作者:韩信子@ShowMeAI
教程地址:https://www.showmeai.tech/tutorials/41
本文地址:https://www.showmeai.tech/article-detail/207
声明:版权所有,转载请联系平台与作者并注明出处
收藏ShowMeAI查看更多精彩内容


引言

同样还是Rossmann这个场景问题,ShowMeAI在上一篇 机器学习实战 | Python机器学习综合项目-电商销量预估 里给大家讲解了基本的数据探索性分析、数据预处理和建模过程,本篇我们再来看看这些过程,对其中一些细节做一些优化。

1.项目概况介绍

1.1 背景介绍

Rossmann成立于1972年,是德国最大的日化用品超市,在7个欧洲国家有3000多家药店。商店不定时会举办短期的促销活动以及连续的促销活动以此来提高销售额。除此之外,商店的销售还受到许多因素的影响,包括促销、竞争、学校和国家假日、季节性和周期性。

可靠的销售预测使商店经理能够创建有效的员工时间表,从而提高生产力和动力,比如更好的调整供应链和合理的促销策略与竞争策略,具有重要的实用价值与战略意义。如果可以帮助Rossmann创建一个强大的预测模型,将帮助仓库管理人员专注于对他们最重要的内容:客户和团队。

本次的任务是希望建立机器学习模型,通过给出的数据来预测Rossmann德国各地1115家店铺的6周销量。

1.2 数据介绍

数据以1115家Rossmann连锁商店为研究对象,从2013年1月1日到2015年7月共计录1017209条销售数据(27个特征)。

数据集一共涵盖了四个文件:

  • train.csv:含有销量的历史数据。
  • test.csv:未含销量的历史数据。
  • sample_submission.csv:以正确格式提交的示例文件。
  • store.csv:关于每个商店的一些补充信息。

其中,train.csv中的数据中一共含有9列信息:

  • store:为对应店铺的id序号。
  • DayOfWeek:代表着每周开店的天数。
  • Data:是对应销售额Sales产生的日期。
  • Sales:就是销售额的历史数据。
  • Customers:为进店的客人数量。
  • Open:则表示这个店铺是否开门与否。
  • Promo:表示商店是否在当天有促销活动。
  • StateHoliday:与SchoolHoliday分别表示了是否是国定假日或是学校假日。

(1) 训练集

我们在kaggle的data页面下部的数据概览可以大致查看每个数据的分布情况(下为训练集train.csv情况)和部分数据样例如下:

(2) 测试集

test.csv中的数据列几乎和train.csv一样,但缺少了Sales(也就是销售数据)以及Customers(用户流量)这两列。而我们的最终目标就是利用test.csv以及store.csv中的补充信息预测出test.csv中缺失的Sales数据。

test.csv的数据分布情况,可以看到和上面相比缺少了Sales以及与Sales有强关联的Customer数据。

数据分布和部分示例数据如下:

(3) 结果文件

结果文件sample_submission.csv中仅有id与Sales这两列,这个文件是我们将我们的预测答案提交至Kaggle的判题器上的标准格式模板。

在Python中我们只需要打开此文件,并将预测数据按照顺序填入Sales这一列后,使用Dataframe.to_csv(‘sample_submission.csv‘)后就可以将带有预测数据的sample_submission.csv保存至本地并准备后续上传。

(4) 商店信息

大家可以看到,train.csvtest.csv中有对应的店铺id,这些店铺id的详细情况就对应在store.csv中,其中记录了一些店铺的地理位置信息以及营促销信息。

store.csv的数据分布情况,可以注意到这里有很多离散的类别标签。

数据分布和部分示例数据如下:

其中:

  • Store:对应表示了店铺的编号。
  • StoreType:店铺的种类,一共有a、b、c、d四种不同种类的店铺。大家可以把它想象成快闪店,普通营业店,旗舰店,或mini店这样我们生活中的类型。
  • Assortment:用a、b、c三种分类描述店铺内售卖产品的组合级别。例如旗舰店和mini店中组合的产品肯定是有很大不同的。
  • Competition DistanceCompetition Open Since YearCompetition Open Since Month:分别表示最近的竞争对手的店铺距离,开店时间(以年计算),开店时间(以月计算)。
  • Promo2:描述该店铺是否有长期的促销活动。
  • Promo2 Since YearPromo2 Since Week:分别表示商店开始参与促销的年份和日历周。
  • Promo Interval:描述promo2开始的连续间隔,以促销重新开始的月份命名。

1.3 项目目标

在了解了这些数据后我们就需要明确一下我们的项目目的,在Rossmanns销售预测中,我们需要利用历史数据,也就是train.csv中的数据进行监督学习。训练出的模型利用通test.csv中的数据进行模型推断(预测),将预测出的数据以sample_submission.csv的格式提交至Kaggle进行评分。在这过程中还可以结合store.csv中的补充信息加强我们模型获得数据的能力。

1.4 评估准则

模型所采纳的评估指标为Kaggle在竞赛中所推荐的 Root Mean Square Percentage Error (RMSPE)指标。

RMSPE=1n∑i=1n(yi−y^iyi)2=1n∑i=1n(y^iyi−1)2RMSPE = \sqrt{\frac{1}{n}\sum\limits_{i=1}^n\left(\frac{y_i-\hat{y}_i}{y_i}\right)^2} = \sqrt{\frac{1}{n}\sum\limits_{i=1}^n\left(\frac{\hat{y}_i}{{y}_i}-1\right)^2} RMSPE=n1​i=1∑n​(yi​yi​−y^​i​​)2​=n1​i=1∑n​(yi​y^​i​​−1)2​

其中:

  • yiy_iyi​ 代表门店当天的真实销售额。
  • y^i\hat{y}_iy^​i​ 代表相对应的预测销售额。
  • nnn 代表样本的数量。

如果有任何一天的销售额为0,那么将会被忽略。最后计算得到的这个RMSPE值越小代表误差就越小,相应就会获得更高的评分。

1.5 解决方案核心板块

本篇我们的解决方案,分成以下几个板块。

  • Step 1: 加载数据
  • Step 2: 探索性数据分析
  • Step 3: 数据预处理(缺失值)
  • Step 4: 特征工程
  • Step 5: 基准模型与评估
  • Step 6: XGBoost建模
# 载入必要的库
import pandas as pd
import numpy as np
import xgboost as xgbimport missingno as msno
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline

1.6 加载数据

Rossmann场景建模数据包含很多信息维度,比如客户数量、假期等。又根据其任务目标可以判定为监督学习中典型的回归类建模问题。我们先对加载数据再做后续分析挖掘建模。

# 载入数据
train = pd.read_csv('./rossmann-store-sales/train.csv')
test = pd.read_csv('./rossmann-store-sales/test.csv')
store = pd.read_csv('./rossmann-store-sales/store.csv')

通过DataFrame.info()操作可以查看DataFrame的数据基本信息(数值分布、缺失值情况等)。详细的pandas操作也欢迎大家查看ShowMeAI的 数据分析系列教程 和 数据科学工具速查 | Pandas使用指南

下图的操作结果显示test.csvstore.csv中均存在缺失值,我们可以进行相应的预处理。

train.info(), test.info(), store.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1017209 entries, 0 to 1017208
Data columns (total 9 columns):
Store            1017209 non-null int64
DayOfWeek        1017209 non-null int64
Date             1017209 non-null object
Sales            1017209 non-null int64
Customers        1017209 non-null int64
Open             1017209 non-null int64
Promo            1017209 non-null int64
StateHoliday     1017209 non-null object
SchoolHoliday    1017209 non-null int64
dtypes: int64(7), object(2)
memory usage: 69.8+ MB<class 'pandas.core.frame.DataFrame'>
RangeIndex: 41088 entries, 0 to 41087
Data columns (total 8 columns):
Id               41088 non-null int64
Store            41088 non-null int64
DayOfWeek        41088 non-null int64
Date             41088 non-null object
Open             41077 non-null float64
Promo            41088 non-null int64
StateHoliday     41088 non-null object
SchoolHoliday    41088 non-null int64
dtypes: float64(1), int64(5), object(2)
memory usage: 2.5+ MB<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1115 entries, 0 to 1114
Data columns (total 10 columns):
Store                        1115 non-null int64
StoreType                    1115 non-null object
Assortment                   1115 non-null object
CompetitionDistance          1112 non-null float64
CompetitionOpenSinceMonth    761 non-null float64
CompetitionOpenSinceYear     761 non-null float64
Promo2                       1115 non-null int64
Promo2SinceWeek              571 non-null float64
Promo2SinceYear              571 non-null float64
PromoInterval                571 non-null object
dtypes: float64(5), int64(2), object(3)
memory usage: 87.2+ KB

2. 探索性数据分析

我们先对目标结果sales做一点分析,先对其进行分布绘图

train.loc[train.Open==0].Sales.hist(align='left')

发现:当店铺关闭时,日销量必然为0。

fig = plt.figure(figsize=(16,6))ax1 = fig.add_subplot(121)
ax1.set_xlabel('Sales')
ax1.set_ylabel('Count')
ax1.set_title('Sales of Closed Stores')
plt.xlim(-1,1)
train.loc[train.Open==0].Sales.hist(align='left')ax2 = fig.add_subplot(122)
ax2.set_xlabel('Sales')
ax2.set_ylabel('PDF')
ax2.set_title('Sales of Open Stores')
sns.distplot(train.loc[train.Open!=0].Sales)print('The skewness of Sales is {}'.format(train.loc[train.Open!=0].Sales.skew()))
The skewness of Sales is 1.5939220392699809

去掉店铺关闭时的数据之后,重新绘制店铺开启时的日销量分布图。可以发现日销量表现为明显的有偏分布,其偏度约为1.594,远大于0.75,我们会考虑对数据分布做预处理调整。

下面我们只采用店铺营业(Open!=0)时的数据进行训练。

train = train.loc[train.Open != 0]
train = train.loc[train.Sales > 0].reset_index(drop=True)
train.shape
(844338, 9)

3. 缺失值处理

# 训练集的缺失信息:无缺失
train[train.isnull().values==True]

| Store | DayOfWeek | Date |Sales |Customers |Open |Promo |StateHoliday | SchoolHoliday |
|–|–|–|–|–|–|–|–|–|–|

# 测试集的缺失信息
test[test.isnull().values==True]

| Id | Store | DayOfWeek | Date | Open | Promo | StateHoliday | SchoolHoliday |
| --|–|–|–|–|–|–|–|–|
| 479 | 480 | 622 | 4 | 2015/9/17 | NaN | 1 | 0 | 0 |
| 1335 | 1336 | 622 | 3 | 2015/9/16 | NaN | 1 | 0 | 0 |
| 2191 | 2192 | 622 | 2 | 2015/9/15 | NaN | 1 | 0 | 0 |
| 3047 | 3048 | 622 | 1 | 2015/9/14 | NaN | 1 | 0 | 0 |
| 4759 | 4760 | 622 | 6 | 2015/9/12 | NaN | 0 | 0 | 0 |
| 5615 | 5616 | 622 | 5 | 2015/9/11 | NaN | 0 | 0 | 0 |
| 6471 | 6472 | 622 | 4 | 2015/9/10 | NaN | 0 | 0 | 0 |
| 7327 | 7328 | 622 | 3 | 2015/9/9 | NaN | 0 | 0 | 0 |
| 8183 | 8184 | 622 | 2 | 2015/9/8 | NaN | 0 | 0 | 0 |
| 9039 | 9040 | 622 | 1 | 2015/9/7 | NaN | 0 | 0 | 0 |
| 10751 | 10752 | 622 | 6 | 2015/9/5 | NaN | 0 | 0 | 0 |

下面我们看一下store的缺失情况

# store的缺失信息
msno.matrix(store)

test.csvstore.csv中都有缺失值,我们会对其进行处理,并对特征进行合并:

# 默认test中的店铺全部正常营业
test.fillna(1,inplace=True)# 对CompetitionDistance中的缺失值采用中位数进行填补
store.CompetitionDistance = store.CompetitionDistance.fillna(store.CompetitionDistance.median())# 对其它缺失值全部补0
store.fillna(0,inplace=True)

我们知道,缺失值的一些处理方法包括:

  • 删除字段(去除包含缺失值的columns)。
  • 填补缺失值(填入平均值、中位数或者拟合填充等)。
  • 标记缺失值,把缺失值标记为特殊值(比如-999)或者新加一列标注某字段是否是缺失。
# 特征合并
train = pd.merge(train, store, on='Store')
test = pd.merge(test, store, on='Store')
train.head(10)

| Store | DayOfWeek | Date | Sales | Customers | Open | Promo | StateHoliday | SchoolHoliday | StoreType | Assortment | CompetitionDistance | CompetitionOpenSinceMonth | CompetitionOpenSinceYear | Promo2 | Promo2SinceWeek | Promo2SinceYear | PromoInterval
|–|–|–|–|–|–|–|–|–|–|–|–|–|–|–|–|–|–|–|
| 0 | 1 | 5 | 2015/7/31 | 5263 | 555 | 1 | 1 | 0 | 1 | c | a | 1270 | 9 | 2008 | 0 | 0 | 0 | 0 |
| 1 | 1 | 4 | 2015/7/30 | 5020 | 546 | 1 | 1 | 0 | 1 | c | a | 1270 | 9 | 2008 | 0 | 0 | 0 | 0 |
| 2 | 1 | 3 | 2015/7/29 | 4782 | 523 | 1 | 1 | 0 | 1 | c | a | 1270 | 9 | 2008 | 0 | 0 | 0 | 0 |
| 3 | 1 | 2 | 2015/7/28 | 5011 | 560 | 1 | 1 | 0 | 1 | c | a | 1270 | 9 | 2008 | 0 | 0 | 0 | 0 |
| 4 | 1 | 1 | 2015/7/27 | 6102 | 612 | 1 | 1 | 0 | 1 | c | a | 1270 | 9 | 2008 | 0 | 0 | 0 | 0 |
| 5 | 1 | 6 | 2015/7/25 | 4364 | 500 | 1 | 0 | 0 | 0 | c | a | 1270 | 9 | 2008 | 0 | 0 | 0 | 0 |
| 6 | 1 | 5 | 2015/7/24 | 3706 | 459 | 1 | 0 | 0 | 0 | c | a | 1270 | 9 | 2008 | 0 | 0 | 0 | 0 |
| 7 | 1 | 4 | 2015/7/23 | 3769 | 503 | 1 | 0 | 0 | 0 | c | a | 1270 | 9 | 2008 | 0 | 0 | 0 | 0 |
| 8 | 1 | 3 | 2015/7/22 | 3464 | 463 | 1 | 0 | 0 | 0 | c | a | 1270 | 9 | 2008 | 0 | 0 | 0 | 0 |
| 9 | 1 | 2 | 2015/7/21 | 3558 | 469 | 1 | 0 | 0 | 0 | c | a | 1270 | 9 | 2008 | 0 | 0 | 0 | 0 |

4. 特征工程

4.1 特征抽取函数

def build_features(features, data):# 直接使用的特征features.extend(['Store','CompetitionDistance','CompetitionOpenSinceMonth','StateHoliday','StoreType','Assortment','SchoolHoliday','CompetitionOpenSinceYear', 'Promo', 'Promo2', 'Promo2SinceWeek', 'Promo2SinceYear'])# 以下特征处理方式参考:https://blog.csdn.net/aicanghai_smile/article/details/80987666# 时间特征,抽取出年月日星期几等信息features.extend(['Year','Month','Day','DayOfWeek','WeekOfYear'])data['Year'] = data.Date.dt.yeardata['Month'] = data.Date.dt.monthdata['Day'] = data.Date.dt.daydata['DayOfWeek'] = data.Date.dt.dayofweekdata['WeekOfYear'] = data.Date.dt.weekofyear# 'CompetitionOpen':竞争对手的已营业时间# 'PromoOpen':竞争对手的已促销时间# 两个特征的单位均为月features.extend(['CompetitionOpen','PromoOpen'])data['CompetitionOpen'] = 12*(data.Year-data.CompetitionOpenSinceYear) + (data.Month-data.CompetitionOpenSinceMonth)data['PromoOpen'] = 12*(data.Year-data.Promo2SinceYear) + (data.WeekOfYear-data.Promo2SinceWeek)/4.0data['CompetitionOpen'] = data.CompetitionOpen.apply(lambda x: x if x > 0 else 0)        data['PromoOpen'] = data.PromoOpen.apply(lambda x: x if x > 0 else 0)# 'IsPromoMonth':该天店铺是否处于促销月,1表示是,0表示否features.append('IsPromoMonth')month2str = {1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', 9:'Sept', 10:'Oct', 11:'Nov', 12:'Dec'}data['monthStr'] = data.Month.map(month2str)data.loc[data.PromoInterval==0, 'PromoInterval'] = ''data['IsPromoMonth'] = 0for interval in data.PromoInterval.unique():if interval != '':for month in interval.split(','):data.loc[(data.monthStr == month) & (data.PromoInterval == interval), 'IsPromoMonth'] = 1# 字符特征转换为数字mappings = {'0':0, 'a':1, 'b':2, 'c':3, 'd':4}data.StoreType.replace(mappings, inplace=True)data.Assortment.replace(mappings, inplace=True)data.StateHoliday.replace(mappings, inplace=True)data['StoreType'] = data['StoreType'].astype(int)data['Assortment'] = data['Assortment'].astype(int)data['StateHoliday'] = data['StateHoliday'].astype(int)

4.2 特征抽取

# 处理Date方便特征提取
train.Date = pd.to_datetime(train.Date, errors='coerce')
test.Date = pd.to_datetime(test.Date, errors='coerce')# 使用features数组储存使用的特征
features = []# 对train与test特征提取
build_features(features, train)
build_features([], test)# 打印使用的特征
print(features)
['Store', 'CompetitionDistance', 'CompetitionOpenSinceMonth', 'StateHoliday', 'StoreType', 'Assortment', 'SchoolHoliday', 'CompetitionOpenSinceYear', 'Promo', 'Promo2', 'Promo2SinceWeek', 'Promo2SinceYear', 'Year', 'Month', 'Day', 'DayOfWeek', 'WeekOfYear', 'CompetitionOpen', 'PromoOpen', 'IsPromoMonth']

5. 基准模型与评估

5.1 定义评估准则函数

由于需要预测连续值,因此需要采用回归模型。由于该项目是Kaggle赛题,测试集是使用根均方百分比误差(Root Mean Square Percentage Error,RMSPE)评测的,因此这里只能使用RMSPE。RMSPE的计算公式为:

RMSPE=1n∑i=1n(yi−y^iyi)2{\rm RMSPE} = \frac{1}{n}\sqrt{\sum\limits_{i = 1}^n {{{\left( {\frac{{{y_i} - {{\hat y}_i}}}{{{y_i}}}} \right)}^2}}} RMSPE=n1​i=1∑n​(yi​yi​−y^​i​​)2​

其中 yiy_iyi​ 与 y^i{\hat y}_iy^​i​ 分别为第 iii 个样本标签的真实值与预测值。

# 评价函数Rmspe
# 参考:https://www.kaggle.com/justdoit/xgboost-in-python-with-rmspedef ToWeight(y):w = np.zeros(y.shape, dtype=float)ind = y != 0w[ind] = 1./(y[ind]**2)return wdef rmspe(yhat, y):w = ToWeight(y)rmspe = np.sqrt(np.mean(w * (y-yhat)**2))return rmspedef rmspe_xg(yhat, y):y = y.get_label()y = np.expm1(y)yhat = np.expm1(yhat)w = ToWeight(y)rmspe = np.sqrt(np.mean(w * (y-yhat)**2))return "rmspe", rmspedef neg_rmspe(yhat, y):y = np.expm1(y)yhat = np.expm1(yhat)w = ToWeight(y)rmspe = np.sqrt(np.mean(w * (y-yhat)**2))return -rmspe

5.2 基准模型评估

我们构建回归树模型作为基础模型进行建模和评估。回归树我们直接使用SKLearn的DecisionTreeRegressor即可,搭配K折交叉验证与网格搜索进行调参,主要调节的超参数是树的最大深度max_depth

大家注意到这里的评估准则为neg_rmspe,这是恰当的传入模型调优的评估准则,GridSearchCV默认找scoring_fnc最大的参数,而直接使用rmspe指标,其值越小,模型效果越好,因此应该取负,从而neg_rmspe值越大,模型精度越好。

from sklearn.model_selection import GridSearchCV, ShuffleSplit
from sklearn.metrics import make_scorerfrom sklearn.tree import DecisionTreeRegressorregressor = DecisionTreeRegressor(random_state=2)cv_sets = ShuffleSplit(n_splits=5, test_size=0.2)
params = {'max_depth':range(10,40,2)}
scoring_fnc = make_scorer(neg_rmspe)grid = GridSearchCV(regressor,params,scoring_fnc,cv=cv_sets)
grid = grid.fit(train[features], np.log1p(train.Sales))DTR = grid.best_estimator_
# 显示最佳超参数
DTR.get_params()
{'criterion': 'mse','max_depth': 30,'max_features': None,'max_leaf_nodes': None,'min_impurity_decrease': 0.0,'min_impurity_split': None,'min_samples_leaf': 1,'min_samples_split': 2,'min_weight_fraction_leaf': 0.0,'presort': False,'random_state': 2,'splitter': 'best'}
# 生成上传文件
submission = pd.DataFrame({"Id": test["Id"], "Sales": np.expm1(DTR.predict(test[features]))})
submission.to_csv("benchmark.csv", index=False)

模型在测试集上的Public Score为0.18423,Private Score为0.22081。下面使用XGBoost对基准测试结果进行提升。

6. XGBoost建模与调优

6.1 模型参数

XGBoost是比较强大的模型,可调参数较多(具体可以参考ShowMeAI文章 XGBoost建模应用详解),我们主要调整下列的超参数:

  • eta:学习率。
  • max_depth:单颗回归树的最大深度,较小导致欠拟合,较大导致过拟合。
  • subsample:0-1之间,控制每棵树随机采样的比例,减小这个参数的值,算法会更加保守,避免过拟合。但如果这个值设置得过小,可能会导致欠拟合。
  • colsample_bytree:0-1之间,用来控制每棵随机采样的特征的占比。
  • num_trees:树的棵树,也就是迭代步数。
# # 默认的一版参数
# params = {'objective': 'reg:linear',
#           'eta': 0.01,
#           'max_depth': 11,
#           'subsample': 0.5,
#           'colsample_bytree': 0.5,
#           'silent': 1,
#           'seed': 1
#           }
# num_trees = 10000
# 第二次调参,学习率过大,效果下降
# params = {"objective": "reg:linear",
#           "booster" : "gbtree",
#           "eta": 0.3,
#           "max_depth": 10,
#           "subsample": 0.9,
#           "colsample_bytree": 0.7,
#           "silent": 1,
#           "seed": 1301
#           }
# num_trees = 10000
# 第三次调参,步长适中,收敛速度快,结果优
params = {"objective": "reg:linear","booster" : "gbtree","eta": 0.1,"max_depth": 10,"subsample": 0.85,"colsample_bytree": 0.4,"min_child_weight": 6,"silent": 1,"thread": 1,"seed": 1301}
num_trees = 1200

6.2 模型训练

import numpy as np  # 导入numpy包
from sklearn.model_selection import KFold  # 从sklearn导入KFold包#输入数据推荐使用numpy数组,使用list格式输入会报错
def K_Flod_spilt(K,fold,data):''':param K: 要把数据集分成的份数。如十次十折取K=10:param fold: 要取第几折的数据。如要取第5折则 flod=5:param data: 需要分块的数据:param label: 对应的需要分块标签:return: 对应折的训练集、测试集和对应的标签'''split_list = []kf = KFold(n_splits=K)for train, test in kf.split(data):split_list.append(train.tolist())split_list.append(test.tolist())train,test=split_list[2 * fold],split_list[2 * fold + 1]return  data[train], data[test]  #已经分好块的数据集
# 随机划分训练集与验证集
from sklearn.model_selection import train_test_split#X_train, X_test = train_test_split(train, test_size=0.2, random_state=2)
X_train, X_test = K_Fold_spilt(10,5,train,label)dtrain = xgb.DMatrix(X_train[features], np.log1p(X_train.Sales))
dvalid = xgb.DMatrix(X_test[features], np.log1p(X_test.Sales))
dtest = xgb.DMatrix(test[features])watchlist = [(dtrain, 'train'),(dvalid, 'eval')]
gbm = xgb.train(params, dtrain, num_trees, evals=watchlist, early_stopping_rounds=50, feval=rmspe_xg, verbose_eval=False)

6.3 提交结果文件

# 生成提交文件
test_probs = gbm.predict(xgb.DMatrix(test[features]), ntree_limit=gbm.best_ntree_limit)
indices = test_probs < 0
test_probs[indices] = 0
submission = pd.DataFrame({"Id": test["Id"], "Sales": np.expm1(test_probs)})
submission.to_csv("xgboost.csv", index=False)

6.4 特征优化

在电商类场景中,过往的历史统计特征也非常重要,我们可以通过对历史销量数据,做不同时间粒度的统计构建统计特征作为补充信息,对于建模效果优化也有帮助,如下是一些示例:

sales_mean_bystore = X_train.groupby(['Store'])['Sales'].mean().reset_index(name='MeanLogSalesByStore')
sales_mean_bystore['MeanLogSalesByStore'] = np.log1p(sales_mean_bystore['MeanLogSalesByStore'])sales_mean_bydow = X_train.groupby(['DayOfWeek'])['Sales'].mean().reset_index(name='MeanLogSalesByDOW')
sales_mean_bydow['MeanLogSalesByDOW'] = np.log1p(sales_mean_bydow['MeanLogSalesByStore'])sales_mean_bymonth = X_train.groupby(['Month'])['Sales'].mean().reset_index(name='MeanLogSalesByMonth')
sales_mean_bymonth['MeanLogSalesByMonth'] = np.log1p(sales_mean_bymonth['MeanLogSalesByMonth'])

参考资料

  • 图解机器学习算法 | 从入门到精通系列
  • 数据分析系列教程
  • 数据科学工具速查 | Pandas使用指南

ShowMeAI系列教程推荐

相关文章推荐

  • Python机器学习算法应用实践
  • SKLearn入门与简单应用案例
  • SKLearn最全应用指南
  • XGBoost建模应用详解
  • LightGBM建模应用详解
  • Python机器学习综合项目-电商销量预估
  • Python机器学习综合项目-电商销量预估<进阶方案>
  • 机器学习特征工程最全解读
  • 自动化特征工程工具Featuretools应用
  • AutoML自动化机器学习建模

机器学习实战 | 综合项目-电商销量预估进阶方案相关推荐

  1. 电商销量预测方法综述

    摘要 随着数字营销4.0的日趋成熟,大数据营销成为营销科学的研究重点,而其中,销量的准确预测具有重要意义,它对于自身营销规划.市场分析.物流规划都有重要意义.但是销量的预测受影响复杂,传统的基于统计的 ...

  2. Python + 大数据 - 数仓实战之智能电商分析平台

    Python + 大数据 - 数仓实战之智能电商分析平台 1. 项目架构 2. 数据仓库维度模型设计-事实表 事实表的特征:表里没有存放实际的内容,他是一堆主键的集合,这些ID分别能对应到维度表中的一 ...

  3. 实战分布式之电商高并发秒杀场景总览

    前言 本文是新系列"实战高并发"的开篇作.这个系列作为"我说分布式"的子系列,将着重挑选若干典型的分布式实战场景,尽量对当下高并发领域较为热门的架构及业务场景做 ...

  4. 【实战高保真】电商saas全套原型、店铺管理、店铺装修、商品管理、会员管理、维权管理、会员管理、营销管理、财务管理、渠道管理、saas系统、Axure高保真后台管理原型、rp源文件、axure原型

    [实战高保真]电商saas全套原型.店铺管理.店铺装修.商品管理.会员管理.维权管理.会员管理.营销管理.财务管理.渠道管理.saas系统.Axure高保真后台管理原型.rp源文件.axure原型 A ...

  5. Java毕设项目电商平台客流统计系统(java+VUE+Mybatis+Maven+Mysql)

    Java毕设项目电商平台客流统计系统(java+VUE+Mybatis+Maven+Mysql) 项目运行 环境配置: Jdk1.8 + Tomcat8.5 + Mysql + HBuilderX(W ...

  6. 盒格速 M 2022风口项目电商新玩法

    盒格速M 2022风口项目电商新玩法.60元即可参与,抢单➕自动卖出➕收钱,抢单➕一买一卖即可获利,火爆全网➕***黑马项目,开启月入过万无需推广模式.... 盒格速M全网启动,终于等来落地了,错过太 ...

  7. react基础06--react综合案例-电商网站导航

    react基础06--react综合案例-电商网站导航 1 介绍 2 案例设计模块 2.1 分类导航数据模型设计 2.2 一级分类导航切换高亮效果 2.3 显示二级分类导航 2.4 路由跳转到二级导航 ...

  8. 生鲜电商平台多方位可行性方案,如何撬开“蓝海”

    大市场容量.低渗透率成就生鲜电商蓝海,生鲜电商市场规模近万亿,而渗透率不足1%,高门槛全程冷链配送的高配送要求和生鲜产品的非标准化使得生鲜平台成为电商难以经营的类目之一,又成为只有少数玩家参与并获得较 ...

  9. 公众号电商小程序运营方案

    公众号电商是通过优质内容链接用户与产品,是一种以内容为媒介,以产品销售.流量变现为目的的线上销售模式.通过优质的内容聚合粉丝,粉丝在阅读过程中购买商品,完成消费. 以内容为导向的公众号电商更容易打造自 ...

  10. 基于Hadoop开发的大数据实战项目——电商日志分享系统

    项目介绍 大数据电商日志平台项目以某电商网站真实的业务数据架构为基础,将数据从收集到使用通过前端应用程序,后端程序,数据分析,平台部署等多方位的闭环的业务实现.形成了一套符合教学体系的电商日志分析项目 ...

最新文章

  1. 用神经网络的分类行为理解力的相互作用
  2. C#中 paint()与Onpaint()的区别
  3. 王道408数据结构——第七章 查找
  4. 17、java中的集合(4)
  5. python中upper函数有什么用_几个有用的python字符串函数(format,join,split,startwith,endwith,lower,upper)...
  6. PWA(Progressive Web App)入门系列:Notification
  7. Linux系统管理(7)——Linux单用户模式详解 及应用场景
  8. UIScrollView setContentOffset: animated:YES 偶尔卡顿解决方案
  9. 蓝桥杯题目 黑色星期五
  10. 营业执照在线生成_潍坊综合保税区发出全省首张覆盖四大市场主体类型的“微信秒批”营业执照...
  11. kettle数据库乱码问题
  12. Keil MDK 软件包(MDK5 Software Packs)离线下载方法
  13. 爬取人民日报_抓取人民日报
  14. 惠普服务器优盘安装系统蓝屏,惠普u盘装系统出现蓝屏现象怎么解决
  15. 实现“附近的人”的方式原理
  16. oracle 安装 step6,Tecnomatix16.0.1节点锁定型许可安装手册Win10
  17. A股数据分析之收集数据:股票列表和股价
  18. Jmeter-录制脚本操作
  19. 已知二叉树先序序列和中序序列,求后序序列
  20. 导购提成怎么算_导购员工资提成计算

热门文章

  1. java 微信卡券开发 --创建微信卡券
  2. 批量下载微软官网上的桌面壁纸图片
  3. 重现Struts1的操纵classLoader漏洞
  4. 戴尔t40服务器自动开机,新安装的戴尔T40服务器风扇不转了是什么原因?
  5. 单片机 舵机 SG90 舵机 控制原理 MSP432 单片机
  6. 统计学、机器学习、数据挖掘、深度学习的关系
  7. pano2vr 缩略图添加场景名称
  8. photoshop cc 2017 mac 破解版
  9. mysql5.7 64位下载_MySQL5.7下载-MySQL数据库5.7下载 v5.7.22.1官方版(32位/64位)--pc6下载站...
  10. ubuntu20.04.1下安装qt4相关依赖库