我们需要做的第⼀件事情是获取 MNIST 数据。如果你是⼀个 git ⽤⼾,那么你能够通过克隆这本书的代码仓库获得数据,实现我们的⽹络来分类数字

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git

class Network(object):

def __init__(self, sizes):

self.num_layers = len(sizes)

self.sizes = sizes

self.biases = [np.random.randn(y, 1) for y in sizes[1:]]

self.weights = [np.random.randn(y, x)

for x, y in zip(sizes[:-1], sizes[1:])]

在这段代码中,列表 sizes 包含各层神经元的数量。例如,如果我们想创建⼀个在第⼀层有2 个神经元,第⼆层有 3 个神经元,最后层有 1 个神经元的 Network 对象,我们应这样写代码:

net = Network([2, 3, 1])

Network 对象中的偏置和权重都是被随机初始化的,使⽤ Numpy 的 np.random.randn 函数来⽣成均值为 0,标准差为 1 的⾼斯分布。这样的随机初始化给了我们的随机梯度下降算法⼀个起点。在后⾯的章节中我们将会发现更好的初始化权重和偏置的⽅法,但是⽬前随机地将其初始化。注意 Network 初始化代码假设第⼀层神经元是⼀个输⼊层,并对这些神经元不设置任何偏置,因为偏置仅在后⾯的层中⽤于计算输出。有了这些,很容易写出从⼀个 Network 实例计算输出的代码。我们从定义 S 型函数开始:

def sigmoid(z):

return 1.0/(1.0+np.exp(-z))

注意,当输⼊ z 是⼀个向量或者 Numpy 数组时,Numpy ⾃动地按元素应⽤ sigmoid 函数,即以向量形式。

我们然后对 Network 类添加⼀个 feedforward ⽅法,对于⽹络给定⼀个输⼊ a,返回对应的输出 6 。这个⽅法所做的是对每⼀层应⽤⽅程 (22):

def feedforward(self, a):

"""Return the output of the network if "a" is input."""

for b, w in zip(self.biases, self.weights):

a = sigmoid(np.dot(w, a)+b)

return a

当然,我们想要 Network 对象做的主要事情是学习。为此我们给它们⼀个实现随即梯度下降算法的 SGD ⽅法。代码如下。其中⼀些地⽅看似有⼀点神秘,我会在代码后⾯逐个分析

def SGD(self, training_data, epochs, mini_batch_size, eta,

test_data=None):

"""Train the neural network using mini-batch stochastic

gradient descent. The "training_data" is a list of tuples

"(x, y)" representing the training inputs and the desired

outputs. The other non-optional parameters are

self-explanatory. If "test_data" is provided then the

network will be evaluated against the test data after each

epoch, and partial progress printed out. This is useful for

tracking progress, but slows things down substantially."""

if test_data: n_test = len(test_data)

n = len(training_data)

for j in xrange(epochs):

random.shuffle(training_data)

mini_batches = [

training_data[k:k+mini_batch_size]

for k in xrange(0, n, mini_batch_size)]

for mini_batch in mini_batches:

self.update_mini_batch(mini_batch, eta)

if test_data:

print "Epoch {0}: {1} / {2}".format(

j, self.evaluate(test_data), n_test)

else:

print "Epoch {0} complete".format(j)

training_data 是⼀个 (x, y) 元组的列表,表⽰训练输⼊和其对应的期望输出。变量 epochs 和mini_batch_size 正如你预料的——迭代期数量,和采样时的⼩批量数据的⼤⼩。 eta 是学习速率,η。如果给出了可选参数 test_data ,那么程序会在每个训练器后评估⽹络,并打印出部分进展。这对于追踪进度很有⽤,但相当拖慢执⾏速度。

在每个迭代期,它⾸先随机地将训练数据打乱,然后将它分成多个适当⼤⼩的⼩批量数据。这是⼀个简单的从训练数据的随机采样⽅法。然后对于每⼀个 mini_batch我们应⽤⼀次梯度下降。这是通过代码 self.update_mini_batch(mini_batch, eta) 完成的,它仅仅使⽤ mini_batch 中的训练数据,根据单次梯度下降的迭代更新⽹络的权重和偏置。这是update_mini_batch ⽅法的代码:

def update_mini_batch(self, mini_batch, eta):

"""Update the network's weights and biases by applying

gradient descent using backpropagation to a single mini batch.

The "mini_batch" is a list of tuples "(x, y)", and "eta"

is the learning rate."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

for x, y in mini_batch:

delta_nabla_b, delta_nabla_w = self.backprop(x, y)

nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]

nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]

self.weights = [w-(eta/len(mini_batch))*nw

for w, nw in zip(self.weights, nabla_w)]

self.biases = [b-(eta/len(mini_batch))*nb

for b, nb in zip(self.biases, nabla_b)]

⼤部分⼯作由这⾏代码完成:

delta_nabla_b, delta_nabla_w = self.backprop(x, y)

这⾏调⽤了⼀个称为反向传播的算法,⼀种快速计算代价函数的梯度的⽅法。因此update_mini_batch 的⼯作仅仅是对 mini_batch 中的每⼀个训练样本计算梯度,然后适当地更新 self.weights 和 self.biases 。我现在不会列出 self.backprop 的代码。我们将在下章中学习反向传播是怎样⼯作的,包括self.backprop 的代码。现在,就假设它按照我们要求的⼯作,返回与训练样本 x 相关代价的适当梯度

完整的程序

"""

network.py

~~~~~~~~~~

A module to implement the stochastic gradient descent learning

algorithm for a feedforward neural network. Gradients are calculated

using backpropagation. Note that I have focused on making the code

simple, easily readable, and easily modifiable. It is not optimized,

and omits many desirable features.

"""

#### Libraries

# Standard library

import random

# Third-party libraries

import numpy as np

class Network(object):

def __init__(self, sizes):

"""The list ``sizes`` contains the number of neurons in the

respective layers of the network. For example, if the list

was [2, 3, 1] then it would be a three-layer network, with the

first layer containing 2 neurons, the second layer 3 neurons,

and the third layer 1 neuron. The biases and weights for the

network are initialized randomly, using a Gaussian

distribution with mean 0, and variance 1. Note that the first

layer is assumed to be an input layer, and by convention we

won't set any biases for those neurons, since biases are only

ever used in computing the outputs from later layers."""

self.num_layers = len(sizes)

self.sizes = sizes

self.biases = [np.random.randn(y, 1) for y in sizes[1:]]

self.weights = [np.random.randn(y, x)

for x, y in zip(sizes[:-1], sizes[1:])]

def feedforward(self, a):

"""Return the output of the network if ``a`` is input."""

for b, w in zip(self.biases, self.weights):

a = sigmoid(np.dot(w, a)+b)

return a

def SGD(self, training_data, epochs, mini_batch_size, eta,

test_data=None):

"""Train the neural network using mini-batch stochastic

gradient descent. The ``training_data`` is a list of tuples

``(x, y)`` representing the training inputs and the desired

outputs. The other non-optional parameters are

self-explanatory. If ``test_data`` is provided then the

network will be evaluated against the test data after each

epoch, and partial progress printed out. This is useful for

tracking progress, but slows things down substantially."""

if test_data: n_test = len(test_data)

n = len(training_data)

for j in xrange(epochs):

random.shuffle(training_data)

mini_batches = [

training_data[k:k+mini_batch_size]

for k in xrange(0, n, mini_batch_size)]

for mini_batch in mini_batches:

self.update_mini_batch(mini_batch, eta)

if test_data:

print "Epoch {0}: {1} / {2}".format(

j, self.evaluate(test_data), n_test)

else:

print "Epoch {0} complete".format(j)

def update_mini_batch(self, mini_batch, eta):

"""Update the network's weights and biases by applying

gradient descent using backpropagation to a single mini batch.

The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``

is the learning rate."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

for x, y in mini_batch:

delta_nabla_b, delta_nabla_w = self.backprop(x, y)

nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]

nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]

self.weights = [w-(eta/len(mini_batch))*nw

for w, nw in zip(self.weights, nabla_w)]

self.biases = [b-(eta/len(mini_batch))*nb

for b, nb in zip(self.biases, nabla_b)]

def backprop(self, x, y):

"""Return a tuple ``(nabla_b, nabla_w)`` representing the

gradient for the cost function C_x. ``nabla_b`` and

``nabla_w`` are layer-by-layer lists of numpy arrays, similar

to ``self.biases`` and ``self.weights``."""

nabla_b = [np.zeros(b.shape) for b in self.biases]

nabla_w = [np.zeros(w.shape) for w in self.weights]

# feedforward

activation = x

activations = [x] # list to store all the activations, layer by layer

zs = [] # list to store all the z vectors, layer by layer

for b, w in zip(self.biases, self.weights):

z = np.dot(w, activation)+b

zs.append(z)

activation = sigmoid(z)

activations.append(activation)

# backward pass

delta = self.cost_derivative(activations[-1], y) * \

sigmoid_prime(zs[-1])

nabla_b[-1] = delta

nabla_w[-1] = np.dot(delta, activations[-2].transpose())

# Note that the variable l in the loop below is used a little

# differently to the notation in Chapter 2 of the book. Here,

# l = 1 means the last layer of neurons, l = 2 is the

# second-last layer, and so on. It's a renumbering of the

# scheme in the book, used here to take advantage of the fact

# that Python can use negative indices in lists.

for l in xrange(2, self.num_layers):

z = zs[-l]

sp = sigmoid_prime(z)

delta = np.dot(self.weights[-l+1].transpose(), delta) * sp

nabla_b[-l] = delta

nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())

return (nabla_b, nabla_w)

def evaluate(self, test_data):

"""Return the number of test inputs for which the neural

network outputs the correct result. Note that the neural

network's output is assumed to be the index of whichever

neuron in the final layer has the highest activation."""

test_results = [(np.argmax(self.feedforward(x)), y)

for (x, y) in test_data]

return sum(int(x == y) for (x, y) in test_results)

def cost_derivative(self, output_activations, y):

"""Return the vector of partial derivatives \partial C_x /

\partial a for the output activations."""

return (output_activations-y)

#### Miscellaneous functions

def sigmoid(z):

"""The sigmoid function."""

return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):

"""Derivative of the sigmoid function."""

return sigmoid(z)*(1-sigmoid(z))

"""

mnist_loader

~~~~~~~~~~~~

A library to load the MNIST image data. For details of the data

structures that are returned, see the doc strings for ``load_data``

and ``load_data_wrapper``. In practice, ``load_data_wrapper`` is the

function usually called by our neural network code.

"""

#### Libraries

# Standard library

import cPickle

import gzip

# Third-party libraries

import numpy as np

def load_data():

"""Return the MNIST data as a tuple containing the training data,

the validation data, and the test data.

The ``training_data`` is returned as a tuple with two entries.

The first entry contains the actual training images. This is a

numpy ndarray with 50,000 entries. Each entry is, in turn, a

numpy ndarray with 784 values, representing the 28 * 28 = 784

pixels in a single MNIST image.

The second entry in the ``training_data`` tuple is a numpy ndarray

containing 50,000 entries. Those entries are just the digit

values (0...9) for the corresponding images contained in the first

entry of the tuple.

The ``validation_data`` and ``test_data`` are similar, except

each contains only 10,000 images.

This is a nice data format, but for use in neural networks it's

helpful to modify the format of the ``training_data`` a little.

That's done in the wrapper function ``load_data_wrapper()``, see

below.

"""

f = gzip.open('../data/mnist.pkl.gz', 'rb')

training_data, validation_data, test_data = cPickle.load(f)

f.close()

return (training_data, validation_data, test_data)

def load_data_wrapper():

"""Return a tuple containing ``(training_data, validation_data,

test_data)``. Based on ``load_data``, but the format is more

convenient for use in our implementation of neural networks.

In particular, ``training_data`` is a list containing 50,000

2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray

containing the input image. ``y`` is a 10-dimensional

numpy.ndarray representing the unit vector corresponding to the

correct digit for ``x``.

``validation_data`` and ``test_data`` are lists containing 10,000

2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional

numpy.ndarry containing the input image, and ``y`` is the

corresponding classification, i.e., the digit values (integers)

corresponding to ``x``.

Obviously, this means we're using slightly different formats for

the training data and the validation / test data. These formats

turn out to be the most convenient for use in our neural network

code."""

tr_d, va_d, te_d = load_data()

training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]

training_results = [vectorized_result(y) for y in tr_d[1]]

training_data = zip(training_inputs, training_results)

validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]

validation_data = zip(validation_inputs, va_d[1])

test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]

test_data = zip(test_inputs, te_d[1])

return (training_data, validation_data, test_data)

def vectorized_result(j):

"""Return a 10-dimensional unit vector with a 1.0 in the jth

position and zeroes elsewhere. This is used to convert a digit

(0...9) into a corresponding desired output from the neural

network."""

e = np.zeros((10, 1))

e[j] = 1.0

return e

# test network.py "cost function square func"

import mnist_loader

training_data, validation_data, test_data = mnist_loader.load_data_wrapper()

import network

net = network.Network([784, 10])

net.SGD(training_data, 5, 10, 5.0, test_data=test_data)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

python识别数字程序_详解python实现识别手写MNIST数字集的程序相关推荐

  1. python正则匹配空格+数字+空格_详解Python中正则匹配TAB及空格的小技巧

    详解Python中正则匹配TAB及空格的小技巧 发布时间:2020-10-15 08:38:48 来源:脚本之家 阅读:94 作者:杰瑞26 在正则中,使用.*可以匹配所有字符,其中.代表除\n外的任 ...

  2. python变量定义大全_详解python变量与数据类型

    这篇文章我们学习 Python 变量与数据类型 变量 变量来源于数学,是计算机语言中能储存计算结果或能表示值抽象概念,变量可以通过变量名访问.在 Python 中 变量命名规定,必须是大小写英文,数字 ...

  3. python 条件语句实例_详解python 条件语句和while循环的实例代码

    详解python 条件语句和while循环的实例代码,逻辑,布尔,值为,结束,语句 详解python 条件语句和while循环的实例代码 易采站长站,站长之家为您整理了详解python 条件语句和wh ...

  4. python模块搜索原则_详解python模块路径查找规则及定义

    在python中创建一个模块非常简单,只需要在当前目录下创建一个 .py文件即可,系统自动将其解析成模块,文件名就是模块名.很多我们源码时代的同学都认为在查找模块时优先使用当前目录下的自定义模块.其实 ...

  5. python提取hbase数据_详解python操作hbase数据的方法介绍

    配置 thrift python使用的包 thrift 个人使用的python 编译器是pycharm community edition. 在工程中设置中,找到project interpreter ...

  6. python装饰器由浅入深_详解Python装饰器由浅入深

    装饰器的功能在很多语言中都有,名字也不尽相同,其实它体现的是一种设计模式,强调的是开放封闭原则,更多的用于后期功能升级而不是编写新的代码.装饰器不光能装饰函数,也能装饰其他的对象,比如类,但通常,我们 ...

  7. python repair修复功能_详解Python修复遥感影像条带的两种方式

    GDAL修复Landsat ETM+影像条带 Landsat7 ETM+卫星影像由于卫星传感器故障,导致此后获取的影像出现了条带.如下图所示, 影像中均匀的布满条带. 使用GDAL修复影像条带的代码如 ...

  8. python导入模块介绍_详解Python模块导入方法

    python常被昵称为胶水语言,它能很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松联结在一起.python包含子目录中的模块方法比较简单,关键是能够在sys.path里面找到通向模块文件的 ...

  9. python提取邮件附件_详解python实现读取邮件数据并下载附件的实例

    详解python实现读取邮件数据并下载附件的实例 实现结果图: 实现代码: #!/usr/bin/python2.7 # _*_ coding: utf-8 _*_ """ ...

最新文章

  1. linux改变该进程优先级,linux – 是nice()用于更改线程优先级或进程优先级吗?
  2. 如何使用Windows开发机为iPhone开发?
  3. wcf寄宿iis7是的 500错误
  4. Evidence gathering tools
  5. 爬虫 spider07——爬取腾讯娱乐新闻
  6. php中的select case语句吗,VBS教程:VBScript 语句-Select Case 语句
  7. 工作197:判断对象里面是否有0和1
  8. android recyclerview item自适应高度_web前端学习:高度自适应知识点
  9. 【干货】高盛合伙人制度和激励机制!
  10. Discuz!如何实现为版块设定自定义logo,实现不同的版块不同的logo!
  11. linux下使用小票打印
  12. 《麦肯锡方法》第四部分 麦肯锡生存之道 第17-19章-思维导图
  13. 使用傅里叶模态法分析闪耀光栅
  14. poj 1113 Wall 凸包
  15. 配置管理的目标和主要活动
  16. 优盘扩容修复 u盘工具
  17. 电脑WIFI密码获取
  18. 未完成:读书笔记01芝加哥大学论文写作指南_Kate L. Turabian
  19. 为什么要使用Typescript
  20. LeetCode-分数排名

热门文章

  1. 基于ARM11+Linux的无线视频监控系统
  2. 南通seo:竞争对手的SEO分析策略
  3. acwing 105 七夕祭 中位数 + 前缀和 贪心
  4. 什么是Netbios(网络基本输入/输出系统)?
  5. DOS下强行删除文件
  6. 流媒体基础知识(一)
  7. 我的世界怎么用计算机,我的世界运算工艺mod教程全计算器使用说明
  8. 适配动态 | 3月份巨杉数据库与6款产品完成互认证
  9. 基于深度学习的鸟类检测识别系统(含UI界面,Python代码)
  10. 亲身经历——短信诈骗