本章介绍ceph中比较复杂的模块:

Peering机制。该过程保障PG内各个副本之间数据的一致性,并实现PG的各种状态的维护和转换。本章首先介绍boost库的statechart状态机基本知识,Ceph使用它来管理PG的状态转换。其次介绍PG的创建过程以及相应的状态机创建和初始化。然后详细介绍peering机制三个具体的实现阶段:GetInfo、GetLog、GetMissing。

statechart状态机
1.1 状态
1.2 事件
1.3 状态机的响应
1.4 状态机的定义
1.5 context函数
1.6 事件的特殊处理
1.7 PG状态机
1.8 PG状态机的总体状态转换图
1.9 OSD启动加载PG状态机转换
1.10 PG创建后状态机的状态转换
1.11 PG在触发Peering过程时机

1. statechart状态机

Ceph在处理PG的状态转换时,使用了boost库提供的statechart状态机。因此先简单介绍一下statechart状态机的基本概念和涉及的相关知识,以便更好地理解Peering过程PG的状态机转换流程。下面例举时截取了PG状态机的部分代码。

1.1 状态

没有子状态情况下的状态定义
在statechart里,一个状态的定义方式有两种:

struct Reset : boost::statechart::state< Reset, RecoveryMachine >, NamedState {
...
};

这里定义了状态Reset,它需要继承boost::statechart::state类。该类的模板参数中,第一个参数为状态自己的名字Reset,第二个参数为该状态所属状态机的名字,表明Reset是状态机RecoveryMachine的一个状态。

有子状态情况下的状态定义

struct Start;struct Started : boost::statechart::state< Started, RecoveryMachine, Start >, NamedState {
...
}struct Start : boost::statechart::state< Start, Started >, NamedState {
};

状态Started也是状态机RecoveryMachine的一个状态,模板参数中多了一个参数Start,它是状态Started的默认初始子状态。
这里定义的Start是状态Started的子状态。第一个模板参数是自己的名字,第二个模板参数是该子状态所属父状态的名字。

综上所述,一个状态,要么属于一个状态机,要么属于一个状态,成为该状态的子状态。其定义的模板参数是自己,第二个参数是拥有者,第三个参数是它的起始子状态。

1.2 事件

状态能够接收并处理事件。事件可以改变状态,促使状态发生转移。在boost库的statechart状态机中定义事件的方式如下所示:

struct QueryState : boost::statechart::event< QueryState > {Formatter *f;explicit QueryState(Formatter *f) : f(f) {}void print(std::ostream *out) const {*out << "Query";}};
}; 

QueryState为一个事件,需要继承boost::statechart::event类,模板参数为自己的名字。

1.3 状态机的响应

在一个状态内部,需要定义状态机处于当前状态时,可以接受的事件以及如何处理这些事件的方法:

#define TrivialEvent(T) struct T : boost::statechart::event< T > { \T() : boost::statechart::event< T >() {}            \void print(std::ostream *out) const {              \*out << #T;                          \}                                  \};TrivialEvent(Initialize)TrivialEvent(Load)TrivialEvent(GotInfo)TrivialEvent(NeedUpThru)TrivialEvent(NullEvt)TrivialEvent(FlushedEvt)TrivialEvent(Backfilled)TrivialEvent(LocalBackfillReserved)TrivialEvent(RemoteBackfillReserved)TrivialEvent(RejectRemoteReservation)TrivialEvent(RemoteReservationRejected)TrivialEvent(RemoteReservationCanceled)TrivialEvent(RequestBackfill)TrivialEvent(RequestRecovery)TrivialEvent(RecoveryDone)TrivialEvent(BackfillTooFull)TrivialEvent(RecoveryTooFull)TrivialEvent(MakePrimary)TrivialEvent(MakeStray)TrivialEvent(NeedActingChange)TrivialEvent(IsIncomplete)TrivialEvent(IsDown)TrivialEvent(AllReplicasRecovered)TrivialEvent(DoRecovery)TrivialEvent(LocalRecoveryReserved)TrivialEvent(RemoteRecoveryReserved)TrivialEvent(AllRemotesReserved)TrivialEvent(AllBackfillsReserved)TrivialEvent(GoClean)TrivialEvent(AllReplicasActivated)TrivialEvent(IntervalFlush)
struct Initial : boost::statechart::state< Initial, RecoveryMachine >, NamedState {explicit Initial(my_context ctx);void exit();typedef boost::mpl::list <boost::statechart::transition< Initialize, Reset >,boost::statechart::custom_reaction< Load >,boost::statechart::custom_reaction< NullEvt >,boost::statechart::transition< boost::statechart::event_base, Crashed >> reactions;boost::statechart::result react(const Load&);boost::statechart::result react(const MNotifyRec&);boost::statechart::result react(const MInfoRec&);boost::statechart::result react(const MLogRec&);boost::statechart::result react(const boost::statechart::event_base&) {return discard_event();}};

状态机的7种事件处理方法

上述代码列出了状态RecoveryMachine/Initial可以处理的事件列表和处理对应事件的方法:

1) 通过boost::mpl::list定义该状态可以处理多个事件类型。本例中可以处理Initialize、Load、NullEvt和event_base事件。

2) 简单事件处理

boost::statechart::transition< Initialize, Reset >

定义了状态Initial接收到事件Initialize后,无条件直接跳转到Reset状态;

3) 用户自定义事件处理: 当接收到事件后,需要根据一些条件来决定状态如何转移,这个逻辑需要用户自己定义实现

boost::statechart::custom_reaction< Load >

custom_reaction 定义了一个用户自定义的事件处理方法,必须有一个react()的处理函数处理对应该事件。状态转移的逻辑需要用户自己在react函数里实现:

boost::statechart::result react(const Load&);

4)NullEvt事件用户自定义处理,但是没有实现react()函数来处理,最终事件匹配了boost::statechart::event_base事件,直接调用函数discard_event把事件丢弃掉。

boost::statechart::custom_reaction< NullEvt >boost::statechart::result react(const boost::statechart::event_base&) {return discard_event();}

1.4 状态机的定义
RecoveryMachine为定义的状态机,需要继承boost::statechart::state_machine类:

    struct Initial;class RecoveryMachine : public boost::statechart::state_machine< RecoveryMachine, Initial > {RecoveryState *state;public:PG *pg;}

模板参数第一个参数为自己的名字,第二个参数为状态机默认的初始状态Initial。

状态机的基本操作有两个:

 RecoveryMachine machine;PG *pg;explicit RecoveryState(PG *pg): machine(this, pg), pg(pg), orig_ctx(0) {machine.initiate();//a---}void handle_event(const boost::statechart::event_base &evt,RecoveryCtx *rctx) {start_handle(rctx);machine.process_event(evt);//b---end_handle();}void handle_event(CephPeeringEvtRef evt,RecoveryCtx *rctx) {start_handle(rctx);machine.process_event(evt->get_event());/b---end_handle();}

a.状态机的初始化

initiate()是继承自boost::statechart::state_machine的成员函数。

b.函数process_event()用来向状态机投递事件,从而触发状态机接收并处理该事件

process_event()也是继承自boost::statechart::state_machine的成员函数。

1.5 context函数
context是状态机的一个比较有用的函数,它可以获取当前状态的所有祖先状态的指针。通过它可以获取父状态以及祖先状态的一些内部参数和状态值。context()函数是实现在boost::statechart::state_machine中的:

context()函数在boost::statechart::simple_state中有实现:

//boost_1_73_0/boost/statechart/simple_state.hpp
234     template< class OtherContext >
235     OtherContext & context()
236     {
237       typedef typename mpl::if_<
238         is_base_of< OtherContext, MostDerived >,
239         context_impl_this_context,
240         context_impl_other_context
241       >::type impl;
242       return impl::template context_impl< OtherContext >( *this );
243     }
244
245     template< class OtherContext >
246     const OtherContext & context() const
247     {
248       typedef typename mpl::if_<
249         is_base_of< OtherContext, MostDerived >,
250         context_impl_this_context,
251         context_impl_other_context
252       >::type impl;
253       return impl::template context_impl< OtherContext >( *this );
254     }

从simple_state的实现来看,context()可以获取当前状态的祖先状态指针,也可以获取当前状态所属状态机的指针。

例如状态Started是RecoveryMachine的一个状态,状态Start是Started状态的一个子状态,那么如果当前状态是Start,就可以通过该函数获取它的父状态Started的指针:

Started * parent = context< Started >();

同时也可以获取其祖先状态RecoveryMachine的指针:

RecoveryMachine *machine = context< RecoveryMachine >();

在状态机实现中,大量了使用该函数来获取相应的指针。Eg:

  PG *pg = context< RecoveryMachine >().pg;context< RecoveryMachine >().get_cur_transaction(),context< RecoveryMachine >().get_on_applied_context_list(),context< RecoveryMachine >().get_on_safe_context_list());

综上所述,context()函数为获取当前状态的祖先状态上下文提供了一种方法。

<span id = “1.6事件的特殊处理”></span>

1.6 事件的特殊处理
事件除了在状态转移列表中触发状态转移,或者进入用户自定义的状态处理函数,还可以有下列特殊的处理方式:

在用户自定义的函数里,可以直接调用函数transit来直接跳转到目标状态。例如:

boost::statechart::result PG::RecoveryState::Initial::react(const MLogRec& i)
{PG *pg = context< RecoveryMachine >().pg;assert(!pg->is_primary());post_event(i);return transit< Stray >();//go---
}

可以直接跳转到状态Stray。在用户自定义的函数里,可以调用函数post_event()直接产生相应的事件,并投递给状态机

PG::RecoveryState::Start::Start(my_context ctx): my_base(ctx),NamedState(context< RecoveryMachine >().pg->cct, "Start")
{context< RecoveryMachine >().log_enter(state_name);PG *pg = context< RecoveryMachine >().pg;if (pg->is_primary()) {dout(1) << "transitioning to Primary" << dendl;post_event(MakePrimary());//go---} else { //is_straydout(1) << "transitioning to Stray" << dendl; post_event(MakeStray());//go---}
}

在用户的自定义函数里,调用函数discard_event()可以直接丢弃事件,不做任何处理

boost::statechart::result PG::RecoveryState::Primary::react(const ActMap&)
{dout(7) << "handle ActMap primary" << dendl;PG *pg = context< RecoveryMachine >().pg;pg->publish_stats_to_osd();pg->take_waiters();return discard_event();//go---
}

在用户的自定义函数里,调用函数forward_event()可以把当前事件继续投递给状态机

boost::statechart::result PG::RecoveryState::WaitUpThru::react(const ActMap& am)
{PG *pg = context< RecoveryMachine >().pg;if (!pg->need_up_thru) {post_event(Activate(pg->get_osdmap()->get_epoch()));}return forward_event();
}

结合 1.3 状态机的响应 的3种事件响应,大概有7种事件响应处理的方法。

1.7 PG状态机
在类PG的内部定义了类RecoveryState,该类RecoveryState的内部定义了PG的状态机RecoveryMachine和它的各种状态。

class PG{class RecoveryState{class RecoveryMachine{};};
};

在每个PG创建时,在构造函数里创建一个新的RecoveryState类的对象,并创建相应的RecoveryMachine类的对象,也就是创建了一个新的状态机。每个PG类对应一个独立的状态机来控制该PG的状态转换。

PG::PG(OSDService *o, OSDMapRef curmap,const PGPool &_pool, spg_t p) :recovery_state(this){
}class RecoveryState{
public:explicit RecoveryState(PG *pg): machine(this, pg), pg(pg), orig_ctx(0) {machine.initiate();}
};

上面machine.initiate()调用的是boost::statechart::state_machine中的initiate()方法。
1.8 PG状态机的总体状态转换图

下图为PG状态机的总体状态转换图简化版

1.9 OSD启动加载PG状态机转换
当OSD重启时,调用函数OSD::init(),该函数调用load_pgs()加载已经存在的PG,其处理过程和以下创建PG的过程相似。

int OSD::init()
{// load up pgs (as they previously existed)load_pgs();
}void OSD::load_pgs()
{
...PG::RecoveryCtx rctx(0, 0, 0, 0, 0, 0);pg->handle_loaded(&rctx);//go--
...
}void PG::handle_loaded(RecoveryCtx *rctx)
{dout(10) << "handle_loaded" << dendl;Load evt;recovery_state.handle_event(evt, rctx);
}struct Initial : boost::statechart::state< Initial, RecoveryMachine >, NamedState {typedef boost::mpl::list <boost::statechart::transition< Initialize, Reset >,boost::statechart::custom_reaction< Load >,boost::statechart::custom_reaction< NullEvt >,boost::statechart::transition< boost::statechart::event_base, Crashed >> reactions;boost::statechart::result react(const Load&);
}boost::statechart::result PG::RecoveryState::Initial::react(const Load& l)
{PG *pg = context< RecoveryMachine >().pg;// do we tell someone we're here?pg->send_notify = (!pg->is_primary());pg->update_store_with_options();pg->update_store_on_load();return transit< Reset >();//go---
}

1.10 PG创建后状态机的状态转换

void PG::handle_create(RecoveryCtx *rctx)
{dout(10) << "handle_create" << dendl;rctx->created_pgs.insert(this);Initialize evt;recovery_state.handle_event(evt, rctx);ActMap evt2;recovery_state.handle_event(evt2, rctx);rctx->on_applied->add(make_lambda_context([this]() {update_store_with_options();}));
}

当PG创建后,同时在该类内部创建了一个属于该PG的RecoveryMachine类型的状态机,该状态机的初始化状态为默认初始化状态Initial。

在PG创建后,调用函数pg->handle_create(&rctx)来给状态机投递事件

该函数首先向RecoveryMachine投递了Initialize类型的事件。接收到Initialize类型的事件后直接转移到Reset状态。其次,向RecoveryMachine投递了ActMap事件。

boost::statechart::result PG::RecoveryState::Reset::react(const ActMap&)
{PG *pg = context< RecoveryMachine >().pg;if (pg->should_send_notify() && pg->get_primary().osd >= 0) {context< RecoveryMachine >().send_notify(pg->get_primary(),pg_notify_t(pg->get_primary().shard, pg->pg_whoami.shard,pg->get_osdmap()->get_epoch(),pg->get_osdmap()->get_epoch(),pg->info),pg->past_intervals);}pg->update_heartbeat_peers();pg->take_waiters();return transit< Started >();//a---
}

a. 在自定义的react函数里直接调用了transit函数跳转到Started状态。

struct Start;struct Started : boost::statechart::state< Started, RecoveryMachine, Start >, NamedState {//这里直接进入默认子状态Start...}/*-------Start---------*/PG::RecoveryState::Start::Start(my_context ctx): my_base(ctx),NamedState(context< RecoveryMachine >().pg, "Start"){context< RecoveryMachine >().log_enter(state_name);PG *pg = context< RecoveryMachine >().pg;if (pg->is_primary()) {ldout(pg->cct, 1) << "transitioning to Primary" << dendl;post_event(MakePrimary());//go---} else { //is_strayldout(pg->cct, 1) << "transitioning to Stray" << dendl;post_event(MakeStray());//go---}}struct Start : boost::statechart::state< Start, Started >, NamedState {explicit Start(my_context ctx);void exit();typedef boost::mpl::list <boost::statechart::transition< MakePrimary, Primary >,boost::statechart::transition< MakeStray, Stray >> reactions;};    struct Primary : boost::statechart::state< Primary, Started, Peering >, NamedState {//这里直接进入Primary的默认子状态Peering。...}struct Stray : boost::statechart::state< Stray, Started >, NamedState {...}    

1.进入状态RecoveryMachine/Started后,就进入RecoveryMachine/Started的默认的子状态RecoveryMachine/Started/Start中。
由以上代码可知,在Start状态的构造函数中,根据本OSD在该PG中担任的角色不同分别进行如下处理:

(1)如果是主OSD,就调用函数post_event(),抛出事件MakePrimary,进入主OSD的默认子状态Primary/Peering中;

(2)如果是从OSD,就调用函数post_event(),抛出事件MakeStray,进入Started/Stray状态;

对于一个OSD的PG处于Stray状态,是指该OSD上的PG副本目前状态不确定,但是可以响应主OSD的各种查询操作。它有两种可能:一种是最终转移到状态ReplicaActive,处于活跃状态,成为PG的一个副本;另一种可能的情况是:如果是数据迁移的源端,可能一直保持Stray状态,该OSD上的副本可能在数据迁移完成后,PG以及数据就都被删除了。

1.11 PG在触发Peering过程时机:
1.当系统初始化时,OSD重新启动导致PG重新加载。
2.PG新创建时,PG会发起一次Peering的过程
3. 当有OSD失效,OSD的增加或者删除等导致PG的acting set发生了变化,该PG就会重新发起一次Peering过程。
参考link:
 https://ivanzz1001.github.io/records/post/ceph/2019/02/01/ceph-src-code-part10_1

ceph peering机制-状态机相关推荐

  1. Ceph Peering以及数据均衡的改进思路

    前言 从15年3月接触Ceph分布式存储系统,至今已经5年了:因为工作的需要,对Ceph的主要模块进行了较深入的学习,也在Ceph代码层面做了些许改进,以满足业务需要(我们主要使用M版本).最近得闲, ...

  2. ceph 数据恢复机制_ceph数据恢复(成功率相当高)

    如何安全找回丢失数据的方法 1. 下载并安装B计划数据恢复软件. 2. 运行恢复软件,点击"深度扫描". 深度扫描是绕过文件系统直接从硬盘.U盘.SD卡等设备底层恢复数据,因此使用 ...

  3. ceph 代码分析 读_Ceph源码分析

    Ceph源码分析 作者:常涛 编著 出版日期:2016年10月 文件大小:2.34M 支持设备: ¥40.00在线试读 适用客户端: 言商书局 iPad/iPhone客户端:下载 Android客户端 ...

  4. 《Ceph源码分析》——导读

    本节书摘来自华章出版社<Ceph源码分析>一书中的导读,作者常涛,更多章节内容可以访问云栖社区"华章计算机"公众号查看 目 录 序言 第1章 Ceph整体架构 1.1 ...

  5. 【ceph】OSD心跳检测机制(前端后端网)

    目录 ceph心跳机制 OSD间的心跳机制 发送 接收 超时检测 peer OSD选择 OSD和MON间的心跳机制 总结: @bandaoyu,本文随时更新,连接:https://blog.csdn. ...

  6. ceph osdmap crush 分析

    1 maps 更新 1.1 更新规则   Because cluster map changes may be frequent, as in a very large system where OS ...

  7. Ceph 学习——OSD读写流程与源码分析(一)

    消息从客户端发送而来,之前几节介绍了 客户端下 对象存储.块存储库的实现以及他们在客户端下API请求的发送过程(Ceph学习--Librados与Osdc实现源码解析 . Ceph学习--客户端读写操 ...

  8. 分布式存储 Ceph 介绍及原理架构分享--云平台技术栈系列01

    导读:之前发布了云平台技术栈(ps:点击可查看),本文主要说一下其中的Ceph,从架构简介使用场景,以及内部IO流程.心跳机制.通信框架.CRUSH算法.QOS等多个方面逐渐介绍分布式存储系统Ceph ...

  9. ceph架构/IO原理分析(齐全)

    1. Ceph架构简介及使用场景介绍 1.1 Ceph简介 1.2 Ceph特点 1.3 Ceph架构 1.4 Ceph核心组件及概念介绍 1.5 三种存储类型-块存储 1.6 三种存储类型-文件存储 ...

  10. ceph存储原理_赠书 | Linux 开源存储全栈详解——从Ceph到容器存储

    // 留言点赞赠书我有书,你有故事么?留言说出你的存储故事留言点赞前两名,免费送此书截止日期12.27号12.30号公布名单 // 内容简介 本书致力于帮助读者形成有关Linux开源存储世界的细致的拓 ...

最新文章

  1. 火狐浏览器中添加httprequest的方法
  2. Hadoop生态圈-Flume的组件之自定义拦截器(interceptor)
  3. 从0到1 | 文本挖掘的传统与深度学习算法
  4. linux下c语言俄罗斯方块,C语言实现俄罗斯方块源代码
  5. C# String部分方法的例子StringBuilder的简单介绍
  6. 网站优化中应该注意的细节有哪些?
  7. 区块链系列教程之:比特币中的共识
  8. 求树的直径(两种方法)
  9. 开关电源雷击浪涌整改_高频开关电源的EMC电磁兼容整改问题分析
  10. php访问mysql 封装
  11. 业内为啥如此恨视觉中国
  12. $.getjson异常信息提示_【Java视频教程】day24-异常??????
  13. 大数据从入门到精通学习系统路线分享
  14. java嵌入chrome内核
  15. 摄影测量学和计算机视觉,摄影测量学
  16. 蓝桥杯第十二届省赛JAVA C组 试题 F: 时间显示
  17. android flutter教程,Android开发 学习Flutter 入门
  18. 计算机试卷分析与反思,试卷分析及教学反思
  19. 阿里巴巴Java开发手册认证考试题库
  20. 维修服务器请示,更换云服务器的请示

热门文章

  1. 【生活】驾照C1-科三手册
  2. php 条件求和,Excel条件求和公式是什么
  3. 如何批量将多个 PDF 文档转为 XPS 格式
  4. 根据录入的计算公式计算_增值税含税怎么计算?
  5. PS 将图片渐变透明
  6. matlab同时画n多条曲线,设置颜色及图例
  7. Excel 批量增加行高,解决打印表格部分行显示不全的问题
  8. 生命在于答疑——git推送本地到库鉴权失败
  9. office无法卸载无法安装的解决方法
  10. 硬核科普 | 小谈 辣椒素和辣椒素受体 的研究,来自一线植物科研人员