1·器件的筛选与检测

动手准备元器件之前,最好对照电路原理图列出所需元器件的清单。为了保证在试制的过程中不浪费时间,减少差错,同时也保证制成后的装置能长期稳定地工作,待所有元器件都备齐后,还必须对其筛选检测。

  在正规的工业化生产中,都设有专门的元器件筛选检测车间,备有许多通用和专用的筛选检测装备和仪器,但对于业余电子爱好者来说,不可能具备这些条件,即使如此,也绝不可以放弃对元器件的筛选和检测工作,因为许多电子爱好者所用的电子元器件是邮购来的,其中有正品,也有次品,更多的是业余品或利用品,如在安装之前不对它们进行筛选检测,一旦焊入印刷电路板上,发现电路不能正常工作,再去检查,不仅浪费很多时间和精力,而且拆来拆去很容易损坏元件及印刷电路板。

  ⑴外观质量检查

  拿到一个电子元器件之后,应看其外观有无明显损坏。如变压器,看其所有引线有否折断,外表有无锈蚀,线包、骨架有无破损等。如三极管,看其外表有无破损,引脚有无折断或锈蚀,还要检查一下器件上的型号是否清晰可辨。对于电位器、可变电容器之类的可调元件,还要检查在调节范围内,其活动是否平滑、灵活,松紧是否合适,应无机械噪声,手感好,并保证各触点接触良好。

  各种不同的电子元器件都有自身的特点和要求,各位爱好者平时应多了解一些有关各元件的性能和参数、特点,积累经验。

  ⑵电气性能的筛选

  要保证试制的电子装置能够长期稳定地通电工作,并且经得起应用环境和其它可能因素的考验,对电子元器件的筛选是必不可少的一道工序。所谓筛选,就是对电子元器件施加一种应力或多种应力试验,暴露元器件的固有缺陷而不破坏它的完整性。筛选的理论是:如果试验及应力等级选择适当,劣质品会失效,而优良品则会通过。人们在长期的生产实践中发现新制造出来的电子元器件,在刚投入使用的时候,一般失效率较高,叫做早期失效,经过早期失效后,电子元器件便进入了正常的使用期阶段,一般来说,在这一阶段中,电子元器件的失效率会大大降低。过了正常使用阶段,电子元器件便进入了耗损老化期阶段,那将意味着寿终正寝。这个规律,恰似一条浴盆曲线,人们称它为电子元器件的效能曲线,如图1所示。

  电子元器件失效的原因,是由于在设计和生产时所选用的原材料或工艺措施不当而引起的。元器件的早期失效十分有害,但又不可避免。因此,人们只能人为地创造早期工作条件,从而在制成产品前就将劣质品剔除,让用于产品制作的元器件一开始就进入正常使用阶段,减少失效,增加其可靠性。

  在正规的电子工厂里,采用的老化筛选项目一般有:高温存贮老化;高低温循环老化;高低温冲击老化和高温功率老化等。其中高温功率老化是给试验的电子元器件通电,模拟实际工作条件,再加上+80℃-+180℃的高温经历几个小时,它是一种对元器件多种潜在故障都有检验作用的有效措施,也是目前采用得最多的一种方法。对于业余爱好者来说,在单件电子制作过程中,是不太可能采取这些方法进行老化检测的,在大多数情况下,采用了自然老化的方式。例如使用前将元器件存放一段时间,让电子元器件自然地经历夏季高温和冬季低温的考验,然后再来检测它们的电性能,看是否符合使用要求,优存劣汰。对于一些急用的电子元器件,也可采用简易电老化方式,可采用一台输出电压可调的脉动直流电源,使加在电子元器件两端的电压略高于元件额定值的工作电压,调整流过元器件的电流强度,使其功率为1.5-2倍额定功率,通电几分钟甚至更长时间,利用元器件自身的特性而发热升温,完成简易老化过程。

  ⑶元器件的检测

  经过外观检查以及老化处理后的电子元器件,还必须通过对其电气性能与技术参数地测量,以确定其优劣,剔除那些已经失效的元器件。当然,对于不同的电子元器件应有不同的测量仪器,但对于业余电子爱好者来说,一般不具备专用电子测量仪器的条件,但起码应有一块万用电表,利用万用电表可以对一些常用的电子元器件进行粗略检测。各种电子元器件涉及到的电性能参数很多,我们要根据业余制作牵涉到的必须要弄清楚的有关参数进行检测,而不必对该元器件的所有参数都一一检测。下面例举几种基本元器件的检测。

  ①电阻器。它是所有电子装置中应用最为广泛的一种元件,也是最便宜的电子元件之一。它是一种线性元件,在电路中的主要用途有:限流、降压、分压、分流、匹配、负载、阻尼、取样等。

  检测该元件时,主要看它的标称阻值与实际测量阻值的偏差程度。在大量的生产中,由于加工过程中各道工序对电阻器的作用,电阻器的实际值不可能做到与它的标称值完全一致,因此其阻值具有离散性,为了便于管理和组织生产,工程上按照使用的需要,给出了允许偏差值,如±5%、±10%、±20%。再加上万用电表检测电阻器时的误差,一般要求其误差不超过允许偏差的10%即认为合格。同时亦可通过外观检查综合判断其优劣。

  ②电容器。电容器也是电子装置中用得最多的电子元器件之一。它的质量好坏直接影响到整机的性能,同时也是容易失效的元件。在检查电容器时,如果电解电容器的贮存期超过了三年,可以认为该元件已经失效。有些电容器上没有出厂年限标志,外观则完好无损,肉眼很难判断出它的质量问题,因此就必须要对它进行检测。

  电容器在电路中担任隔直、滤波、旁路、耦合、中和、退耦、调谐、振荡等。它的常见故障有击穿、漏电、失效(干涸)。用万用电表的欧姆档检查电容器是利用了电容器能够充放电原理进行的,这时应选用欧姆档的最高量程(R×1kΩ或R×10kΩ)来测量。如图2所示。当万用电表的两根表棒与电容器的两引脚相接时,表针先向顺时间方向偏转一个角度,此时称为电容器的充电,当充电到一定程度时,电容器又开始放电,此时万用电表的指针便返回到∞位置。在测量过程中,表针摆动的角度越大,说明所检测的电容器容量越大。表针返回后越接近∞处,说明所检测的电容器漏电越小,即所检测的电容器的质量越高。

  测量电解电容器时,由于其引脚有正、负极之分,应将红表棒接电容器的负极,黑表棒接电容器的正极,这样测量出来的漏电电阻才是正确的。反接时一般漏电电阻要比正接时小,利用这一点,还可判断出无极性标志的电解电容器的极性。如果电容器的容量太小,如在4700P以下,就只能检查它是否漏电或击穿,如果在测量中,表针摆动一下回不到∞处,而是停留在0-∞处的中间某一位置上,说明该电容器漏电严重;也可采取图3所示的办法。在万用电表与被测小电容器之间加装一只NPN型硅三极管,要求其β值大于100,集电极-发射极之间的耐压应大于25V,ICEO越小越好。被测电容器接到A、B两端。由于三极管VT的电流放大作用,较小容量的电容器也能引起表针较大幅度的摆动,然后返回到∞位置,如不能返回到∞处的,则可估测出漏电电阻。

  对于可变电容器、拉线电容器,亦可用万用电表检测出它们有否碰片或漏电、短路等。

  ③电感器。电感器是一种非线性元件,可以储存磁能。由于通过电感的电流值不能突变,所以,电感对直流电流短路,对突变的电流呈高阻态。电感器在电路中的基本用途有:扼流、交流负载、振荡、陷波、调谐、补偿、偏转等。利用万用电表对其进行检测时,即只能判断出它的直流电阻值,如果已经标明了数值的电感器,只要其直流电阻值大致符合,即可视为合格。

  ④晶体二极管。晶体二极管是一种非线性器件,它的正、反两个方向的电阻值相差悬殊,这就是二极管的单向导电性。在电路中,利用这一特性,可以作整流、检波、箝位、限幅、阻尼、隔离等。

  用万用电表测量二极管时,可选用欧姆档R×1kΩ。由于二极管具有单向导电性,它的正、反向电阻是不相等的,两者阻值相差越大越好。对于常用的小功率二极管,反向电阻应比正向电阻大数百倍以上。用红表棒接二极管的正极,黑表棒接它的负极,测得的是反向电阻。反之,红表棒接二极管的负极,黑表棒接它的正极,测得的是正向电阻。诸二极管的正向电阻一般在100Ω-1kΩ左右;硅二极管的正向电阻一般在几百欧至几千欧。如果测得它的正、反向电阻都是无穷大,说明该二极管内部已开路;如果它的正、反向电阻均为0,说明二极管内部已短路;如果它的正、反向电阻相差无几,说明二极管的性能变差失效。出现以上三种情况的二极管均不能使用。

  ⑤晶体三极管。三极管是电子装置中的重要元件,它的质量优劣直接关系到系统工作的可靠性和稳定性,因此,它是最需要进行老化筛选的元件之一。已知一个三极管的型号和管脚排列,可采用如下简易测试法来判断它的性能。应该注意的是:对一般小功率低压三极管,不宜采用R×10kΩ档进行测试,以免表内的高电压损坏三极管。

  在检查三极管的穿透电流大小时,可采用图4所示的测量法,图中被测的是NPN型三极管,如果是NPN型三极管,其测试棒应与管脚对调。万用电表的量程一般选用R×100或R×1kΩ档,要求测得的电阻值越大越好,对于中功率的锗管,此值应大于数千欧;对于硅管,此值应大于数百千欧。如果所测得的数值过小,说明管子的穿透电流大,管子的性能不好。如果测量时万用电表的表针摇摆不定,说明管子的稳定性很差。如果测得的阻值接近于零,说明管子内部已击穿短路,不能使用。

  在检查三极管的放大性能β值时,可以采用图5所示的估测法。如果被测管是NPN型,可按此方法测试,如果被测管是PNP则按虚线方式连接。测量时表针应向右偏转,其偏转角度越大,说明管子的放大倍数β越大。如果加上电阻R之后表针变化的角度不大或根本不变,则说明管子的放大作用很差或已经损坏。其R的阻值可在51kΩ-100kΩ范围内选取。也可能利用人手的电阻,用手捏位管子的c-b两极,但不要使它们短路,以手的皮肤电阻代替R。

  对于结型场效应管,已知型号与管脚,如果用万用电表测G(栅极)和S(源极)之间,G与D(漏极)之间没有PN结电阻,说明该管子已坏。用万用电表的R×1kΩ档,其表棒分别接在场效应管的S极和D极上,然后用手碰触管子和G极,若表针不动,说明管子不好;若表针有较大幅度的摆动,说明管子可用。结型场效应管电路符号与引脚如图6所示。

  以上所述的管子测量方法虽是粗略的,但一般都切实可行,如欲进行更严格的测量筛选,则宜使用专门的测试仪器。

  ⑥集成电路。集成电路的门类、品种很多,在业余条件下,电子爱好者似乎没有特别的测试方法,采用万用电表进行测量时,只能对照已知的集成块引脚数据,用测得的数据与已知的数据进行对比,从而判断出被测集成块的好坏。也可以搭一个简单的试验电路,将集成块插入电路中进行试验,如能完成某些功能或符合某种逻辑关系便可用。如对音乐集成电路进行测试,可先制作一个简易电路,留出音乐集成电路的插脚(或用夹子),将音乐集成电路置于电路中,如果发声正常则可使用,否则不可使用。如果你有时间也乐于动手的话不妨自制一些常用的集成电路的简易试验仪器(参见本站检测仪表),可方便日后的电子电路制作。

  ⑦ 其它电子元器件。如常用的各种开关、接插件、发光二极管、扬声器、耳机等,主要用万用电表检测它们的通断情况。对于发光二极管和扬声器、耳机,也可用电池组来试验其发光或发声程序,以此来判断其优

2·元器件的装配方式与布局

在设计装配方式之前,要求将整机的电路基本定型,同时还要根据整机的体积以及机壳的尺寸来安排元器件在印刷电路板上的装配方式。

  具体做这一步工作时,可以先确定好印刷电路板的尺寸,然后将元器件配齐,根据元器件种类和体积以及技术要求将其布局在印刷电路板上的适当位置。可以先从体积较大的器件开始,如电源变压器、磁棒、全桥、集成电路、三极管、二极管、电容器、电阻器、各种开关、接插件、电感线圈等。待体积较大的元器件布局好之后,小型及微型的电子元器件就可以根据间隙面积灵活布配。二极管、电感器、阻容元件的装配方式一般有直立式、俯卧式和混合式三种。

  ①直立式。这种安装方式见图1。电阻、电容、二极管等都是竖直安装在印刷电路板上的。这种方式的特点是:在一定的单位面积内可以容纳较多的电子元件,同时元件的排列也比较紧凑。缺点是:元件的引线过长,所占高度大,且由于元件的体积尺寸不一致,其高度不在一个平面上,欠美观,元器件引脚弯曲,且密度较大,元器件之间容易引脚碰触,可靠性欠佳,且不太适合频率较高的电路采用。

  ②俯卧式。这种安装方式见图2。二极管、电容、电阻等元件均是俯卧式安装在印刷电路板上的。这样可以明显地降低元件的排列高度,可实现薄形化,同时元器件的引线也最短,适合于较高工作频率的电路采用,也是目前采用得最广泛的一种安装方式。

  ③混合式。为了适应各种不同条件的要求或某些位置受面积所限,在一块印刷电路板上,有的元器件采用直立式安装,也有的元器件则采用俯卧式安装。这受到电路结构各式以及机壳内空间尺寸的制约,同时也与所用元器件本身的尺寸和结构形式有关,可以灵活处理。见图3。

  元器件配置布局应考虑的因素:

  对于印刷电路板的布局排列并没有统一固定的模式,每个设计者都可以根据具体情况和习惯方法进行工作,但是一些基本原则是应遵循的。

  ①印刷电路板最经济的形状是矩形或正方形。一般应避免设计成异形,以尽可能地降低成本。

  ②如果印刷电路板是矩形,元件排列的长度方向一般应与印刷电路板的长边平行,这样不但可以提高元件的装配密度,而且可使装配好的印刷电路板更美观。

  ③元件的配置与安装必须要考虑到足够的机械强度,要保证元件和印刷电路板在工作与运输过程中不会因振动、冲击而损坏。其重量超过15g以上的元器件应考虑使用支架或卡夹加以固定,一般不宜直接将它们焊接在印刷电路板上。

  ④一些电子元件,特点是放大器的输入与输出部分,应尽可能地设计到靠近印刷电路板外部连接的插头部分。当然,如果存在着寄生耦合,例如相邻导线间的电信号串扰,就不能使它们的引线靠得太近。

  ⑤对于一些易发热的元件,如电源变压器、大功率三极管、可控硅、大功率电阻等应尽量靠近机壳框架。因为金属框架具有一定的散热作用。对于湿度敏感的元件,如锗三极管、电解电容器等,应尽量远离热源区。对于一些耐热性较好的元器件则尽可能设计到印刷电路板最热的区域内。

  ⑥应尽可能地缩短元件及元件之间的引线。尽量避免印刷电路板上的导线的交叉,设法减小它们的分布电容和互相之间的电磁干扰,以提高系统工作的可靠性。

  ⑦应以功能电路的核心器件为中心,外围元件围绕它进行布局。例如通常是以集成电路基晶体三极管等元件为核心,然后根据各自的引脚功能,正确地排列布置外围元件的方向与位置。

  ⑧在设计数字逻辑印刷电路板时,要注意各种门电路多余端的处理,或接电源端或接地端,并按照正确的方法实现不同逻辑门的组合转换。

  ⑨元器件的配置和布局应有利于设备的装配、检查、高度与维修。

  ⑩对于要求防干扰的元器件,可采用金属外壳或在元件表面喷涂金属加以屏蔽。

  印刷电路上导线配置应考虑的因素:

  我们通常所用的敷铜板上的铜箔厚度一般为0.05mm左右,在敷铜厚度不变的情况下要通过不同的电流强度,就要对其布线以及导线的宽窄有所要求。利用protel等电路设计CAD软件绘制好电路原理图(sch),再在印刷电路图(pcb)下进行元器件配置布局,确定导线的位置、走向、连接点以及适当的宽度。严格地讲,应根据电路要求的电流强度、压降、击穿电压、分布电容等多项指标来进行核算,核算无误后,应略留余地,其设计才算初步完成。但在业余制作情况下,对于一些与安全无关或不紧要的电子装置,也可以将上述条件放松,但应尽量遵循以下原则。

  ①绘制的导线粗细应尽量均匀,在同一导线上不应出现突然由粗变细或由细变粗的现象。

  ②其图案、线条的宽度大于5mm时,需在线条中间设计出图形或缝状空白处,以免在铜箔与绝缘基板之间产生气泡。

  ③有电耦合或磁耦合的通路,应避免相互平行。当导线的串联电阻和电感影响处于将要位置,而寄生电容的影响为时,高阻抗的信号线要采用窄导线。

  ④导线间距的确定应考虑到最坏的工作条件下导线之间的绝缘电阻和击穿电压。实践证明:导线的间距在1.5mm时,其绝缘电阻超过20MΩ,允许电压可达300V;间距在1.0mm时,允许电压为200V,所以导线的间距通常应采用1.0-1.5mm。

  ⑤在高频电路系统中,必须采用大面积接地结构,这样既能起到屏蔽作用,又可使高频回路具有较小的电感。

  ⑥印刷电路板上的导线宽度,主要由导线(铜箔)与绝缘板之间粘附强度,渡过它们的电流强度和最大允许温升确定的。如果在+20℃时,允许有微小温升,导线宽度和允许电流的对应关系如下:(铜箔厚度为0.05mm时)

导线宽度(mm)

0.5

1.0

1.5

2.0

允许电流(A)

0.8

1.0

1.3

1.9

  ⑦由于印刷电路板上的导线具有一定的电阻,因此在电流通过时必然会产生电压降。在+20℃时,宽度为1mm,厚度为0.05mm的导线其导线电流与电压降如下:

导线电流(A)

0.25 

0.5 

0.75 

1.0 

1.25 

1.5 

1.75 

2.0 

2.5 

3.0 

4.0 

导线压降(V/m)

0.1 

0.25 

0.4 

0.55 

0.75 

0.85 

1.0 

1.15 

1.4 

1.7 

2.2 

  ⑧当铜箔的厚度确定之后,两根印刷导线之间的分布电容容量的大小与线间距离成反比,与线间的平行长度成正比。在高频状态工作时,更要注意分布电容对电路的不良影响。一般情况下,线间电容和导线间距的分布电容量关系如下:

导线间距(mm)

每米分布电容量(PF/M)

1

3.5

1.5

2.9

3·浅谈可控硅的特性及检测

可控硅(SCR)国际通用名称为Thyyistor,中文简称晶闸管。它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等特点,它是大功率形状型半导体器件,广泛应用于电力、电子线路中。

一、可控硅的特性

  可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极中、控制极G三个引脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引脚。只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极A与阴极K间压降约为1V。单向可控硅导通后,控制极G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。只有把阳极A电压撤除或阳极A、阴极K之间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。单向可控硅一旦截止,即使阳极A和阴极间又重新加上正向电压,仍需在控制极G和阴极K之间重新加上正向触发电压方可导通。单向可控硅的导通与截止状态相当于形状的闭合和断开状态,用它可制成无触点开关。

  双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。此时A1、A2间压降也约1V。双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。

二、可控硅的检测

  1.单向可控硅的检测

  万用表选用电阻R×1档,用红黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑笔接的引脚为控制极G,红笔接的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短接线瞬间短接阳极A和控制极G,此时万用表指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。

  2.双向可控硅的检测

  用万用表电阻R×1档,用红黑两表笔分别测任意两引脚正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红黑表笔所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A、G极后,再仔细测量A1、G极间正反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定了的第二阳极A2,红表笔接第一阳极A1,此时万用表指针应不发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约为10欧姆左右。随后断开A2、G极短接线,万用表读数应保持10欧姆左右。互换红黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负向的触发电压,A1、A2间阻值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持10欧姆左右。符合以上规律,说明被测双向可控硅管未损坏且三个引脚极性判断正确。

  检测较大功率可控硅管是地,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。

如何提高焊接质量

虚焊等焊接质量问题,往往是电子制作失败的原因之一。努力提高焊接质量对于初学者是十分重要的。如何提高焊接质量呢?除了苦练基本功之外,还应注意以下几个环节:

  (1)印制电路板的处理:印制电路板制好后,首先应清除铜箔面氧化层,可用擦字橡皮 擦,这样不易损伤铜箔(氧化严重的也可用细砂纸轻轻打磨),直至铜箔面光洁如新。然后在铜箔面涂上一层松香水(松香碾成粉末溶解于酒精中,浓一些效果好),晾干即可。松香水涂 层既是保护层(保护铜箔不再氧化),又是良好的助焊剂。

  (2)元器件引脚的处理: 所有元器件的引脚 在焊人电路板之前,都必须刮净后镀上锡。有的元件出厂时引脚已够过锡,因长期存放氧化 也应重新镀锡。

  (3)助焊剂的选用:元器件引脚镀锡时应选用松香作助焊剂。印制电路板上已涂有松香水,元器件焊入时不必再用助焊剂。焊锡膏、焊油等焊剂腐蚀性大,最好不用。

  (4)焊锡的选用:选用松香芯焊锡丝。焊铁皮桶等物的焊锡块因含杂质较多不宜使用。

  (5)焊点形状的控制:标准的焊点应圆而光滑 无毛利,如图1(a)所示。但是初学者开始焊接时,焊点上往往带毛利或者焊点成蜂窝状 如图1(b)、(c)所示。 这说明 焊接这一基本功没过关,初学者必须苦练一番。在练习时,不要心急,一定要待烙铁头有足够的温度时,再动手焊。先蘸上适量焊锡,不要过多或过少,如图2所示。焊时烙铁头 沿元器件引脚环绕一圈,再稍停留一下后离开,这样焊出的焊点一般都能符合要求。  

4·浅谈电解电容检测及选用

一、电解电容的检测

  1.脱离线路时检测

  采用万用表R×1K档,在检测前,先将电解电容的两根引脚相碰,以便放掉电容内残余的电荷。当表笔刚接通时,表针向右偏转一个角度,然后表针缓慢地向左回转,最后表针停下。表针停下来指示的阻值为该电容的漏电电阻,此阻值愈大愈好,最好应接近无穷大处。如果漏电电阻只有几十千欧,说明这一电解电容漏电严重。表针向右摆动的角度越大(表针还应该向左回摆),说明这一电解电容的电容量也越大,反之说明容量越小。

  2.线路上直接检测

  主要是检测它是否已开路或已击穿这两种明显故障,而对漏电故障由于受外电路的影响一般是测不准的。用万用表R×1档,电路断开电源后,先放掉残存在电容器内的电荷。测量时若表针不向右偏转,说明电解电容内部断路。如果表针向右偏转后所指示阻值很小(接近短路),说明电容器严重漏电或已击穿。如果表针向右偏转后无回转,但所指示的阻值不是很小,说明电容开路的可能很大,应脱开电路后进一步检测。

  3.线路上通电状态时检测

  若怀疑电解电容只在通电状态下才存在击穿故障,可以给电路通电,然后用万用表直流档测量该电容器两端的直流电压,如果电压很低或为0V,则是该电容器已击穿。

  对于电解电容的正、负极性标志不清楚的,必须先判别出它的正、负极。对换万用表笔测两次,以漏电大(电阻值小)的一次为准,黑表笔所接一脚为负极,另一脚为正极。

二、电解电容的选用

  1.要尽可能地选用原型号电解电容器。

  2.一般电解电容的电容偏差大些,不会严重影响电路的正常工作,所以可以取电容量略大一些或略小一些的电容器代替。但在分频电路、S校正电路、振荡回路及延时回路中不行,电容量应和计算要求的尽量一致。在一些滤波网络中,电解电容的容量也要求非常准确,其误差应小于±0.3%-0.5%。

  3.耐压要求必须满足,选用的耐压值应等于或大于原来的值。

  4.无极性电解电容一般应用无极性电解电容代替,实在无办法时可用两只容量大一倍的有极性电容逆串联后代替,方法是将两只有极性电解电容的正极相连(或将它们的两个负极相连)。

  5.在选用电解电容时,最好采用耐高温的电解电容,耐高温电容的最高工作温度为105℃,当其在最高工作温度条件下工作时,能保证2000小时左右的正常工作时间。在50℃下使用80℃的电容时,其寿命可达2.2万小时,如果此时使用高温电解电容,其寿命可达9万小时。

5·电阻的基础知识

常用电阻有碳膜电阻、碳质电阻、金属膜电阻、线绕电阻和电位器等。表1是几种常用电阻的结构和特点。

图1 电阻的外形

电阻种类(电 阻 结 构 和 特 点):

碳膜电阻

气态碳氢化合物在高温和真空中分解,碳沉积在瓷棒或者瓷管上,形成一层结晶碳膜。改变碳膜厚度和用刻槽的方法变更碳膜的长度,可以得到不同的阻值。碳膜电阻成本较低,性能一般。

金属膜电阻

在真空中加热合金,合金蒸发,使瓷棒表面形成一层导电金属膜。刻槽和改变金属膜厚度可以控制阻值。这种电阻和碳膜电阻相比,体积小、噪声低、稳定性好,但成本较高。

碳质电阻

把碳黑、树脂、粘土等混合物压制后经过热处理制成。在电阻上用色环表示它的阻值。这种电阻成本低,阻值范围宽,但性能差,很小采用。

线绕电阻

用康铜或者镍铬合金电阻丝,在陶瓷骨架上绕制成。这种电阻分固定和可变两种。它的特点是工作稳定,耐热性能好,误差范围小,适用于大功率的场合,额定功率一般在1瓦以上。

碳膜电位器

它的电阻体是在马蹄形的纸胶板上涂上一层碳膜制成。它的阻值变化和中间触头位置的关系有直线式、对数式和指数式三种。碳膜电位器有大型、小型、微型几种,有的和开关一起组成带开关电位器。

还有一种直滑式碳膜电位器,它是靠滑动杆在碳膜上滑动来改变阻值的。这种电位器调节方便。

线绕电位器

用电阻丝在环状骨架上绕制成。它的特点是阻值范围小,功率较大。

大多数电阻上,都标有电阻的数值,这就是电阻的标称阻值。电阻的标称阻值,往往和它的实际阻值不完全相符。有的阻值大一些,有的阻值小一些。电阻的实际阻值和标称阻值的偏差,除以标称阻值所得的百分数,叫做电阻的误差。表2是常用电阻允许误差的等级。

允许误差

±0.5%

±1%

±2%

±5%

±10%

±20%

级 别

005

01

02

表2 常用电阻允许误差的等级

国家规定出一系列的阻值作为产品的标准。不同误差等级的电阻有不同数目的标称值。误差越小的电阻,标称值越多。表2是普通电阻的标称阻值系列。表3中的标称值可以乘以10、100、1000、10k;100k;比如1.0这个标称值,就有1.0Ω、10.OΩ、100.OΩ、1.0kΩ、10.0kΩ、100.0kΩ、1.0MΩ;10.0MΩ;

允许误差

标 称 阻 值 系 列

±5%

1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0

3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1

±10%

1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2

±20%

1.0 1.5 2.2 3.3 4.7 6.8

表3 普通固定电阻标称阻值系列

不同的电路对电阻的误差有不同的要求。一般电子电路,采用Ⅰ级或者Ⅱ级就可以了。在电路中,电阻的阻值,一般都标注标称值。如果不是标称值,可以根据电路要求,选择和它相近的标称电阻。

当电流通过电阻的时候,电阻由于消耗功率而发热。如果电阻发热的功率大于它能承受的功率,电阻就会烧坏。电阻长时间工作时允许消耗的最大功率叫做额定功率。电阻消耗的功率可以由电功率公式:

P=I×U P=I2×R P=U2/R

计算出来,P表示电阻消耗的功率,U是电阻两端的电压,I是通过电阻的电流,R是电阻的阻值。

电阻的额定功率也有标称值,常用的有1/8、1/4、1/2、1、2、3、5、10、20瓦等。在电路图中,常用图2所示的符号来表示电阻的标称功率。选用电阻的时候,要留一定的余量,选标称功率比实际消耗的功率大一些的电阻。比如实际负荷1/4瓦,可以选用1/2瓦的电阻,实际负荷3瓦,可以选用5瓦的电阻。

图2 电阻的功率标识

为了区别不同种类的电阻,常用几个拉丁字母表示电阻类别,如图3所示。第一个字母R表示电阻,第二个字母表示导体材料,第三个字母表示形状性能。上图是碳膜电阻,下图是精密金属膜电阻。表1列出电阻的类别和符号。表2是常用电阻的技术特性。

碳质电阻和一些1/8瓦碳膜电阻的阻值和误差用色环表示。在电阻上有三道或者四道色环。靠近电阻端的是第一道色环,其余顺次是二、三、四道色环,如图1所示。第一道色环表示阻值的最大一位数字,第二道色环表示第二位数字,第三道色环表示阻值未应该有几个零。第四道色环表示阻值的误差。色环颜色所代表的数字或者意义见表1。

图3 电阻的类型标识

顺序

类别

名称

简称

符号

第一个字母

主称

电阻器

电位器

R

W

第二个字母

导体材料

碳膜

金属膜

金属氧化膜

线绕

线

T

J

Y

X

第三个字母

形状性能等

大小

精密

测量

高功率

X

J

L

G

表4 电阻的类别和符号

电阻类别

额定功率

(W)

标称阻值范围

(Ω)

温度系数

(1/℃)

噪声电势

(uV/V)

运用频率

RT型

碳膜电阻

0.05

0.125

0.25

0.5

1.2

10-100×103

5.1-510×103

5.1-910×103

5.1-2×106

5.1-5.1×106

-(6-20)×10-4

1-5 10兆赫以下

RU型

硅碳膜电阻

0.125

0.25

0.5

1.2

5.1-510×103

10-1×106

10-10×106

±(7-12)×10-4

1-5 10兆赫以下

RJ型

金属膜电阻

0.125

0.25

0.5

1.2

30-510×103

30-1×106

30-5.1×106

30-10×106

±(6-10)×10-4

1-4 10兆赫以下

RXYC型

线绕电阻

2.5-100

5.1-56×106

低频

WTH型

碳膜电位器

0.5-2

470-4.7×106

5-10

几百千赫以下

WX型

线绕电位器

1-3

10-20×103

低频

表5 常用电阻的技术特性

图4 电阻的电路符号表示方法

色 别

第一色环

第二色环

第三色环

第四色环

误 差

1

1

10

2

2

100

3

3

1000

4

4

10000

绿

5

5

100000

6

6

1000000

7

7

10000000

8

8

100000000

9

9

1000000000

0

0

1

0.1

±5%

0.01

±10%

无色

±20%

表6 色环颜色所代表的数字或意义

比如有一个碳质电阻,它有四道色环,顺序是红、紫、黄、银。这个电阻的阻值就是270000欧,误差是±10%。双比如有一个碳质电阻,它有棕、绿、黑三道色环,它的阻值就是15欧,误差是±20%。

6·光电耦合器的应用电路

光电耦合器具有体积小、使用寿命长、工作温度范围宽、抗干扰性能强.无触点且输入与输出在电气上完全隔离等特点,因而在各种电子设备上得到广泛的应用.光电耦合器可用于隔离电路、负载接口及各种家用电器等电路中.下面介绍最常见的应用电路.

1.组成开关电路

图1电路中,当输入信号ui为低电平时,晶体管V1处于截止状态,光电耦合器B1中发光二极管的电流近似为零,输出端Q11、Q12间的电阻很大,相当于开关“断开”;当ui为高电平时,v1导通,B1中发光二极管发光,Q11、Q12间的电阻变小,相当于开关“接通”.该电路因Ui为低电平时,开关不通,故为高电平导通状态.同理,图2电路中,因无信号(Ui为低电平)时,开关导通,故为低电平导通状态.

2.组成逻辑电路

图3电路为“与门”逻辑电路。其逻辑表达式为P=A.B.图中两只光敏管串联,只有当输入逻辑电平A=1、B=1时,输出P=1.同理,还可以组成“或门”、“与非门”、“或非门”等逻辑电路.

3.组成隔离耦合电路

电路如图4所示.这是一个典型的交流耦合放大电路.适当选取发光回路限流电阻Rl,使B4的电流传输比为一常数,即可保证该电路的线性放大作用。

4.组成高压稳压电路

电略如图5所示.驱动管需采用耐压较高的晶体管(图中驱动管为3DG27)。当输出电压增大时,V55

的偏压增加,B5中发光二极管的正向电流增大,使光敏管极间电压减小,调整管be结偏压降低而内阻增大,使输出电压降低,而保持输出电压的稳定.

5.组成门厅照明灯自动控制电路

电路如图6所示。A是四组模拟电子开关(S1~S4):S1,S2,S3并联(可增加驱动功率及抗干扰能力)用于延时电路,当其接通电源后经R4,B6驱动双向可控硅VT,VT直接控制门厅照明灯H;S4与外接光敏电阻Rl等构成环境光线检测电路。当门关闭时,安装在门框上的常闭型干簧管KD受到门上磁铁作用,其触点断开,S1,S2,S3处于数据开状态。晚间主人回家打开门,磁铁远离KD,KD触点闭合。此时9V电源整流后经R1向C1充电,C1两端电压很快上升到9V,整流电压经S1,S2,S3和R4使B6内发光管发光从而触发双向可控硅导通,VT亦导通,H点亮,实现自动照明控制作用。房门关闭后,磁铁控制KD,触点断开,9V电源停止对C1充电,电路进入延时状态。C1开始对R3放电,经一段时间延迟后,C1两端电压逐渐下降到S1,S2,S3的开启电压(1.5v)以下,S1,S2,S3恢复断开状态,导致B6截止,VT亦截止,H熄来,实现延时关灯功能。

7·力平衡加速度传感器原理设计

摘要:本文介绍了一种力平衡加速度传感器的原理设计方法。差容式力平衡加速度传感器在传统的机械传感器的基础上,采用差动电容结构,利用反馈原理把被测的加速度转换为电容器的电容量变化,将加速度的变化转变为电压值。使传感器的灵敏度、非线性、测量范围等性能得到很大的提高,使其在地震、建筑、交通、航空等各领域得到广泛应用。

关键词:加速度 差容式 力平衡 传感器 

加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。它是工业、国防等许多领域中进行冲击、振动测量常用的测试仪器。

1、加速度传感器原理概述

加速度传感器是用来将加速度这一物理信号转变成便于测量的电信号的测试仪器。差容式力平衡加速度传感器则把被测的加速度转换为电容器的电容量变化。实现这种功能的方法有变间隙,变面积,变介电常量三种,差容式力平衡加速度传感器利用变间隙,且用差动式的结构,它优点是结构简单,动态响应好,能实现无接触式测量,灵敏度好,分辨率强,能测量0.01um甚至更微小的位移,但是由于本身的电容量一般很小,仅几pF至几百pF,其容抗可高达几MΩ至几百MΩ,所以对绝缘电阻的要求较高,并且寄生电容(引线电容及仪器中各元器件与极板间电容等)不可忽视。近年来由于广泛应用集成电路,使电子线路紧靠传感器的极板,使寄生电容,非线性等缺点不断得到克服。

差容式力平衡加速度传感器的机械部分紧靠电路板,把加速度的变化转变为电容中间极的位移变化,后续电路通过对位移的检测,输出一个对应的电压值,由此即可以求得加速度值。为保证传感器的正常工作.,加在电容两个极板的偏置电压必须由过零比较器的输出方波电压来提供。

2、变间隙电容的基本工作原理

如式2-1所示是以空气为介质,两个平行金属板组成的平行板电容器,当不考虑边缘电场影响时,它的电容量可用下式表示:

由式(2-1)可知,平板电容器的电容量是 、A、 的函数,如果将上极板固定,下极板与被测运动物体相连,当被测运动物体作上、下位移(即变化)或左右位移(即A变化)时,将引起电容量的变化,通过测量电路将这种电容变化转换为电压、电流、频率等电信号输出根据输出信号的大小,即可测定物体位移的大小,若把这种变化应用到电容式差容式力平衡传感器中,当有加速度信号时,就会引起电容变化 C,然后转换成电压信号输出,根据此电压信号即可计算出加速度的大小。

由式(2-2)可知,极板间电容C与极板间距离 是成反比的双曲线关系。由于这种传感器特性的非线性,所以工作时,一般动极片不能在整个间隙,范围内变化,而是限制在一个较小的范围内,以使 与 C的关系近似于线性。

它说明单位输入位移能引起输出电容相对变化的大小,所以要提高灵敏度S应减少起始间隙 ,但这受电容器击穿电压的限制,而且增加装配加工的困难。

由式(2-5)可以看出,非线性将随相对位移增加面增加。因此,为了保证一定的线性,应限制极板的相对位移量,若增大起始间隙,又影响传感器的灵敏度,因此在实际应用中,为了提高灵敏度,减小非线性,大都采用差动式结构,在差动式电容传感器中,其中一个电容器C1的电容随位移增加时,另一个电容器C2的电容则减少,它们的特性方程分别为:

可见,电容式传感器做成差动式之后,非线性大大降低了,灵敏度提高一倍,与此同时,差动电容传感器还能减小静电引力测量带来的影响,并有效地改善由于温度等环境影响所造成的误差。

3、电容式差容式力平衡传感器器的工作原理与结构

3.1工作原理

如图1所示,差容式力平衡加速度传感器原理框图

电路中除了所必须的电容,电阻外,主要由正负电压调节器,四运放放大器LT1058,双运放op270放大器组成。

3.2差容式力平衡传感器机械结构原理

由于差动式电容,在变间隙应用中的灵敏度和线性度得到很大改善,所以得到广泛应用。如图2所示为一种差容式力平衡电容差容式力平衡传感器原理简图。主要由上、下磁钢,电磁铁,磁感应线圈,弹簧片,作电容中间极的质量块,覆铜的上下极板等部分组成。传感器上、下磁钢通过螺钉及弹簧相连,作为传感器的固定部分,上,下极板分别固定在上、下磁钢上。极板之间有一个用弹簧片支撑的质量块,并在此质量块上、下两侧面沉积有金属(铜)电极,形成电容的活动极板。这样,上顶板与质量块的上侧面形成电容C1,下底板与质量块下侧面形成电容C2,弹簧片一端与磁钢相连,另一端与电容中间极相连,以控制其在一个有效的范围内振动。由相应芯片输出的方波信号,经过零比较后输出方波,此方波经电容滤除其中的直流电压,形成对称的方波,该对称的方波加到电容的一个极板上,同时经一次反向后的对称波形加到另一个极板上。

当没有加速度信号时,中间极板处于上、下极板的中间位置C1=C2,△C=0后续电路没有输出;当有加速度信号时,中间极板(质量块)将偏离中间位置,产生微小位移,传感器的固定部分也将有微小的位移,设加速度为正时,质量块与上顶板距离减小,与下底板距离增大,于是C1>C2,因此会产生一个电容的变化量△C,△C由放大电路部分放大,同时,将放大电路的输出电流引入到反馈网络。由于OP270的脚1和16分别与线圈两端相连,当有电流流过线圈时,将产生感应磁场,就会有电磁力产生。因为上、下磁钢之间有弹簧,所以在电磁力的作用下将使磁钢回到没有加速度时的位置,即此时的电容变化完全有加速度的变化引起,同时由于线圈与活动极板通过中心轴线相连,所以在电磁力的作用下,使中间极向产生加速度时的位移的相反的方向运动,即相当于在△C的放大电路中引入了负反馈,这样,使传感器的测量范围大大提高。因此,对于任何加速度值,只要检测到合成电容变化量△C,便能使活动极板在两固定极板之间对应一个合适的位置,此时后续电路便输出一个与加速度成正比的电压,由此电压值就可以计算出加速度的大小。

4、力平衡传感器实际应用

哈尔滨北奥振动技术是专门从事振动信号测量的专业公司,它们应用这种差容式力平衡原理开发出的力平衡加速度传感器实现的主要性能指标如下:

测量范围:±2.0g,±0.125g,±0.055g

灵敏度:BA-02a:±2.5V/g、±40.0V/g

BA-02b1:±40.0V/g(差动输出)

BA-02b2:±90.0V/g(特定要求,高灵敏度)

频响范围:DC-50Hz(±1dB)

绝对精度:±3%FS

交叉干扰:小于0.3%

线性度:优于1%

噪声:小于10μV

动态范围:大于120dB

温漂:小于0.01%g/g

电源:±12V-±15V @30.0mA

体积:Φ43x60mm

采用这种设计原理的传感器在振动信号测量领域已经得到广泛应用,该种传感器特别适合地震、建筑、军事、交通、机械、航海等领域的振动测量。

8·二氧化碳传感器TGS4160的原理及应用

摘要:TGS4160是FIGARO(弗加逻)公司生产的一种固态电化学型二氧化碳(CO2)传感器,该器件除具有体积小、寿命长、选择性和稳定性好等特性外,同时还具有耐高湿和耐低温等特点。因而可广泛用于自动通风换气系统或CO2气体的长期监测等应用场合。文中叙述了该传感器的内部结构和工作原理,给出了一个用TGS4160设计的专用模块的基本应用电路原理图。

关键词:TGS4160;单片机;传感器;二氧化碳

1 概述

TGS4160二氧化碳传感器是FIGARO(弗加罗)公司生产的固态电化学型气体敏感元件。这种二氧化碳传感器除具有体积小、寿命长、选择性和稳定性好等特点外,同时还具有耐高湿低温的特性可广泛用于自动通风换气系统或是CO2气体的长期监测等应用场合。但是,由于TGS4160的预热时间较长(一般为2小时),所以,该器件比较适合于在室温下长时间通电连续工作。此外,为了方便客户使用,FI-GARO公司还专门设计了带温度补偿的传感器处理模块AM-4。该模块采用微处理器进行控制,CO2气体浓度的输出信号电平为0.0~3.0V,相当于0~3000ppm的浓度,并有中继转接控制口,可输出高、低两种门限信号以供外接控制使用。TGS4160传感器的主要技术参数如下:

●测量范围:0~5000ppm;

●使用寿命:2000天;

●加热器电压:5.0±0.2VDC;

●加热器电流:250mA;

●加热器功耗:1.25W;

●内部热敏电阻(补偿用):100kΩ±5%;

●使用温度:-10~+50℃

●使用湿度5~95%RH;

●产品尺寸:最大外径Φ24mm,高24mm,引脚长5.8mm。

2 内部结构

TGS4160二氧化碳传感器是一种内含热敏电阻的混合式CO2敏感元件。该元件在两个电极之间充有阳离子固体电解质。它的阴极由锂碳酸盐和镀金材料制成,而阳极只是镀金材料。该敏感元件的基衬是用对苯二酯聚乙烯和玻璃纤维加固,然后采用不锈钢网做圆柱型封装。元件的内层采用100目双层不锈钢网套在镀镍铜环上,并用高强度树脂粘合剂与基衬固定在一起。其外层顶盖上又罩上了一层60目的不锈钢网。为了达到降低干扰气体影响的目的,TGS4160在内外两层不锈钢网之间还填充有吸附材料(沸石)。传感器的6个引脚通过0.1mm的箔导线与内部相连。其等效的内部结构见图1所示。图中,阳极与传感器的第3脚S(+)相连,阴极与传感器的第4脚S(-)相连,Pt加热器与传感器的第1,6脚相连,内部热敏电阻与传感器的第2,5脚相连。内部热敏电阻的作用是通过该电阻探测环境温度,以便对该传感器进行温度补偿,从而使校正后的测量值更加准确。

3 工作原理

TGS4160型CO2传感器是一种电化学型气体的敏感元件,当该元件暴露在CO2气体环境中时,就会产生电化学反应。其反应式如下:

阴极反应方程:

4Li++2 CO2+O2+4e-=2Li2CO3

阳极反应方程:

4Na++O2 +4e-=2Na2O

总的化学反应方程:

Li2CO3+2Na+=Na2O+2Li++CO2

作为电化学反应的结果,根据耐斯特方程(Nernst),该过程将产生如下电势(EMF):

EMF=Ec-(RF)/(2F)ln(PCO2 )

式中:PCO2 为CO2的分压;Ec为常数;R是气体常数; T为温度值(K);F是法拉第常数。

从上式看出,通过监测S(+)、S(-)两个电极之间所产生的电势值EMF,就可以测量CO2的浓度值。为了使该传感器保持在最敏感的温度上,一般需要给加热器提供加热电压进行加热,但加热电压的变化将直接影响传感器的稳定性,因此加热电压必须稳定,其范围应在5.0±0.2VDC之内。为了保证CO2的准确测量,除了保证加热电压稳定及对环境温度的变化进行温度补偿外,更主要的是要测量两电极之间变化的电势值ΔEMF,而不是绝对电势值EMF,因为ΔEMF与CO2浓度变化之间有一个较好的线性关系。虽然EMF绝对值随环境温度的上升而上升,ΔEMF却保持常量,而且它在-10℃~+50℃温度范围内,基本不受温度的影响。

图2

ΔEMF值可由下式求得:

ΔEMF=EMF1-EMF2

其中,EMF1为350ppm的CO2中的EMF值;EMF2为所测量的CO2的EMF值。

在温度为20℃±2℃、湿度为65±5%RH、加热电压为5.0±0.05VDC、预热时间为7天或大于7天的条件下,测得传感器在浓度为350ppm中的EMF值是220~490mV,而ΔEMF在350~3500ppm的CO2浓度中的值是44~72mV,因此在实际测量应用电路中,要根据传感器的特点要求,除使用高输入阻抗(≥100GΩ)、低偏置电流(≤1pA)的运算放大器外,还要对测得的信号进行处理。处理该信号通常有两种方案可供选择:一是使用费加罗(FIGARO)公司的FIC98646专用处理器模块,二是选用其它型号的单片机并通过自己编程进行信号处理。

4 基本应用

利用TGS4160传感器并通过高输入阻抗、低偏置电流的运放进行放大,再作一些简单的运算处理,就可以在CO2浓度为300~5000ppm的范围内测得信号,该信号为0~几百毫伏的电压信号,可以供高精度A/D采样使用。如果使用费加罗(FIGARO)公司提供的AM-4CO2传感器模块,则可直接应用于自动通风换气系统或是CO2气体监测。该模块内部带有A/D转换器,并已对数据进行了采样并作了处理。它输出的电压信号与CO2浓度值呈线性关系,输出的电压信号为0~3.0V,相当于0~3000ppm的CO2浓度。另外,该模块还提供有中继转接控制信号。当CO2浓度高于设定值时,输出的转接控制信号为高电平5V,该信号可以使得红LED点亮;反之,它将转接控制信号为低电平0V以使绿LED点亮。但是,该模块的设定值是分档的,而不是连续可调的。共分为四档(可通过线路板上的跳线来实现),表1和表2分别给出了门限开关信号的浓度值及跳线连接方法。AM-4模块的实用电路原理图见图2所示。

表1 门限信号浓度

控制信号门限

档次 开 关

Ⅰ 800ppm 720ppm

Ⅱ 1000ppm 900ppm

Ⅲ 1500ppm 1350ppm

Ⅳ 2000ppm 1800ppm

表2 跳线连接

连 接 方 式

档次 JP5 JP6 JP7 JP8

Ⅰ 连 连 连 断

Ⅱ 连 连 断 连

Ⅲ 连 断 连 连

Ⅳ 断 连 连 连

如果认为使用AM-4模块不方便或是认为价格太高,也可以自行设计电路,并自行编写程序进行处理。

5 结束语

TGS4160型CO2传感器特别适合于连续监测CO2的场所,它不需断电,其稳定性好。但TGS4160传感器不适于做便携式或手持式CO2测量仪器。因为预热时间太长,不能即时测量,同时传感器的功率也较大。此外,传感器暴露在某些气体中(如氯气)会降低灵敏度,由于沸石可以对某些干扰气体(如乙醇)加以滤除。因此,不用时可置于干燥剂中,并用专用袋进行密封。

I2C总线数字式温湿度传感器SHT11及其在单片机系统的应用

摘要:SHT11是瑞士Sensirion公司生产的具有I2C总线接口的单片全校准数字式相对湿度和温度传感器。该传感器采用独特的CMOSens TM技术,具有数字式输出、免调试、免标定、免外围电路及全互换的特点。文中对传感器的性能特点、接口时序与命令进行了详细的阐述,给出了SHT11与单片机的接口电路及相应程序。

关键词:数字式;温湿度传感器;I2C总线;单片机

1 概述

温湿度的测量在仓储管理、生产制造、气象观测、科学研究以及日常生活中被广泛应用,传统的模拟式湿度传感器一般都要设计信号调理电路并需要经过复杂的校准和标定过程,因此测量精度难以保证,且在线性度、重复性、互换性、一致性等方面往往不尽人意。SHT11是瑞士Sensirion公司推出的基于CMOSensTM技术的新型温湿度传感器。该传感器将CMOS芯片技术与传感器技术结合起来,从而发挥出它们强大的优势互补作用。

2 性能特点

SHT11温湿度传感器的主要特性如下:

●将温湿度传感器、信号放大调理、A/D转换、I2C总线接口全部集成于一芯片(CMOSensTM技术);

●可给出全校准相对湿度及温度值输出;

●带有工业标准的I2C总线数字输出接口;

●具有露点值计算输出功能;

●具有卓越的长期稳定性;

●湿度值输出分辨率为14位,温度值输出分辨率为12位,并可编程为12位和8位;

●小体积(7.65×5.08×23.5mm),可表面贴装;

●具有可靠的CRC数据传输校验功能;

●片内装载的校准系数可保证100%互换性;

●电源电压范围为2.4~5.5V;

●电流消耗,测量时为550μA,平均为28μA,休眠时为3μA。

SHT11温湿度传感器采用SMD(LCC)表面贴片封装形式,管脚排列如图1所示,其引脚说明如下:

(1)GND:接地端;

(2)DATA:双向串行数据线;

(3)SCK:串行时钟输入;

(4)VDD电源端:0.4~5.5V电源端;

(5~8)NC:空管脚。

3 工作原理

SHT11的湿度检测运用电容式结构,并采用具有不同保护的“微型结构”检测电极系统与聚合物覆盖层来组成传感器芯片的电容,除保持电容式湿敏器件的原有特性外,还可抵御来自外界的影响。由于它将温度传感器与湿度传感器结合在一起而构成了一个单一的个体,因而测量精度较高且可精确得出露点,同时不会产生由于温度与湿度传感器之间随温度梯度变化引起的误差。CMOSensTM技术不仅将温湿度传感器结合在一起,而且还将信号放大器、模/数转换器、校准数据存储器、标准I2C总线等电路全部集成在一个芯片内。SHT11传感器的内部结构框图如图2所示。

SHT11的每一个传感器都是在极为精确的湿度室中校准的。SHT11传感器的校准系数预先存在OTP内存中。经校准的相对湿度和温度传感器与一个14位的A/D转换器相连,可将转换后的数字温湿度值送给二线I2C总线器件,从而将数字信号转换为符合I2C总线协议的串行数字信号。

由于将传感器与电路部分结合在一起,因此,该传感器具有比其它类型的湿度传感器优越得多的性能。首先是传感器信号强度的增加增强了传感器的抗干扰性能,保证了传感器的长期稳定性,而A/D转换的同时完成,则降低了传感器对干扰噪声的敏感程度。其次在传感器芯片内装载的校准数据保证了每一只湿度传感器都具有相同的功能,即具有100%的互换性。最后,传感器可直接通过I2C总线与任何类型的微处理器、微控制器系统连接,从而减少了接口电路的硬件成本,简化了接口方式。

3.1 输出特性

(1)湿度值输出

SHT11可通过I2C总线直接输出数字量湿度值,其相对湿度数字输出特性曲线如图3所示。由图3可看出,SHT11的输出特性呈一定的非线性,为了补偿湿度传感器的非线性,可按如下公式修正湿度值:

RHlinear=c1+c2SORH+c3SORH2

式中,SORH为传感器相对湿度测量值,系数取值如下:

12位:SORH:c1=-4,c2=0.0405,c3=-2.8×10-6

8位:SORH:c1=-4,c2=0.648,c3=-7.2×10-4

(2)温度值输出

由于SHT11温度传感器的线性非常好,故可用下列公式将温度数字输出转换成实际温度值:

T=d1+d2SOT

当电源电压为5V,且温度传感器的分辨率为14位时,d1=-40d2=0.01,当温度传感器的分辨率为12位时,d1=-40d2=0.04。

(3)露点计算

空气的露点值可根据相对湿度和温度值来得出,具体的计算公式如下:

LogEW=(0.66077+7.5T/(237.3+T)+[log10(RH)-2]

Dp=[(0.66077-logEW)×237.3]/(logEW-8.16077)

3.2 命令与接口时序

SHT11传感器共有5条用户命令,具体命令格式见表1所列。下面介绍一下具体的命令顺序及命令时序。

表1 SHT11传感器命令列表

命 令 编 码 说 明

测量温度 00011 温度测量

测量湿度 00101 湿度测量

读寄存器状态 00111 “读”状态寄存器

写寄存器状态 00110 “写”状态寄存器

软启动 11110 重启芯片,清除状态记录器的错误记录11毫秒后进入下一个命令

(1)传输开始

初始化传输时,应首先发出“传输开始”命令,该命令可在SCK为高时使DATA由高电平变为低电平,并在下一个SCK为高时将DATA升高。

接下来的命令顺序包含三个地址位(目前只支持“000”)和5个命令位,当DATA脚的ack位处于低电位时,表示SHT11正确收到命令。

(2)连接复位顺序

如果与SHT11传感器的通讯中断,下列信号顺序会使串口复位:即当DATA线处于高电平时,触发SCK9次以上(含9次),此后应接着发一个“传输开始”命令。

表2 SHT11状态寄存器类型及说明

位 类型 说 明 缺 省  

7   保留 0  

6 读 工检限(低电压检查) X  

5   保留 0  

4   保留 0  

3   只用于试验,不可以使用 0  

2 读/写 加热 0 关

1 读/写 不从OTP重下载 0 重下载

0 读/写 '1'=8位相对湿度,12位温度分辨率。'0'=12位相对湿度,14位湿度分辨率 0 12位相对湿度,14位湿度

(3)温湿度测量时序

当发出了温(湿)度测量命令后,控制器就要等到测量完成。使用8/12/14位的分辨率测量分别需要大约11/55/210ms的时间。为表明测量完成,SHT11会使数据线为低,此时控制器必须重新启动SCK,然后传送两字节的测量数据与1字节CRC校验和。控制器必须通过使DATA为低来确认每一个字节,所有的量均从右算,MSB列于第一位。通讯在确认CRC数据位后停止。如果没有用CRC-8校验和,则控制器就会在测量数据LSB后保持ack为高来停止通讯,SHT11在测量和通讯完成后会自动返回睡眠模式。需要注意的是:为使SHT11的温升低于0.1℃此时的工作频率不能大于标定值的15%(如:12位精确度时,每秒最多进行3次测量)。测量温度和湿度命令所对应的时序如图4所示。

图4

3.3 寄存器配置

SHT11传感器中的一些高级功能是通过状态寄存器来实现的,寄存器各位的类型及说明见表2所列。下面对寄存器相关位的功能说明:

(1)加热

使芯片中的加热开关接通后,传感器温度大约增加5℃,从而使功耗增加至8mA@5V。加热用途如下:

●通过对启动加热器前后的温、湿度进行比较,可以正确地区别传感器的功能;

●在相对湿度较高的环境下,传感器可通过加热来避免冷凝。

(2)低电压检测

SHT11工作时可以自行检测VDD电压是否低于2.45V,准确度为±0.1V。

(3)下载校准系数

为了节省能量并提高速度,OTP在每次测量前都要重新下载校准系数,从而使每一次测量节省8.2ms的时间。

(4)测量分辨率设定

将测量分辨率从14位(温度)和12位(湿度)分别减到12位和8位可应用于高速或低功耗场合。

4 应用说明

4.1 运行条件

测量量程以外的温度会使湿度信号暂时地偏移+3%。然后传感器会慢慢返回到校准条件。若将芯片在湿度小于5%环境下加热24小时到90℃,芯片就会迅速恢复高相对湿度、高温度环境的影响,但是,延长强度条件会加速芯片的老化。

4.2 安装注意事项

由于大气的相对湿度与温度的关系比较密切,因此,测量大气温度时的要点是将传感器与大气保持同一温度,如果传感器线路板上有发热元件,SHT11应与热源保持良好的通风,为减少SHT11和PCB之间的热传导,应使铜导线最细并在其中加上窄缝,同时应避免使传感器在强光或UV下曝晒。

传感器在布线时,SCK和DATA信号平行且相互接近,或信号线长于10cm时,均会产生干扰信息,此时应在两组信号之间放置VDD或GND。

5 具体应用

图5是AT89C2051单片机与SHT11的接口电路。由于AT89C2051不具备I2C总线接口,故使用单片机通用I/O口线来虚拟I2C总线,并利用P1.0来虚拟数据线DATA,利用P1.1口线来虚拟时钟线,并在DATA端接入一只4.7kΩ的上拉电阻,同时,在VDD及GND端接入一只0.1μF的去耦电容。下面给出与上述硬件电路配套的C51应用程序。

#define DATA P1_1

#define SCK P1_0

#define ACK 1

#define noACK 0

#define MEASURE_TEMP 0x03 //测量温度命令

#define MEASURE_HUMI 0x05 //测量湿度命令

//读温湿度数据

char s-measure(unsigned char *p- value, un-signed char *p_checksum, unsigned char mode)

{

unsigned char error=0;

unsigned int i;

s_transstart(); //传输开始

switch(mode){

case

TEMP:error+=s_write_byte(measure_temp);

break;

case

HUMI:error+=s_write_byte(measure_humi);break;

default:break;

}

for(i=0;i<65535;i++) if(DATA==0) break;

if (DATA) reeor+=1;

*(p_value)=s_read_byte(ACK);

*(p_value+1)=s_read_byte(ACK);

*p_checksum=s_read_byte(noACK);

return error;

}

//温湿度值标度变换及温度补偿

void calc_sth15(float *p_humidity,float*p_tempera-ture)

{

const float c1=-4.0;

const float c2=0.0405;

const float c3=-0.0000028;

const float t1=-0.01;

const float t2=0.00008;

float rh=×p_humidity;

float t=×p_temperature;

float rh_lin;

float th_ture;

float t_c;

t_c=t×0.01-40;

rh_lin=c3×rh×rh+c2×rh+c1;

trh_ture=(t_c-25)×(t1+t2×rh)+rh_lin;

×p_temperature=t-c;

×p_humidity=rh_ture;

}

//从相对温度和湿度计算露点

char calc_dewpoint(float h,floatt)

{float logex,dew_point;

logex=0.66077+7.5×t/(237.3+t)+[log10(h)-2];

dew_point=(logex-0.66077)×237.3/(0.66077+7.5-logex);

return dew_point;

}

限于篇幅,上述程序中未给出传输开始、写字节数据、读字节数据函数。

6 结束语

SHT11数字式温湿度传感器由于将温度传感器、湿度传感器、信号调理、模/数转换器、标定参数及I2C总线接口全部集成到传感器内部,因此,既提高了传感器的性能,又降低了成本、减少了体积,同时也非常便于和微控制器接口,由此可见,该传感器是嵌入式系统温湿度测试的理想选择。

MOS场效应管

MOS场效应管即金属-氧化物-半导体型场效应管,英文缩写为MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),属于绝缘栅型。其主要特点是在金属栅极与沟道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻(最高可达1015Ω)。它也分N沟道管和P沟道管,符号如图1所示。通常是将衬底(基板)与源极S接在一起。根据导电方式的不同,MOSFET又分增强型、耗尽型。所谓增强型是指:当VGS=0时管子是呈截止状态,加上正确的VGS后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。耗尽型则是指,当VGS=0时即形成沟道,加上正确的VGS时,能使多数载流子流出沟道,因而“耗尽”了载流子,使管子转向截止。

以N沟道为例,它是在P型硅衬底上制成两个高掺杂浓度的源扩散区N+和漏扩散区N+,再分别引出源极S和漏极D。源极与衬底在内部连通,二者总保持等电位。图1(a)符号中的前头方向是从外向电,表示从P型材料(衬底)指身N型沟道。当漏接电源正极,源极接电源负极并使VGS=0时,沟道电流(即漏极电流)ID=0。随着VGS逐渐升高,受栅极正电压的吸引,在两个扩散区之间就感应出带负电的少数载流子,形成从漏极到源极的N型沟道,当VGS大于管子的开启电压VTN(一般约为+2V)时,N沟道管开始导通,形成漏极电流ID。

国产N沟道MOSFET的典型产品有3DO1、3DO2、3DO4(以上均为单栅管),4DO1(双栅管)。它们的管脚排列(底视图)见图2。

MOS场效应管比较“娇气”。这是由于它的输入电阻很高,而栅-源极间电容又非常小,极易受外界电磁场或静电的感应而带电,而少量电荷就可在极间电容上形成相当高的电压(U=Q/C),将管子损坏。因此了厂时各管脚都绞合在一起,或装在金属箔内,使G极与S极呈等电位,防止积累静电荷。管子不用时,全部引线也应短接。在测量时应格外小心,并采取相应的防静电感措施。下面介绍检测方法。

1.准备工作

测量之前,先把人体对地短路后,才能摸触MOSFET的管脚。最好在手腕上接一条导线与大地连通,使人体与大地保持等电位。再把管脚分开,然后拆掉导线。

2.判定电极

将万用表拨于R×100档,首先确定栅极。若某脚与其它脚的电阻都是无穷大,证明此脚就是栅极G。交换表笔重测量,S-D之间的电阻值应为几百欧至几千欧,其中阻值较小的那一次,黑表笔接的为D极,红表笔接的是S极。日本生产的3SK系列产品,S极与管壳接通,据此很容易确定S极。

3.检查放大能力(跨导)

将G极悬空,黑表笔接D极,红表笔接S极,然后用手指触摸G极,表针应有较大的偏转。双栅MOS场效应管有两个栅极G1、G2。为区分之,可用手分别触摸G1、G2极,其中表针向左侧偏转幅度较大的为G2极。

目前有的MOSFET管在G-S极间增加了保护二极管,平时就不需要把各管脚短路了。

电容的基础知识

常用电容按介质区分有纸介电容、油浸纸介电容、金属化纸介电容、云母电容、薄膜电容、陶瓷电容、电解电容等。

图1 电容的外形

电容种类

电 容 结 构 和 特 点

纸介电容

用两片金属箔做电极,夹在极薄的电容纸中,卷成圆柱形或者扁柱形芯子,然后密封在金属壳或者绝缘材料(如火漆、陶瓷、玻璃釉等)壳中制成。它的特点是体积较小,容量可以做得较大。但是有固有电感和损耗都比较大,用于低频比较合适。

云母电容

用金属箔或者在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中制成。它的特点是介质损耗小,绝缘电阻大、温度系数小,适宜用于高频电路。

陶瓷电容

用陶瓷做介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做极板制成。它的特点是体积小,耐热性好、损耗小、绝缘电阻高,但容量小,适宜用于高频电路。

铁电陶瓷电容容量较大,但是损耗和温度系数较大,适宜用于低频电路。

薄膜电容

结构和纸介电容相同,介质是涤纶或者聚苯乙烯。涤纶薄膜电容,介电常数较高,体积小,容量大,稳定性较好,适宜做旁路电容。

聚苯乙烯薄膜电容,介质损耗小,绝缘电阻高,但是温度系数大,可用于高频电路。

金属化纸介电容

结构和纸介电容基本相同。它是在电容器纸上覆上一层金属膜来代替金属箔,体积小,容量较大,一般用在低频电路中。

油浸纸介电容

它是把纸介电容浸在经过特别处理的油里,能增强它的耐压。它的特点是电容量大、耐压高,但是体积较大。

铝电解电容

它是由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极制成。还需要经过直流电压处理,使正极片上形成一层氧化膜做介质。它的特点是容量大,但是漏电大,稳定性差,有正负极性,适宜用于电源滤波或者低频电路中。使用的时候,正负极不要接反。

钽、铌电解电容

它用金属钽或者铌做正极,用稀硫酸等配液做负极,用钽或铌表面生成的氧化膜做介质制成。它的特点是体积小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好。用在要求较高的设备中。

半可变电容

也叫做微调电容。它是由两片或者两组小型金属弹片,中间夹着介质制成。调节的时候改变两片之间的距离或者面积。它的介质有空气、陶瓷、云母、薄膜等。

可变电容

它由一组定片和一组动片组成,它的容量随着动片的转动可以连续改变。把两组可变电容装在一起同轴转动,叫做双连。可变电容的介质有空气和聚苯乙烯两种。空气介质可变电容体积大,损耗小,多用在电子管收音机中。聚苯乙烯介质可变电容做成密封式的,体积小,多用在晶体管收音机中。

表1 常用电容的结构和特点

电容器上标有的电容数是电容器的标称容量。电容器的标称容量和它的实际容量会有误差。常用固定电容允许误差的等级见表2。常用固定电容的标称容量系列见表3。

允许误差

级别

±2%

02

±5%

±10%

±20%

(+20% -30%)

(+50% -20%)

(+100%-10%)

表2 常用固定电容允许误差的等级

电容类别

允许误差

容量范围

标 称 容 量 系 列

纸介电容、金属化纸介电容、纸膜复合介质电容、低频(有极性)有机薄膜介质电容

±5%

±10%

±20%

100pF-1uF

1.0 1.5 2.2 3.3 4.7 6.8

1uF-100uF

1 2 4 6 8 10 15 20 30

50 60 80 100

高频(无极性)有机薄膜介质电容、瓷介电容、玻璃釉电容、云母电容

±5%

1.1 1.2 1.3 1.5 1.6 1.8 2.0

2.4 2.7 3.0 3.3 3.6 3.9 4.3

4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1

±10%

1.0 1.2 1.5 1.8 2.2 2.7

3.3 3.9 4.7 5.6 6.8 8.2

±20%

1.0 1.5 2.2 3.3 4.7 6.8

铝、钽、铌、钛电解电容

±10%

±20%

+50/-20%

+100/-10%

1.0 1.5 2.2 3.3 4.7 6.8

表3 常用固定电容的标称容量系列

电容长期可靠地工作,它能承受的最大直流电压,就是电容的耐压,也叫做电容的直流工作电压。如果在交流电路中,要注意所加的交流电压最大值不能超过电容的直流工作电压值。

表4是常用固定电容直流工作电压系列。有*的数值,只限电解电容用。

1.6

4

6.3

10

16

25

32*

40

50

63

100

125*

160

250

300*

400

450*

500

630

1000

表4 常用固定电容的直流电压系列

由于电容两极之间的介质不是绝对的绝缘体,它的电阻不是无限大,而是一个有限的数值,一般在1000兆欧以上。电容两极之间的电阻叫做绝缘电阻,或者叫做漏电电阻。漏电电阻越小,漏电越严重。电容漏电会引起能量损耗,这种损耗不仅影响电容的寿命,而且会影响电路的工作。因此,漏电电阻越大越好。

电容的种类也很多,为了区别开来,也常用几个拉丁字母来表示电容的类别,如图2所示。第一个字母C表示电容,第二个字母表示介质材料,第三个字母以后表示形状、结构等。上面的是小型纸介电容,下面的是立式矩开密封纸介电容。表5列出电容的类别和符号。表6是常用电容的几项特性。

图2

顺 序

类 别

名 称

简 称

称 号

第一个字母

主 称

电容器

C

第二个字母

介质材料

纸 介

电 解

云 母

高频瓷介

低频瓷介

金属化纸介

聚苯乙烯等有机薄膜

涤纶等有机薄膜

Z

D

Y

C

T

J

B

L

第三个字母以后

形 状

筒 形

管 状

立式矩形

圆片形

T

G

L

Y

结 构

密 封

M

大 小

小 型

X

表5 电容的类别和符号

电容种类

容量范围

直流工作电压

(V)

运用频率

(MHz)

准确度

漏电电阻

(Ω)

中小型纸介电容

470pF-0.22uF

63-630

8以下

Ⅰ-Ⅲ

>5000

金属壳密封纸介电容

0.01uF-10uF

250-1600

直流,

脉动直流

Ⅰ-Ⅲ

>1000-5000

中、小型金属化纸介电容

0.01uF-0.22uF

160、250、400

8以下

Ⅰ-Ⅲ

>2000

金属壳密封金属化纸介电容

0.22uF-30uF

160-1600

直流,

脉动电流

Ⅰ-Ⅲ

>30-5000

薄膜电容

3pF-0.1uF

63-500

高频、低频

Ⅰ-Ⅲ

>10000

云母电容

10pF-0.51uF

100-7000

75-250以下

02-Ⅲ

>10000

瓷介电容

1pF-0.1uF

63-630

低频、高频

50-3000以下

02-Ⅲ

>10000

铝电解电容

1uF-10000uF

4-500

直流,

脉动直流

ⅣⅤ

钽、铌电解电容

0.47uF-1000uF

6.3-160

直流,

脉动直流

ⅢⅣ

瓷介微调电容

2/7pF-7/25pF

250-500

高频

>1000-10000

可变电容

最小>7pF

最大<1100pF

100以上

低频,高频

>500

表6 常用电容的几项特性

电子专业 常见面试题 (三)相关推荐

  1. 电子专业 常见面试题 (四)

    模拟电路 1.    基尔霍夫定理的内容是什么?(仕兰微电子)  基尔霍夫电流定律是一个电荷守恒定律,即在一个电路中流入一个节点的电荷与流出同一个 节点的电荷相等. 基尔霍夫电压定律是一个能量守恒定律 ...

  2. Java常见面试题(三)

    SSM框架部分 Spring 什么是 Spring框架?Spring框架有哪些主要模块? Spring框架是一个轻量级的Java开发框架,为应用开发提供平台. Spring框架主要包括7个模块 Spr ...

  3. Mybatis常见面试题(三)

    Mybatis 映射文件中,如果 A 标签通过 include 引用了 B 标签的内容,请问, B 标签能 否定义在 A 标签的后面,还是说必须定义在 A 标签的前面? :虽然 Mybatis 解析 ...

  4. Python常见面试题:TCP 协议中的三次握手与四次挥手相关概念详解

    今天来聊聊Python常见面试题中面试频率特别高的一个题目:TCP 协议中的三次握手与四次挥手. 涉及到的知识点有: 1.TCP.UDP 协议的区别 2.TCP 头部结构 3.三次握手与四次挥手过程详 ...

  5. TCP的三次握手和四次挥手及常见面试题

    一.前言 今天上掘金查看热门文章,发现一篇好文 ★前端 100 问:能搞懂 80% 的请把简历给我 ★ ,此文包含100个前端面试问题,仔细阅读完所有题目后,顿感身中数刀无法呼吸,留下了没有技术的泪水 ...

  6. Tomcat面试题+http面试题+Nginx面试题+常见面试题

    Tomcat面试题 1.Tomcat的缺省端口是多少?怎么修改? 答:缺省端口是8080,若要修改,可以进入Tomcat的安装目录下找到conf目录下的server.xml文件,找到该文件中的Conn ...

  7. 测试开发岗 - 常见面试题

    目录 1. 什么是软件测试, 谈谈你对软件测试的了解 2. 我看你简历上有写了解常见的开发模型和测试模型, 那你跟我讲一下敏捷模型 3. 我看你简历上还写了挺多开发技能的, 那你给我讲讲哈希表的实现流 ...

  8. 软件测试 - 测试用例常见面试题

    1.测试用例的要素 测试用例是为了实施测试而向被测试的系统提供的一组集合, 这组集合包含 : 测试环境, 操作步骤, 测试数据, 预期结果等要素. 例如 : 在 B 站输入框输入一个空格, 检查结果 ...

  9. 软件测试常见面试题及答案

    软件测试常见面试题及答案 乐搏软件学院 2017-09-22 10:14:37 软件测试常见面试题及答案 软件测试常见面试题及答案 软件测试方法有哪些分类?各有什么特点?设计测试用例的主要方法有哪些? ...

最新文章

  1. 从上市公司数据读懂我国新兴产业发展态势
  2. IOS开发知识(七)
  3. php能调用easyui窗口,关于jQuery EasyUI window窗口使用实例详解
  4. boost::iostreams模块实现大文件偏移量使用 file_descriptor 进行测试
  5. BLDC(无刷直流电机)应用相关
  6. SQuirreL SQL Client3.8 连接 HIVE2.2
  7. matlab 逻辑斯蒂回归,梯度下降法解逻辑斯蒂回归
  8. Arkeia Software宣布支持第100个Linux平台
  9. Atitit 薪酬管理法 工作手册 员:薪酬管理办法 1.薪酬结构 所有员工的薪酬均由岗位工资、级别工资、校龄工资、特别津贴、绩效工资和季度奖金六部分组成。其中岗位工资、级别工资、校龄工资、22
  10. python写入文件取消自动换行
  11. python中的def是什么意思啊_python的def是什么意思
  12. 基本知识 100052
  13. 苹果服务器怎么配置文件,苹果CMS数据库配置文件在哪
  14. html怎么把图片做成椭圆形,html5 作图椭圆
  15. Lambda表达式的省略
  16. 2006-10-30 18:37:00 著名Linux内核程序员大鹰 ox啊
  17. JS学习笔记六:js中的DOM操作
  18. 企业邮箱安全防盗措施
  19. 微信小程序编辑器,支持wxss,支持wxml
  20. 基础数学(五)——数值积分

热门文章

  1. 干货 | 拐点已至,云原生引领数字化转型升级
  2. 行业前沿研究 - 优士网
  3. Oracle EBS中打印二维码
  4. 机器人企业如何在激流勇进的市场中,深耕落地,突出重围?
  5. concurrent write to websocket connection
  6. 抓取主板市盈率,市净率和股息率
  7. SpringBoot Data整合ElasticSearch
  8. 如何减轻手机的电磁辐射?
  9. cesium添加淹没分析测量面积
  10. 大数据24小时:Salesforce拟65亿美元收购Mulesoft,林志颖加盟小黑鱼科技任首席体验官