TI高精度实验室-运算放大器-第六节-压摆率

首先来看什么是压摆率 压摆率被定义为运放输出电压可以达到的 最大摆动速率 它以 V/us 为单位 测量压摆率时可以在运放的输入端 加入一个较大的阶跃信号 比如 1V 幅值 然后测量输出端的电压摆动 即测量输出电平从最终输出量的 10% 增加到 90% 时的时间间隔 有些运放的数据手册中 会专门给出压摆率指标 有些则用大信号的阶跃响应来代替 在这个例子中 我们可以看到 输出电压满幅为 10V 满幅的 10% 和 90% 对应的电平 分别为 1V 和 9V 它们之间的上升时间为 0.25 微秒 从而可以计算出这里的压摆率为 29V/us 压摆率主要描述了 运放在大信号输入时的响应指标

让我们先来复习一些基础知识 这个等式描述的是流经电容器的电流 等于电容器容值乘以电容器两端电压 随时间的变化率 当电流恒定时 电容器两端电压将会随着时间成线性变化 从而可以表示为v=mt 其中 v(t) 是电压的瞬时值 m 是图中直线的斜率 压摆率是运放的一个很重要的参数 下面我们等效画出运放的输入极和放大极 输入极有个跨导增益 gm 它把运放差分对管输入的电压 转化为本极的输出电流 Iout Iout 流入放大极 并对放大极的密勒电容 即图中的 Cc 进行充电 根据上一页幻灯片的说明 当 Iout 是常数时 Cc 两端电压将会线性增加 对于缓慢变化的信号 Iout 远小于本极的饱和输出电流 Iout(max) 这说明 Iout 会随着输入差分电压而变化 但对于快速变化的大信号 Iout 将会达到其饱和电流值 在这个例子中 Iout 饱和后运放的输入 将不再是虚短路 即运放的正负输入端引脚间的电压不再相等 因为 Iout 达到饱和成为常数 Cc 两端的电压 Vout 将会随时间以固定斜率线性增加 此时就认为运放达到压摆极限 即其输出转换速度达到了最快

体效应(body effect) 是一种常见的影响压摆率的效应 通过改变共模电压 体效应使放大器的压摆率降低 这种影响在同相输入结构的运放电路中尤其明显 因为此时共模电压会随输入电压的变化而变化 对同相放大电路 共模电压越高压摆率越低 一般放大器的压摆率都是在同相电路下测试的 即在最坏条件下测试的

我们此处假设晶体管为 PMOS 即 P 型 MOSFET 图中所示为典型的 PMOS 横截面 它在 P 型的硅基片上 嵌入了 N 型井作为衬底 在衬底两端各嵌入了 P 型的源极和漏极 从图中可见 在 P 型硅基片 和 N 型衬底之间会形成一个二极管 通常这个二极管是反偏的 当改变芯片工作时的共模电压 即改变二极管 PN 结两端电压时 因为 pn 结耗尽层宽度变化 结电容大小也会发生变化 我们重新回顾一下运放的输入级 来看看体效应电容对压摆率的影响 和前面的视频教程一样 我们在运放输入引脚之间 施加一个大阶跃信号 图中左边的 PMOS 截止 右边 PMOS 导通 从而输入级的所有电流 Iinput 从右边 PMOS 流过造成 Iout 饱和 运放输出达到压摆率上限 然而 一端接地的体效应电容 为 Iout 提供了另一条支路 使得流入密勒电容的电流减小 因为密勒电容两端的电压 和流经电容的电流呈线性关系 所以体效应电容造成的分流 使运放的压摆率降低 在这个例子中 体效应电容和密勒电容都等于 20pF 所以 Iout 是 Iinput 的一半 根据压摆率=Iout/Cc 可知 运放的压摆率也是没有体效应电容时的一半 通过充电 体效应电容两端电压最后会等于共模电压

TI高精度实验室-运算放大器-第六节-压摆率相关推荐

  1. TI高精度实验室-运算放大器-第十节-运放稳定性问题

    TI高精度实验室-运算放大器-第十节-运放稳定性问题 在本系列的视频当中 将会讨论到波特图 Bode plot 基本的稳定性理论 以及如何在 SPICE 当中 进行稳定性仿真 在这个视频中 我们会讨论 ...

  2. TI高精度实验室-运算放大器-第五节-带宽

    TI高精度实验室-运算放大器-第五节-带宽 我们将会探讨 Gain 增益 以及如何用线性或者是分贝来表示增益 同时也会探讨 pulse 极点 zeros 零点 Bode plots 波特图 Cutof ...

  3. TI高精度实验室-运算放大器-第七节-共模抑制和电源抑制

    TI高精度实验室-运算放大器-第七节-共模抑制和电源抑制 抑制可能是一件好事,特别是在共模或电源电压错误的情况下. 本系列视频介绍了如何改变运算放大器的共模电压或电源电压,从而在交流和直流两端引入误差 ...

  4. TI高精度实验室-运算放大器-第十六节-全差分放大器

    TI高精度实验室-运算放大器-第十六节-全差分放大器 现在看到的图中显示了全差分放大器 或者称为 FDA 上的标准的引脚连接 我们有两个电源引脚 和两个输入引脚 就和标准的单端运算放大器一样 FDA ...

  5. TI高精度实验室-运算放大器-第九节-低失真运算放大器的设计

    TI高精度实验室-运算放大器-第九节-低失真运算放大器的设计 本课程第一部分讲解THD+N的测量方法,第二部分讲解运放输入级失真,第三部分讲解运放输出级失真,第四部分讲解外部失真源头,例如供电.Hig ...

  6. TI高精度实验室-运算放大器-第十二节-电气过应力

    ** TI高精度实验室-运算放大器-第十二节-电气过应力 ** 本次课程开始 我们将讨论电气过应力 Electrical Overstress 在本次课程中 我们将讨论电气过应力的成因 并介绍几种可以 ...

  7. TI高精度实验室-运算放大器-第八节-噪声

    TI高精度实验室-运算放大器-第八节-噪声 噪声可以定义为一个不希望出现的信号 它掺杂在想要的信号中 从而引起误差 举个例子 在音频中噪声可以表现为丝丝声或者是爆破声 在一个传感器系统中 噪声可以表现 ...

  8. TI 高精度实验室《运算放大器系列--稳定性分析》

    TI 高精度实验室<运算放大器系列–稳定性分析> 10.1 一个不稳定的运放电路将会得到失真的瞬态响应,输出波形不是预期的结果.当输入或者负载变化时,这就会引起输出较大的过冲和失调,甚至导 ...

  9. TI 高精度实验室《运算放大器系列--带宽》

    TI 高精度实验室系列课程 - 运算放大器 5.1 电子领域我们经常需要表达数值,如 Operational gain 运算放大器的增益. Signal to noise ratio 信号与噪声比.C ...

  10. TI高精度实验室ADC系列培训视频 第3章和第4章 ADC噪声分析

    TI高精度实验室ADC系列培训视频(B站) TI高精度实验室ADC系列培训视频(21ic) 3.1误差分析背后统计学知识 对于一个均值为0的指标,典型值就是在高斯分布的均值上叠加±1个标准差之后的绝对 ...

最新文章

  1. ORACLE_SID含义
  2. RocketMQ的架构
  3. oracle 练习 50_萨克斯练习中的常用技巧
  4. Spring Boot 核心知识,深入剖析!
  5. gridreport如何设置打印3次_如何设置光固化3D打印机切片参数
  6. FTP文件传输协议介绍和常用命令
  7. Mysql union和union all用法
  8. 易懂分布式 | Kademlia算法
  9. spring mvc和swagger整合
  10. access笔试答案_ACCESS数据库考试试题及答案
  11. 4.2V锂电池充电、放电保护电路分享
  12. Jetson nano : PWM风扇调速。
  13. 计算机的储存容量1kb等于多少byte,1kb等于多少mb
  14. 经典算法题-----猴子吃桃的问题
  15. Spring关于AOP配置举例(XML配置文件方式)
  16. 基于tidbV6.0探索tiflash在多标签组合场景下的使用
  17. PBOC规范研究之四、文件结构及访问
  18. 每周更新 | 在线面试「对话窗口」功能上线,公共题库题型等更新
  19. 解决password自动填充问题
  20. 直流无刷电机仿真分析——基于simulink官方例程BLDC Speed Control

热门文章

  1. 2021-08-28-n皇后问题
  2. allegro 尺寸标注操作未到板边的处理
  3. 红包雨架构设计---1、技术架构
  4. 浏览器服务器响应报文查看,通过 Chrome浏览器 查看http请求报文
  5. c语言程序设计流程图案例
  6. SpringMVC:生成Excel和PDF
  7. [Bullet3]常见物体和初始化
  8. MPU6050的运动中断应用
  9. 人机平台:商业未来行动路线图
  10. 星空软件 linux,使用了Stellarium App,才发现星空摄影如此简单