什么是参数方程

  一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数:

 

  并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。相对而言,直接给出点坐标间关系的方程叫普通方程。

  例如在运动学,参数通常是“时间”,而方程的结果是速度、位置等。用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如摆线),建立它们的普通方程比较困难,甚至不可能,有了参数方程,就可以很容易表达。

直线

空间中的直线

  空间中两个平面的交集是一条直线,如果抛开平面,直线可以看作是点匀速直线运动的轨迹。

  通过两点确定一条直线,此外,已知一点和与直线平行的向量也能确定一条直线。

直线的参数方程

  一个点在空间中匀速直线运动,它在t = 0和t = 1时刻经过Q0 = (-1, 2, 2)和Q1 = (1, 3, -1)两点,Q(t)是该点关于时间t的函数:

  如上图所示,点在t = 0时刻的位置Q= Q(0) = (-1, 2, 2),t = 1时刻的位置Q1 = Q(1) = (1, 3, -1),那么在任意t时刻,Q的位置Q(t)是哪里?

  现在将问题转换为向量:

  由于是匀速运动,所以运动距离与时间成正比:

  随着时间的增长,向量也将增长。由于Q(t)是空间内的点,所以:

  这就是该直线的参数方程,其来源是Q0Q(t) = tQ0Q1

  如果t = 2,则在该时刻Q(2) = (3, 5, -4)

直线与平面的关系

  上面的两个点Q= (-1, 2, 2)和Q1 = (1, 3, -1)对于平面x + 2y + 4z = 7来说,位置关系是什么?在平面的两侧还是一侧?是否在平面上?

  将Q0和Q1代入平面方程:

  由此可见Q0和Q1不在平面上,它们分属于平面两侧,向量Q0Q1将穿过平面,与平面有唯一的交点,这个交点又是什么?

  上节已经求得了直线的参数方程Q(t) = (2t-1, t+2, -3t+2),直线与平面的交点将满足:

  将直线参数方程代入平面方程也可能出现有无数解或无解的情况,此时直线与平面没有唯一交点,直线可能在平面上或与平面平行。

  总结一下,把直线方程Q(t) = (x(t), y(t), z(t))代入平面方程ax + by + c = d,如果能计算出t的唯一值,直线穿过平面;如果得到一个等于d的常数,则直线在平面上;如果得到一个不等于d的常数,则直线与平面平行。

曲线

  对于平面或空间内的任意运动,同样可以用参数方程表示。

摆线的参数方程

  摆线是一种有名的曲线,它描述了当车辆匀速直线运动时,车轮上点的运动轨迹。如下图所示,P是半径为a的车轮边缘上的一点,刚开始时在原点,当车轮向右滚动后,P点将随之转动:

  我们关注的问题是车轮滚动后P的轨迹,也就是t时刻P点的位置。如果P点是位置关于时间的函数,用参数方程可以表示为Q(t) = (x(t), y(t))。这意味着从时间的角度来表示位置,然而时间并非最好的参变量,因为P的轨迹是与时间无关的,即使车速变快,P的运动轨迹也不会改变。我们注意到,当车轮匀速运动时,P的角度和时间成正比:

  ∠θ和运动时间成正比,如果θ超过2π,则相当于开始了一个新的周期,对于角度的运算,3π和π是相同的。由此,可以将时间替换为角度,也就是使用车轮转动角度做参变量将得到更简单的答案:

  将车轮转换为上图所示的向量(向量可参考《线性代数笔记2——向量(向量简介)》),则向量OP的参数方程就可以表示P点的运动轨迹。

  由于车轮是沿着地面转动,且最初P的位置与O相同,所以在第一圈时,OA = PA的弧长(我承认在画图时比较随意,看起来它们并不相等):

  实际上,无论第几圈,上式都成立。由于已经知道了OA和AB的长度,可以得出相应的向量:

  现在只需要求出向量BP即可。这里并不需要知道点B和点P的坐标,由于向量只描述了大小和方向,所以向量和具体位置无关,因此可以通过将向量BP平移求得BP

  最终:

摆线的斜率

  在车轮滚动一圈后,点P回到x轴,开始进入下一个周期,两个周期相交于一点。有一个值得关注的问题是,如果在该点处作轨迹曲线的切线,切线的斜率是什么?如下图所示,就是计算P5处轨迹曲线的切线:

  为了简化问题,将当车轮看作单位圆,此时a = 1,

  在P5处,θ=2π,斜率:

  此时没有意义,但可以计算极限:

  因此,在P5处,斜率趋近于∞,也就是有一条垂直于x轴的切线。

  也可以使用泰勒展开式计算斜率(泰勒级数可参考《数学笔记31——幂级数和泰勒级数》):

示例

示例1

  两条直线L1和L2是否相交,如果相交,其交点是什么?

  可以用以往的知识将参数方程转换为普通方程:

  方程组有唯一解,x = 1, y = 2,两条直线相交于(1, 2)

  也可以直接用参数方程求解。如果两条直线相交,参数方程组有唯一解:

  将解代入参数方程:

  两条直线相交于(1, 2)

示例2

  直线L经过P(0, -1, 1)和Q(2, 3, 3)两点,直线与平面2x + y – z = 1的关系?

  设直线方程是L(x(t), y(t), z(t)),则:

  将L的参数方程代入平面方程:

  t有唯一解,指向与平面相交。将t代入直线的参数方程,交点是(1, 1, 2)


  作者:我是8位的

  出处:http://www.cnblogs.com/bigmonkey

  本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途!

线性代数笔记6——直线和曲线的参数方程相关推荐

  1. 线性代数笔记11——向量空间

    向量空间又称线性空间,是线性代数的中心内容和基本概念之一.在解析几何里引入向量概念后,使许多问题的处理变得更为简洁和清晰,在此基础上的进一步抽象化,形成了与域相联系的向量空间概念. 线性组合 线性组合 ...

  2. 【笔记】位图(.bmp)和矢量图(Vector):位图是点阵图或光栅图,使用像素的一格一格来描述图像,放大以后每一个像素看就像是一个个的马赛克;矢量图是使用直线和曲线来描述图形,可以无限方法,不会失真

    一.什么是位图 计算机能以位图和矢量图格式显示图像. 1.位图(Bitmap): 图像又称点阵图或光栅图,它使用我们称为像素(象素,Pixel)的一格一格的小点来描述图像.计算机屏幕其实就是一张包含大 ...

  3. 线性代数笔记18——投影矩阵和最小二乘

    一维空间的投影矩阵 先来看一维空间内向量的投影: 向量p是b在a上的投影,也称为b在a上的分量,可以用b乘以a方向的单位向量来计算,现在,我们打算尝试用更"贴近"线性代数的方式表达 ...

  4. PCL:拟合平面直线和曲线以及空间曲线的原理到算法实现

    使用两种思路进行直线拟合: 1.利用逆矩阵思想 --------------进行下列公式的推导需要理解逆矩阵(求A矩阵的逆矩阵,则A矩阵必须是方阵)的知识: (1)为什么要引入逆矩阵呢? 逆矩阵可以类 ...

  5. 线性代数笔记-3Blue1Brown:(一)

    线性代数笔记-3Blue1Brown:(一) 文章目录 线性代数笔记-3Blue1Brown:(一) 一.向量是什么? 二.线性组合.张成的空间和基 三.矩阵与线性变换 三.矩阵乘法与线性变换复合 四 ...

  6. 线性代数笔记(1):线性方程组

    线性代数笔记(1):线性方程组 2019-10-14 这部分的笔记依据David C. Lay 的<线性代数及其应用>第一章内容. ♡1\heartsuit 1♡1 线性方程组 1.1 线 ...

  7. 【线性代数笔记】线性代数知识点总结、概念之间关系总结

    文章目录 矩阵的秩 1. 基础 2. 秩与行列式的关系 3. 秩与伴随矩阵的关系 4. 秩标准型 5. 秩与分块矩阵的关系 6. 秩与向量组的关系 7. 秩与线性方程组的关系 8. 秩与特征值的关系 ...

  8. 线性代数笔记20——行列式和代数余子式

    行列式 如果有两个向量<a1, a2>和<b1, b2>,那么这两个向量组成的行列式是: 看起来只是表示一个简单的计算,仅仅计算了一个数值,但是别忘了,行列式是由向量组成的,它 ...

  9. Java swing实现Visio中对直线、曲线、折线的画及拖动删除

    原文:http://blog.csdn.net/cuiyaoqiang/article/details/46361133 最终线条如图显示,可以实现线条的拖动.删除等 以下是两个核心的类: packa ...

最新文章

  1. java 集合快速排序_搞定Java快速排序
  2. Linux内核实验作业四
  3. mysql分布式安装可靠读写案列图解,高并发下的分布式锁-mysql篇
  4. 理解Python中的类对象、实例对象、属性、方法
  5. rvm RuvyGem Cocoapods brew
  6. Java常见异常处理
  7. VS 2008中的jQuery Intellisense
  8. swift文档_Swift 正式进入 Windows 平台
  9. 小程序执行运行过程原理_分享 | 还在焦虑等成绩?成绩小助手了解下
  10. 计算机英语知识竞赛题库,大学生计算机基础知识竞赛题库_大学生计算机基础知识竞赛试题附答案...
  11. Oracle PO ER Model
  12. Flutter实现google登陆(gmail)
  13. 反射(filed)的理解
  14. ACAD DWG to PDF Converter 9.8.2.4版本更新啦
  15. 大数据必备技能_大数据需要具备的5种必备技能
  16. 零基础学CocosCreator·第六季-常用编程框架和算法
  17. 使用GSL库实现非线性最小二乘拟合—原理与C代码实现(VS2019)
  18. 三硝基溴硼亚酞菁(BTNSubPc)齐岳生物介绍酞菁溶解度,定制多种酞菁材料
  19. 速营社团队给大家分享这些年经历的网赚时代
  20. 关于Cocos2dx-js游戏的jsc文件解密

热门文章

  1. C++ API 设计 07 第二章
  2. SystemUI的Plugin - 安卓R
  3. window统计文本字节_在线字数统计工具-统计字符字节汉字数字标点符号-计算word文章字数-使用帮助-字的区别...
  4. 一台虚拟主机放多个网站
  5. ggplot2-一页多图(不同来源, 灵活绘制)
  6. Pytorch高级训练框架Ignite详细介绍与常用模版
  7. win10怎么显示文件后缀_微软复活20年前生产力工具PowerToys,填补Win10缺失功能,开源且免费...
  8. sdcc编译器使用makefile
  9. 1 核 2G 服务器安装 gitlab-ce
  10. Ubuntu系统如何进入tty模式