

  • (3)下面也已将原式的jjj替换为kkk
    <uj′uk′∂<ui>∂xk>+<ui′uk′∂<uj>∂xk>=<uj′uk′><∂<ui>∂xk>+<ui′uk′><∂<uj>∂xk>=<uj′uk′>∂<ui>∂xk+<ui′uk′>∂<uj>∂xk\begin{aligned} \left<u_j'u_k'\frac{\partial \left<u_i\right>}{\partial x_k}\right>+ \left<u_i'u_k'\frac{\partial \left<u_j\right>}{\partial x_k}\right>&= \left<u_j'u_k'\right>\left<\frac{\partial \left<u_i\right>}{\partial x_k}\right>+ \left<u_i'u_k'\right>\left<\frac{\partial \left<u_j\right>}{\partial x_k}\right>\\&= \left<u_j'u_k'\right>\frac{\partial \left<u_i\right>}{\partial x_k}+ \left<u_i'u_k'\right>\frac{\partial \left<u_j\right>}{\partial x_k} \end{aligned}⟨uj′​uk′​∂xk​∂⟨ui​⟩​⟩+⟨ui′​uk′​∂xk​∂⟨uj​⟩​⟩​=⟨uj′​uk′​⟩⟨∂xk​∂⟨ui​⟩​⟩+⟨ui′​uk′​⟩⟨∂xk​∂⟨uj​⟩​⟩=⟨uj′​uk′​⟩∂xk​∂⟨ui​⟩​+⟨ui′​uk′​⟩∂xk​∂⟨uj​⟩​​

  • (4)
    <−uj′ρ∂p′∂xi>+<−ui′ρ∂p′∂xj>=−1ρ(<uj′∂p′∂xi>+<ui′∂p′∂xj>)\left<-\frac{u_j'}{\rho}\frac{\partial p'}{\partial x_i}\right>+ \left<-\frac{u_i'}{\rho}\frac{\partial p'}{\partial x_j}\right>= -\frac{1}{\rho}\left(\left<u_j'\frac{\partial p'}{\partial x_i}\right>+\left<u_i'\frac{\partial p'}{\partial x_j}\right>\right)⟨−ρuj′​​∂xi​∂p′​⟩+⟨−ρui′​​∂xj​∂p′​⟩=−ρ1​(⟨uj′​∂xi​∂p′​⟩+⟨ui′​∂xj​∂p′​⟩)

  • (5)
    <νuj′∂2ui′∂xk∂xk>+<νui′∂2uj′∂xk∂xk>=ν<uj′∂2ui′∂xk∂xk+ui′∂2uj′∂xk∂xk>\left<\nu u_j'\frac{\partial^2 u_i'}{\partial x_k\partial x_k}\right>+ \left<\nu u_i'\frac{\partial^2 u_j'}{\partial x_k\partial x_k}\right> =\nu\left<u_j'\frac{\partial^2 u_i'}{\partial x_k\partial x_k}+u_i'\frac{\partial^2 u_j'}{\partial x_k\partial x_k}\right>⟨νuj′​∂xk​∂xk​∂2ui′​​⟩+⟨νui′​∂xk​∂xk​∂2uj′​​⟩=ν⟨uj′​∂xk​∂xk​∂2ui′​​+ui′​∂xk​∂xk​∂2uj′​​⟩

  • (6)下面已将原式的jjj替换为kkk
    ∂ui′uj′∂xj=ui′∂uj′∂xj+uj′∂ui′∂xj=uj′∂ui′∂xj=uk′∂ui′∂xk\frac{\partial u_i'u_j'}{\partial x_j}= u_i'\frac{\partial u_j'}{\partial x_j}+ u_j'\frac{\partial u_i'}{\partial x_j}= u_j'\frac{\partial u_i'}{\partial x_j}= u_k'\frac{\partial u_i'}{\partial x_k}∂xj​∂ui′​uj′​​=ui′​∂xj​∂uj′​​+uj′​∂xj​∂ui′​​=uj′​∂xj​∂ui′​​=uk′​∂xk​∂ui′​​故
    uj′uk′∂ui′∂xk+ui′uk′∂uj′∂xk=uj′uk′∂ui′∂xk+ui′uk′∂uj′∂xk+ui′uj′∂uk′∂xk=uj′uk′∂ui′∂xk+ui′∂uj′uk′∂xk=∂ui′uj′uk′∂xk\begin{aligned} u_j'u_k'\frac{\partial u_i'}{\partial x_k}+ u_i'u_k'\frac{\partial u_j'}{\partial x_k}&= u_j'u_k'\frac{\partial u_i'}{\partial x_k}+ u_i'u_k'\frac{\partial u_j'}{\partial x_k}+ u_i'u_j'\frac{\partial u_k'}{\partial x_k}\\&= u_j'u_k'\frac{\partial u_i'}{\partial x_k}+ u_i'\frac{\partial u_j'u_k'}{\partial x_k}\\&= \frac{\partial u_i'u_j'u_k'}{\partial x_k} \end{aligned}uj′​uk′​∂xk​∂ui′​​+ui′​uk′​∂xk​∂uj′​​​=uj′​uk′​∂xk​∂ui′​​+ui′​uk′​∂xk​∂uj′​​+ui′​uj′​∂xk​∂uk′​​=uj′​uk′​∂xk​∂ui′​​+ui′​∂xk​∂uj′​uk′​​=∂xk​∂ui′​uj′​uk′​​​取时间平均运算得<∂ui′uj′uk′∂xk>=∂<ui′uj′uk′>∂xk\left<\frac{\partial u_i'u_j'u_k'}{\partial x_k}\right>= \frac{\partial \left<u_i'u_j'u_k'\right>}{\partial x_k}⟨∂xk​∂ui′​uj′​uk′​​⟩=∂xk​∂⟨ui′​uj′​uk′​⟩​上面的推导应用了∂uj′∂xj=0\frac{\partial u_j'}{\partial x_j}=0∂xj​∂uj′​​=0、∂uk′∂xk=0\frac{\partial u_k'}{\partial x_k}=0∂xk​∂uk′​​=0,即式(9)(9)(9)。

  • (7)下面已将原式的jjj替换为kkk
    <uj′∂<ui′uk′>∂xk>+<ui′∂<uj′uk′>∂xk>=<uj′><∂<ui′uk′>∂xk>+<ui′><∂<uj′uk′>∂xk>=0\begin{aligned} \left<u_j'\frac{\partial \left<u_i'u_k'\right>}{\partial x_k}\right> +\left<u_i'\frac{\partial \left<u_j'u_k'\right>}{\partial x_k}\right>&= \left<u_j'\right>\left<\frac{\partial \left<u_i'u_k'\right>}{\partial x_k}\right> +\left<u_i'\right>\left<\frac{\partial \left<u_j'u_k'\right>}{\partial x_k}\right> =0 \end{aligned}⟨uj′​∂xk​∂⟨ui′​uk′​⟩​⟩+⟨ui′​∂xk​∂⟨uj′​uk′​⟩​⟩​=⟨uj′​⟩⟨∂xk​∂⟨ui′​uk′​⟩​⟩+⟨ui′​⟩⟨∂xk​∂⟨uj′​uk′​⟩​⟩=0​整理以上各项便可以得到雷诺应力输运方程∂<ui′uj′>∂t+<uk>∂<ui′uj′>∂xk=−<ui′uk′>∂<uj>∂xk−<uj′uk′>∂<ui>∂xk−1ρ(<uj′∂p′∂xi>+<ui′∂p′∂xj>)+ν<uj′∂2ui′∂xk∂xk+ui′∂2uj′∂xk∂xk>−∂∂xk<ui′uj′uk′>(11)\begin{aligned} \frac{\partial\left<u_i'u_j'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_j'\right>}{\partial x_k}=& -\left<u_i'u_k'\right>\frac{\partial\left<u_j\right>}{\partial x_k} -\left<u_j'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k} -\frac{1}{\rho}\left(\left<u_j'\frac{\partial p'}{\partial x_i}\right>+\left<u_i'\frac{\partial p'}{\partial x_j}\right>\right)\\&+ \nu\left<u_j'\frac{\partial^2 u_i'}{\partial x_k\partial x_k}+u_i'\frac{\partial^2 u_j'}{\partial x_k\partial x_k}\right>- \frac{\partial }{\partial x_k}\left<u_i'u_j'u_k'\right> \end{aligned}\tag{11}∂t∂⟨ui′​uj′​⟩​+⟨uk​⟩∂xk​∂⟨ui′​uj′​⟩​=​−⟨ui′​uk′​⟩∂xk​∂⟨uj​⟩​−⟨uj′​uk′​⟩∂xk​∂⟨ui​⟩​−ρ1​(⟨uj′​∂xi​∂p′​⟩+⟨ui′​∂xj​∂p′​⟩)+ν⟨uj′​∂xk​∂xk​∂2ui′​​+ui′​∂xk​∂xk​∂2uj′​​⟩−∂xk​∂​⟨ui′​uj′​uk′​⟩​(11)

进一步整理
<uj′∂p′∂xi>+<ui′∂p′∂xj>=<∂uj′p′∂xi−p′∂uj′∂xi>+<∂ui′p′∂xj−p′∂ui′∂xj>=<∂uj′p′∂xi>−<p′∂uj′∂xi>+<∂ui′p′∂xj>−<p′∂ui′∂xj>=(∂<uj′p′>∂xi+∂<ui′p′>∂xj)−<p′(∂uj′∂xi+∂ui′∂xj)>ν<uj′∂2ui′∂xk∂xk+ui′∂2uj′∂xk∂xk>=ν<∂∂xk(ui′∂uj′∂xk)+∂∂xk(uj′∂ui′∂xk)>−2ν<∂ui′∂xk∂uj′∂xk>=ν∂2<ui′uj′>∂xk∂xk−2ν<∂ui′∂xk∂uj′∂xk>\begin{aligned} \left<u_j'\frac{\partial p'}{\partial x_i}\right> +\left<u_i'\frac{\partial p'}{\partial x_j}\right>&= \left<\frac{\partial u_j'p'}{\partial x_i}-p'\frac{\partial u_j'}{\partial x_i}\right>+ \left<\frac{\partial u_i'p'}{\partial x_j}-p'\frac{\partial u_i'}{\partial x_j}\right>\\&= \left<\frac{\partial u_j'p'}{\partial x_i}\right> -\left<p'\frac{\partial u_j'}{\partial x_i}\right> +\left<\frac{\partial u_i'p'}{\partial x_j}\right> -\left<p'\frac{\partial u_i'}{\partial x_j}\right>\\&=\left(\frac{\partial \left<u_j'p'\right>}{\partial x_i}+\frac{\partial \left<u_i'p'\right>}{\partial x_j}\right) -\left<p'\left(\frac{\partial u_j'}{\partial x_i}+\frac{\partial u_i'}{\partial x_j}\right)\right>\\ \nu\left<u_j'\frac{\partial^2 u_i'}{\partial x_k\partial x_k}+u_i'\frac{\partial^2 u_j'}{\partial x_k\partial x_k}\right>&= \nu\left<\frac{\partial}{\partial x_k}\left(u_i'\frac{\partial u_j'}{\partial x_k}\right)+\frac{\partial}{\partial x_k}\left(u_j'\frac{\partial u_i'}{\partial x_k}\right)\right> -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_j'}{\partial x_k}\right>\\&= \nu\frac{\partial^2\left<u_i'u_j'\right>}{\partial x_k\partial x_k} -2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_j'}{\partial x_k}\right> \end{aligned}⟨uj′​∂xi​∂p′​⟩+⟨ui′​∂xj​∂p′​⟩ν⟨uj′​∂xk​∂xk​∂2ui′​​+ui′​∂xk​∂xk​∂2uj′​​⟩​=⟨∂xi​∂uj′​p′​−p′∂xi​∂uj′​​⟩+⟨∂xj​∂ui′​p′​−p′∂xj​∂ui′​​⟩=⟨∂xi​∂uj′​p′​⟩−⟨p′∂xi​∂uj′​​⟩+⟨∂xj​∂ui′​p′​⟩−⟨p′∂xj​∂ui′​​⟩=(∂xi​∂⟨uj′​p′⟩​+∂xj​∂⟨ui′​p′⟩​)−⟨p′(∂xi​∂uj′​​+∂xj​∂ui′​​)⟩=ν⟨∂xk​∂​(ui′​∂xk​∂uj′​​)+∂xk​∂​(uj′​∂xk​∂ui′​​)⟩−2ν⟨∂xk​∂ui′​​∂xk​∂uj′​​⟩=ν∂xk​∂xk​∂2⟨ui′​uj′​⟩​−2ν⟨∂xk​∂ui′​​∂xk​∂uj′​​⟩​
得:
∂<ui′uj′>∂t+<uk>∂<ui′uj′>∂xk⏟Cij=−<ui′uk′>∂<uj>∂xk−<uj′uk′>∂<ui>∂xk⏟Pij+<p′ρ(∂uj′∂xi+∂ui′∂xj)>⏟Φij−∂∂xk(<p′ui′>ρδjk+<p′uj′>ρδik+<ui′uj′uk′>−ν∂<ui′uj′>∂xk)⏟Dij−2ν<∂ui′∂xk∂uj′∂xk>⏟Eij\begin{aligned} &\underset{C_{ij}}{\underbrace{\frac{\partial\left<u_i'u_j'\right>}{\partial t}+ \left<u_k\right>\frac{\partial\left<u_i'u_j'\right>}{\partial x_k}} }= \underset{P_{ij}}{\underbrace{-\left<u_i'u_k'\right>\frac{\partial\left<u_j\right>}{\partial x_k} -\left<u_j'u_k'\right>\frac{\partial\left<u_i\right>}{\partial x_k}}} + \underset{\Phi_{ij}}{\underbrace{\left<\frac{p'}{\rho}\left(\frac{\partial u_j'}{\partial x_i}+\frac{\partial u_i'}{\partial x_j}\right)\right>}} \\& -\underset{D_{ij}}{\underbrace{\frac{\partial}{\partial x_k} \left( \frac{\left<p'u_i'\right>}{\rho}\delta_{jk}+ \frac{\left<p'u_j'\right>}{\rho}\delta_{ik}+ \left<u_i'u_j'u_k'\right>- \nu\frac{\partial \left<u_i'u_j'\right>}{\partial x_k} \right) }} -\underset{E_{ij}}{\underbrace{2\nu\left<\frac{\partial u_i'}{\partial x_k}\frac{\partial u_j'}{\partial x_k}\right>}} \end{aligned}​Cij​∂t∂⟨ui′​uj′​⟩​+⟨uk​⟩∂xk​∂⟨ui′​uj′​⟩​​​=Pij​−⟨ui′​uk′​⟩∂xk​∂⟨uj​⟩​−⟨uj′​uk′​⟩∂xk​∂⟨ui​⟩​​​+Φij​⟨ρp′​(∂xi​∂uj′​​+∂xj​∂ui′​​)⟩​​−Dij​∂xk​∂​(ρ⟨p′ui′​⟩​δjk​+ρ⟨p′uj′​⟩​δik​+⟨ui′​uj′​uk′​⟩−ν∂xk​∂⟨ui′​uj′​⟩​)​​−Eij​2ν⟨∂xk​∂ui′​​∂xk​∂uj′​​⟩​​​

六、参考资料

《湍流理论与模拟》第二版⋅\cdot⋅张兆顺、崔桂香、许春晓、黄伟希

雷诺方程、脉动运动方程及雷诺应力输运方程的推导相关推荐

  1. 湍动能耗散率ε输运方程的推导

    湍动能耗散率ε输运方程的推导 一.脉动运动方程 二.湍动能耗散率输运方程的推导 三.湍动能耗散率输运方程各项解析 四.参考资料 一.脉动运动方程 脉动运动方程的推导可以参考博主的另一篇博文<雷诺 ...

  2. 【Fluent】雷诺方程:推导与求解(附MATLAB代码)

    目录 引言 雷诺方程的推导 雷诺方程的解 雷诺方程的推广 有限体积法 引言 雷诺方程,即湍流的平均运动方程,所属黏性不可压缩流体动力学,从Navier-Stokes方程派生,是经典润滑理论的基本方程之 ...

  3. matlab 雷诺,matlab求解雷诺方程

    而边界元法所用的 函数在求解域内完全满足基本方程,但是在边界上则近似的满足边界条件.一.雷诺方程的数值解法 根据边界条件求解雷诺方程,这在数学上称为边值问题...... 针对球轴承雷诺方程求解困难的问 ...

  4. matlab雷诺曲线,多重网格法求解雷诺方程的MATLAB编程 - 程序语言 - 小木虫 - 学术 科研 互动社区...

    这是MATLAB有限差分法求解雷诺方程,可以参考下.希望对你有用 function [Fx,Fy]=FDM_circular(X,Y,X_dot,Y_dot) Fx=0; Fy=0; epsilon= ...

  5. 多重网格算法matlab程序,多重网格法求解雷诺方程.pdf

    多重网格法求解雷诺方程 学兔兔 第2期(总第177期) 机 械 工 程 与 自动 化 NO.2 2013年4月 MECHAN1CAL ENGINEERING & AUT()MATl()N Ap ...

  6. 坎蒂雷赋权法 matlab,多重网格法求解雷诺方程的MATLAB编程

    这是MATLAB有限差分法求解雷诺方程,可以参考下.希望对你有用 function [Fx,Fy]=FDM_circular(X,Y,X_dot,Y_dot) Fx=0; Fy=0; epsilon= ...

  7. matlab油膜压力程序,编的关于雷诺方程求解油膜压力的程序无法运行

    程序是基于活塞环-缸套润滑模型的雷诺方程求解,采用有限差分法迭代求解,但程序无法在command window界面运行,求大家帮忙看一下 ita1=0.8*10^-6; ita2=0.4*10-6; ...

  8. 平均动能K输运方程的推导

    平均动能K输运方程的推导 一.相关定义 二.运算规则 三.推导过程 四.说明 五.参考资料 一.相关定义 雷诺分解可定义为 u = U + u ′ v = V + v ′ w = W + w ′ p ...

  9. fortran求解雷诺方程_方程的计算机处理94(5)_Cvs

    计算机语言运用--数值计算9-方程的计算机处理94(5)_Cvs 计算机:电子线路组成的计算机器.人与计算机则是通过计算机语言-符号系统说给计算机听而交流. 计算机语言有低级语言-机器语言.汇编.高级 ...

  10. matlab雷诺曲线,关于用有限差分法解雷诺方程

    这是我编写的程序,希望对你有用处! function [Fx,Fy]=FDM_circular(X,Y,X_dot,Y_dot) Fx=0; Fy=0; epsilon=0.6; L=0.03; d= ...

最新文章

  1. python中基本程序结构_关于Python 程序格式框架的描述,正确的是( )
  2. delete []实现机制
  3. 微信小程序自带地图_【小程序】微信小程序之地图功能
  4. MySQL数据库中常见的日志文件汇总!
  5. mysql全局变量之max_connections max_user_connections详解
  6. 编译原理(二)之语法分析
  7. eclipse 配置Maven问题解决办法:新建maven工程时报错:Could not resolve archetype org.apache.maven.archetypes .
  8. qt设置开机启动动画_Qt实现程序启动动画
  9. javascript连接数据库
  10. java运用kmeans算法进行聚类
  11. 无人驾驶到底怎么赚钱?很现实,八仙过海,各显神通
  12. 洛谷 P3388 【模板】割点(割顶) 根+非根+dfn[]+low[]+不一样的Tarjan算法
  13. python生成中文、字母、数字等字符图片
  14. 关于学习如何组装基于F4V3S飞控的竞速穿越机
  15. MacOS任意降级(完美教程)
  16. jquery.nicescroll.js 美化滚动条
  17. 蒲公英 · JELLY技术周刊 Vol.22: npm i react-router@6.0.0-beta.0
  18. Centos 文件和目录访问权限设置
  19. web4(css3)
  20. 华为手机视频解码首屏时延比较大的问题

热门文章

  1. 软件研发软件基础设施的建设
  2. pascal-5i 数据集
  3. 常用的控件样式风格设置(qss)——QtWidgets
  4. 区位码,国标码,交换码,内码,外码
  5. 【设计模式】-工厂模式->工厂方法模式(源码与类图解析)
  6. mongodb导出csv文件到vcf
  7. 参考文献引用格式实例
  8. Python爬虫之起点中文网完本小说
  9. displaytag.properties
  10. 系统集成项目管理工程师和信息系统项目管理师的区别