文章目录

  • 前言
  • 一、Latent space
  • 二、AutoEncoder 和 VAE
    • 1.AutoEncoder:
    • 2.VAE:
  • 三、Diffusion扩散模型
    • 1.前向过程
    • 2.逆向过程
  • 四、多模态 cross attention
  • 五、Stable Diffusion原理
    • 1.训练过程:
      • ResnetBlock
      • Spatial Transformer(Cross Attention)
      • DownSample/UpSample
    • 2.前向过程
  • *、代码解析
    • 1.整体代码
    • 2.unet解析
      • 1、self.input_blocks
      • 2、middle_blocks
      • 3、self.output_blocks
  • 总结

前言

Stable diffusion是一个基于 Latent Diffusion Models(潜在扩散模型,LDMs)的文图生成(text-to-image)模型。具体来说,得益于 Stability AI 的计算资源支持和在 LAION-5B 的一个子集数据支持训练,用于文图生成。

Latent Diffusion Models 通过在一个潜在表示空间中迭代“去噪”数据来生成图像,然后将表示结果解码为完整的图像,让文图生成能够在消费级GPU上,在10秒级别时间生成图片。目前,Stable Diffusion发布了v2版本。v1版是Latent Diffusion Models的一个具体实现,模型架构设置:自动编码器下采样因子为8,UNet大小为860M,文本编码器为CLIP ViT-L/14。官方目前提供了以下权重


提示:以下是本篇文章正文内容,下面案例可供参考

一、Latent space

隐空间是压缩数据的一个表示。数据压缩的目的是学习数据中较重要的信息。以编码器-解码器网络为例,首先使用全卷积神经网(FCN)络学习图片特征,我们将特征提取中对数据的降维看作一种有损压缩。由于解码器需要重建(reconstruct)数据,模型必须学习如何储存所有相关信息并且忽略噪音,压缩(降维)的好处在于可以去掉多余的信息从而关注于最关键的特征。

二、AutoEncoder 和 VAE

1.AutoEncoder:

(1)AE是一个预训练的自编码器,优化目标是通过 Encoder 压缩数据,再通过decoder 还原数据,使得输入输出的数据尽量相同

(2)对于图像数据,decoder 还原数据可以看做是一个生成器,由于 decoder 输入数据z属于R空间,输入z的分布无法被固定住,所以大部分生成的图片是无意义的。

2.VAE:

(1)给定输入解码器的z一个分布可以解决上述问题,假设一个服从标准多元高斯分布的多维随机变量的数据集X,根据已知分布采样得到的zi,来训练decoder神经网络,从而得到多元高斯分布的均值和方差,从而成功得到一个逼近真实分布p(X)的p’(X)

(2)求解p’(X|z)的概率分布

(3)通过极大似然估计,最大化p’(X)的概率,但由于xi的维度很大,zi的维度也很大,需要准确找到与xi分布相关的zi,需要大量的采样,因此需要在encoder中引入后验分布p’(z|xi),让xi与zi关联起来

(4)利用encoder通过假设已知数据的分布,拟合其参数,从而逼近真实的后验分布p’(z|xi),在这里假设后验分布是基于多元高斯分布,则让encoder输出分布的均值和方差

(5)总体流程

三、Diffusion扩散模型

1.前向过程

1.t 时刻的分布等于 t-1 时刻的分布+随机高斯分布的噪音,其中α是噪音的衰减值

2.任意时刻的分布 Xt ,都可以通过 X0 初始状态,以及步数计算出来:

2.逆向过程

已知 Xt,求初始状态的 X0,这里利用贝叶斯公式来预测 X0:
首先求已知 Xt 的分布求 **Xt-1**时刻的分布 (详细推导见上篇博客) :

四、多模态 cross attention

Unet 中间层引入cross attention,加入多模态的条件(文本,类别,layout,mask),实现如下:其中Q来自latent spaceK,V来自文本等另一序列:

五、Stable Diffusion原理

1.训练过程:

(1)使用预训练的CLIP模型,对需要训练的图像数据生成对应的描述词语。

(2)使用预训练的通用VAE,先用Encoder,将输入图片降维到 latent space(通常降采样倍数4-16)

(3) 将latent space输入diffusion model,进行扩散(正向采样),一步步生成噪声(在这个过程中,通过权重 β 控制每步生成噪声的强度,直到生成纯噪声,并记录每步生成噪声的数据,作为GT

(4)利用cross attention 将 latent space的特征与另一模态序列的特征融合,并添加到diffusion model的逆向过程,通过Unet逆向预测每一步需要减少的噪音,通过GT噪音与预测噪音的损失函数计算梯度。

(5)其中Denoising Unet的结构如下:

ResnetBlock

左下角小图所示, ResnetBlock 接受两个输入:latent 向量经过卷积变换后和经过全连接投影的 timestep_embedding 做加和,再和经过 skip connection 的原始 latent 向量做加和,送入另一个卷积层,得到经 Resnet 编码变换后的 latent 输出。

注意左侧的 ResnetBlock 和右侧的 ResnetBlock 的细微不同。左侧的 Resnet Block 接受的 latent 向量从 UNET 的上一层传入,而右侧的 ResnetBlock 除了接受 UNET 上一层的结果 latent 外,还需要接受左侧对应的 UNET 层的输出,两个 latent concat 起来作为 输入。所以,如果右侧的 ResnetBlock 上层的输出结果 shape 为 (64, 64, 320),左侧对应 UNET 层的输出结果为 (64, 64, 640),那么这个 ResnetBlock 得到的输入 latent 的 shape 为 (64, 64, 960)。

Spatial Transformer(Cross Attention)

右下角小图所示,Spatial Transformer 同样接受两个输入:经过上一个网络模块(一般为 ResnetBlock)处理和变换后的 latent 向量(对应的是是图片 token),及对应的 context embedding(文本 prompt 经过 CLIP 编码后的输出), cross attention 之后,得到变换后的 latent 向量(通过注意力机制,将 token 对应的语义信息注入到模型认为应该影响的图片 patch 中)。 Spatial Transformer 输出的 shape 和输入一致,但在对应的位置上融合了语义信息。

DownSample/UpSample

DownSample 将 latent 向量的前两个轴的大小缩减 50%,而 UpSample 将 latent 向量的前两个轴的大小增大一倍。DownSample 使用一个步长为 2 的二维卷积来实现,同时将输入 latent 向量的 channel 数变化成输出 latent 向量的 channel 数;而 UpSample 使用插值算法来实现,在插值之后进行一个步长为 1 的卷积,同时通过一个步长为 1 的二维卷积来将输入 latent 向量的 channel 数变化成输出 latent 向量的 channel 数。

需要注意的是,在整个 UNET 执行一次的过程中,timestep_embedding 和 content embedding 始终保持不变。而在 UNET 反复执行多次的过程中,timestep_embedding 每次都会发生变化,而 content embedding 始终保持不变。在迭代过程中,每次 UNET 输出的 noise_slice 都与原来 latent 向量相减,作为下次迭代时,UNET 的 Latent 输入。

2.前向过程

一个 Image Auto Encoder-Decoder,用于将 Image 编码成隐含向量
,或者从隐含向量
中还原出图片;
一个 UNET 结构,使用 UNET 进行迭代降噪,在文本引导下进行多轮预测,将随机高斯噪声
转化成图片隐含向量

1.用文本编码器( CLIP 的 ViT-L/14 ),将用户输入的 Prompt 文本转化成 text embedding;
2.根据假定分布(一般是多元高斯分布),生成一张纯噪音图像;
3.利用VAE encoder 压缩到latent space;
4.执行Denoising Unet,利用cross attention融合多模态信息,并预测每一步需要减去的噪音:
5.利用VAE decoder还原到同一分布下的原图大小

*、代码解析

1.整体代码

1、prompt编码为token。编码器为FrozenCLIPEmbedde(包括1层的 CLIPTextEmbeddings 和12层的自注意力encoder)
c = self.cond_stage_model.encode(c)    # (c为输入的提示语句,重复2次)  输出:(2,77,768)batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,return_overflowing_tokens=False, padding="max_length", return_tensors="pt")# self.tokenizer来自 transformers包中的 预训练CLIPTokenizertokens = batch_encoding["input_ids"].to(self.device)             # (2,77)一句话编码为77维outputs = self.transformer(input_ids=tokens).last_hidden_state   # 12层self-atten,结果(2777682、samples_ddim, _ = sampler.sample(S=opt.ddim_steps,conditioning=c,batch_size=opt.n_samples,shape=shape,verbose=False,unconditional_guidance_scale=opt.scale,unconditional_conditioning=uc,eta=opt.ddim_eta,x_T=start_code)01、self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)    # S=50# 这一步是ddim中,预先register超参数,如a的连乘等# Data shape for PLMS sampling is (2, 4, 32, 32)02、samples, intermediates = self.plms_sampling(conditioning, size,callback=callback,img_callback=img_callback,quantize_denoised=quantize_x0,mask=mask, x0=x0,ddim_use_original_steps=False,noise_dropout=noise_dropout,temperature=temperature,score_corrector=score_corrector,corrector_kwargs=corrector_kwargs,x_T=x_T )img = torch.randn(shape, device=device)    # (2,4,32,32)for i, step in enumerate(iterator):index = total_steps - i - 1                                        # index=50-i-1, step=981ts = torch.full((b,), step, device=device, dtype=torch.long)       # [981,981]outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,quantize_denoised=quantize_denoised, temperature=temperature,noise_dropout=noise_dropout, score_corrector=score_corrector,corrector_kwargs=corrector_kwargs,unconditional_guidance_scale=unconditional_guidance_scale,unconditional_conditioning=unconditional_conditioning,old_eps=old_eps, t_next=ts_next)c_in = torch.cat([unconditional_conditioning, c])    # 添加一个空字符,与promt拼接e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)    # timesteps:[981,981,981,981] -> (4,320)emb = self.time_embed(t_emb)           # 2*linear:(4,320) -> (4,1280)# unet中带入embed与prompt,具体代码见下节for module in self.input_blocks:h = module(h, emb, context)        # 输入(4,4,32,32) (4,1280) (4,77,768)hs.append(h)h = self.middle_block(h, emb, context) for module in self.output_blocks:h = th.cat([h, hs.pop()], dim=1)   # (4,1280,4,4) -> (4,2560,4,4)h = module(h, emb, context)return self.out(h)                     # (43203232)卷积为(4432323、e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)   # 上步中得到的结果拆开:(243232e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)  # 用7.5乘以二者差距,再加回空语句生成的图x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)                  # DDIM计算:e_t(2,4,32,32) index:49  -> (2,4,32,32)4、x_samples_ddim = model.decode_first_stage(samples_ddim)    # (2,4,32,32)h = self.conv_in(z)    # 卷积4->512x = torch.nn.functional.interpolate(h, scale_factor=2.0, mode="nearest")  #(25126464)h = self.up[i_level].block[i_block](h)    # 经过几次卷积与上采样h = self.norm_out(h)   # (2,128,256,256)h = nonlinearity(h)    # x*torch.sigmoid(x)h = self.conv_out(h)   # conv(128,3) -》(232562565、后处理
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy()
x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim)
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
img = Image.fromarray(x_sample.astype(np.uint8))
img.save(os.path.join(sample_path, f"{base_count:05}.png"))

2.unet解析

DDIM中的Unet 包含输入模块中间模块输出模块三部分:

1、self.input_blocks

包含12个不同的 TimestepEmbedSequential结构,下面列举三种:

1、self.input_blocks
ModuleList((0): TimestepEmbedSequential((0): Conv2d(4, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(1): TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=320, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 320, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(320, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 320, eps=1e-06, affine=True)(proj_in): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=320, out_features=320, bias=False)(to_v): Linear(in_features=320, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=320, out_features=2560, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=1280, out_features=320, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=320, out_features=320, bias=False)(to_k): Linear(in_features=768, out_features=320, bias=False)(to_v): Linear(in_features=768, out_features=320, bias=False)(to_out): Sequential((0): Linear(in_features=320, out_features=320, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((320,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((320,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(320, 320, kernel_size=(1, 1), stride=(1, 1))))(6): TimestepEmbedSequential((0): Downsample((op): Conv2d(640, 640, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))))

前向过程
为h添加emb和交与propmt的交叉注意力,会执行多次

emb_out = self.emb_layers(emb)      # (41280)卷积为(4320)
h = h + emb_out                     # (43203232+432011)x = self.attn1(self.norm1(x)) + x                     # 自注意力:x(41024320)映射到qkv,均320维
x = self.attn2(self.norm2(x), context=context) + x    # 交叉注意力:context(4,77,768)映射到kv的320维
x = self.ff(self.norm3(x)) + x

噪音图像h(4,4,32,32)在其中变化为:(4,320,32,32)(4,320,16,16)(4,640,16,16)(4,1280,8,8)(4,1280,4,4)

2、middle_blocks

TimestepEmbedSequential((0): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())(1): SpatialTransformer((norm): GroupNorm(32, 1280, eps=1e-06, affine=True)(proj_in): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1))(transformer_blocks): ModuleList((0): BasicTransformerBlock((attn1): CrossAttention((to_q): Linear(in_features=1280, out_features=1280, bias=False)(to_k): Linear(in_features=1280, out_features=1280, bias=False)(to_v): Linear(in_features=1280, out_features=1280, bias=False)(to_out): Sequential((0): Linear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(ff): FeedForward((net): Sequential((0): GEGLU((proj): Linear(in_features=1280, out_features=10240, bias=True))(1): Dropout(p=0.0, inplace=False)(2): Linear(in_features=5120, out_features=1280, bias=True)))(attn2): CrossAttention((to_q): Linear(in_features=1280, out_features=1280, bias=False)(to_k): Linear(in_features=768, out_features=1280, bias=False)(to_v): Linear(in_features=768, out_features=1280, bias=False)(to_out): Sequential((0): Linear(in_features=1280, out_features=1280, bias=True)(1): Dropout(p=0.0, inplace=False)))(norm1): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(norm2): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)(norm3): LayerNorm((1280,), eps=1e-05, elementwise_affine=True)))(proj_out): Conv2d(1280, 1280, kernel_size=(1, 1), stride=(1, 1)))(2): ResBlock((in_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(h_upd): Identity()(x_upd): Identity()(emb_layers): Sequential((0): SiLU()(1): Linear(in_features=1280, out_features=1280, bias=True))(out_layers): Sequential((0): GroupNorm32(32, 1280, eps=1e-05, affine=True)(1): SiLU()(2): Dropout(p=0, inplace=False)(3): Conv2d(1280, 1280, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)))(skip_connection): Identity())

3、self.output_blocks

与输入模块相同,包含12个 TimestepEmbedSequential,顺序相反


总结

整体结构比较简单,先用预训练CLIP将prompt变为token; DDIM模型将噪音与token逆扩散为图像;再采用VAE的decoder将图像复原到正常大小:

【生成模型】Stable Diffusion原理+代码相关推荐

  1. 智源AI日报(2022-08-26):当下最强的 AI art 生成模型 Stable Diffusion 最全面介绍

    [智源AI日报]每天速读5分钟,AI要事不错过!欢迎点击这里,关注并订阅智源AI日报. 盘点 | 当下最强的 AI art 生成模型 Stable Diffusion 最全面介绍  看点:程序员漫画家 ...

  2. 使用Amazon SageMaker构建高质量AI作画模型Stable Diffusion

    使用Amazon SageMaker构建高质量AI作画模型Stable Diffusion 0. 前言 1. Amazon SageMaker 与机器学习 1.1 机器学习流程 1.2 Amazon ...

  3. Stable Diffusion 原理介绍与源码分析(一)

    Stable Diffusion 原理介绍与源码分析(一) 文章目录 Stable Diffusion 原理介绍与源码分析(一) 前言(与正文无关,可以忽略) 总览 说明 Stable Diffusi ...

  4. python多元线性回归模型案例_Python 实战多元线性回归模型,附带原理+代码

    原标题:Python 实战多元线性回归模型,附带原理+代码 作者 | 萝卜 来源 | 早起Python( ID:zaoqi-python ) 「多元线性回归模型」非常常见,是大多数人入门机器学习的第一 ...

  5. 由浅入深理解latent diffusion/stable diffusion(2):扩散生成模型的工作原理

    Diffusion Models专栏文章汇总:入门与实战 前言: 关于如何使用stable diffusion的文章已经够多了,但是由浅入深探索stable diffusion models背后原理, ...

  6. 【阿里云课程】生成模型之GAN原理与优化基础

    大家好,继续更新有三AI与阿里天池联合推出的深度学习系列课程,本次更新内容为第11课中的一节,介绍如下: 生成对抗网络基础 本次课程是阿里天池联合有三AI推出的深度学习系列课程第11期,深度生成模型之 ...

  7. Python 实战多元线性回归模型,附带原理+代码

    作者 | 萝卜 来源 | 早起Python( ID:zaoqi-python ) 「多元线性回归模型」非常常见,是大多数人入门机器学习的第一个案例,尽管如此,里面还是有许多值得学习和注意的地方.其中多 ...

  8. numpy多元线性回归_Python 实战多元线性回归模型,附带原理+代码

    作者 | 萝卜来源 | 早起Python( ID:zaoqi-python ) 「多元线性回归模型」非常常见,是大多数人入门机器学习的第一个案例,尽管如此,里面还是有许多值得学习和注意的地方.其中多元 ...

  9. AI-多模态-文本->图像-2021:Stable Diffusion【开源】【目前开源模型中最强】

    最近大火的Stable Diffusion也开源了(20220823); 我也本地化测试了一下效果确实比Dall-E mini强太多了,对于我们这些玩不上Dall-E2的这个简直就是就是捡钱的感觉,当 ...

最新文章

  1. Oracle学习(十五)PLSQL安装
  2. 2017年07月03号课堂笔记
  3. 携程去哪儿移动端产品分析报告
  4. 【Python】理解Python(1) - Python数据模型,is关键字,类型
  5. h系列标签自动加了bold
  6. 2018最新圣思园JavaSE实地培训系列视频教程
  7. 求两个球面坐标点(经纬度)之间的距离
  8. 第五章-对单词进行分类和标记
  9. postgresql立式版本下载_【PostgreSQL下载】PostgreSQL官方版下载_多特软件站
  10. 成品入库过账bapi
  11. Pandas + Pyecharts | ADX游戏广告投放渠道综合分析
  12. HTML5/Canvas太空射击类小游戏源码
  13. 记录贴/阴阳师core loop
  14. PDF怎么转换成Excel?转后一页一个子表怎么合并?
  15. android模拟power键,android 发送模拟按键
  16. js中push使用 (数组)
  17. Uniapp 制作海报功能
  18. 防红直连php,全新网址缩短防封 QQ/微信防红 短网址生成系统PHP源码
  19. 赠书福利丨被马斯克送上天的《银河帝国》和互联网江湖
  20. 模式Singleton

热门文章

  1. 蓝牙5.1 NRF52833和NRF52840的区别
  2. 用html语句超链接锚点使用,HTML 锚点超链接
  3. 元宇宙 3D 开荒场 - 探味奇遇记
  4. 『与善仁』Appium基础 — 14、APPium安装(包含Node.js安装)
  5. 怎样解决虚拟内存不足问题
  6. 中国台面式洗碗机市场趋势报告、技术动态创新及市场预测
  7. 你能学会的UGNX数控编程平面轮廓铣教程
  8. (翻译)价目表模式( Pricing table)
  9. 学计算机能不能挣上千万,985名校毕业,年薪不如二本计算机毕业生,学长:千万别选错专业...
  10. dp tsp问题 海贼王之伟大航路