前段时间学习KMP算法,感觉有些复杂,不过好歹是弄懂啦,简单地记录一下,方便以后自己回忆。

引入

首先我们来看一个例子,现在有两个字符串A和B,问你在A中是否有B,有几个?为了方便叙述,我们先给定两个字符串的值
A=”abcaabababaa”
B=”abab”
那么普通的匹配是怎么操作的呢?
当然就是一位一位地比啦。(下面用蓝色表示已经匹配,黑色表示匹配失败)

但是我们发现这样匹配很浪费!
为什么这么说呢,我们看到第4步:

在第4步的时候,我们发现第3位上c与a不匹配,然后第五步的时候我们把B串向后移一位,再从第一个开始匹配。

这里就有一个对已知信息很大的浪费,因为根据前面的匹配结果,我们知道B串的前两位是ab,所以不管怎么移,都是不能和b匹配的,所以应该直接跳过对A串第二位的匹配,对于A串的第三位也是同理。

或许这这个例子还不够经典,我们再举一个。

A=”abbaabbbabaa”
B=”abbaaba”

在这个例子中,我们依然从第1位开始匹配,直到匹配失败:

abbaabbbabba
abbaaba
我们发现第7位不匹配
那么我们若按照原来的方式继续匹配,则是把B串向后移一位,重新从第一个字符开始匹配
abbaabbbabba
_abbaaba
依然不匹配,那我们就要继续往后移咯。
且住!
既然我们已经匹配了前面的6位,那么我们也就知道了A串这6位和B串的前6位是匹配的,我们能否利用这个信息来优化我们的匹配呢?
也就是说,我们能不能在上面匹配失败后直接跳到:
abbaabbbabba
____abbaaba
这样就可以省去很多不必要的匹配。

KMP算法

KMP算法就是解决上面的问题的,在讲述之前,我们先摆出两个概念:

前缀:指的是字符串的子串中从原串最前面开始的子串,如abcdef的前缀有:a,ab,abc,abcd,abcde
后缀:指的是字符串的子串中在原串结尾处结尾的子串,如abcdef的后缀有:f,ef,def,cdef,bcdef

KMP算法引入了一个F数组(在很多文章中会称为next,但笔者更习惯用F,这更方便表达),F[i]表示的是前i的字符组成的这个子串最长的相同前缀后缀的长度!
怎么理解呢?
例如字符串aababaaba的相同前缀后缀有a和aaba,那么其中最长的就是aaba。

KMP算法的难理解之处与本文叙述的约定

在继续我们的讲述之前,笔者首先讲一下为什么KMP算法不是很好理解。
虽然说网上关于KMP算法的博客、教程很多,但笔者查阅很多资料,详细讲述过程及原理的不多,真正讲得好的文章在定义方面又有细微的不同(当然,真正写得好的文章也有,这里就不一一列举),比如说有些从1开始标号,有些next表示的是前一个而有些是当前的,通读下来,难免会混乱。
那么,为了防止读者在接下来的内容中感到和笔者之前学习时同样的困惑,在这里先对下文做一些说明和约定。

1.本文中,所有的字符串从0开始编号
2.本文中,F数组(即其他文章中的next),F[i]表示0~i的字符串的最长相同前缀后缀的长度。

F数组的运用

那么现在假设我们已经得到了F的所有值,我们如何利用F数组求解呢?
我们还是先给出一个例子(笔者用了好长时间才构造出这一个比较典型的例子啊):
A=”abaabaabbabaaabaabbabaab”
B=”abaabbabaab”
当然读者可以通过手动模拟得出只有一个地方匹配
abaabaabbabaaabaabbabaab
那么我们根据手动模拟,同样可以计算出各个F的值

B=”a b a a b b a b a a b “
F= 0 0 1 1 2 0 1 2 3 4 5(2017.7.25 Update 这里之前有一个错误,感谢@ 歌古道指正)(2017.7.29 Update 好吧,这里原来还有一个错误,已经更正啦感谢@iwangtst)

我们再用i表示当前A串要匹配的位置(即还未匹配),j表示当前B串匹配的位置(同样也是还未匹配),补充一下,若i>0则说明i-1是已经匹配的啦(j同理)。
首先我们还是从0开始匹配:

此时,我们发现,A的第5位和B的第5位不匹配(注意从0开始编号),此时i=5,j=5,那么我们看F[j-1]的值:

F[5-1]=2;

这说明我们接下来的匹配只要从B串第2位开始(也就是第3个字符)匹配,因为前两位已经是匹配的啦,具体请看图:

然后再接着匹配:

我们又发现,A串的第13位和B串的第10位不匹配,此时i=13,j=10,那么我们看F[j-1]的值:

F[10-1]=4

这说明B串的0~3位是与当前(i-4)~(i-1)是匹配的,我们就不需要重新再匹配这部分了,把B串向后移,从B串的第4位开始匹配:

这时我们发现A串的第13位和B串的第4位依然不匹配

此时i=13,j=4,那么我们看F[j-1]的值:

F[4-1]=1

这说明B串的第0位是与当前i-1位匹配的,所以我们直接从B串的第1位继续匹配:

但此时B串的第1位与A串的第13位依然不匹配

此时,i=13,j=1,所以我们看一看F[j-1]的值:

F[1-1]=0

好吧,这说明已经没有相同的前后缀了,直接把B串向后移一位,直到发现B串的第0位与A串的第i位可以匹配(在这个例子中,i=13)

再重复上面的匹配过程,我们发现,匹配成功了!

这就是KMP算法的过程。
另外强调一点,当我们将B串向后移的过程其实就是i++,而当我们不动B,而是匹配的时候,就是i++,j++,这在后面的代码中会出现,这里先做一个说明。

最后来一个完整版的(话说做这些图做了好久啊!!!!):

F数组的求解

既然已经用这么多篇幅具体阐述了如何利用F数组求解,那么如何计算出F数组呢?总不能暴力求解吧。

KMP的另外一个巧妙的地方也就在这里,它利用我们上面用B匹配A的方法来计算F数组,简单点来说,就是用B串匹配B串自己!
当然,因为B串==B串,所以如果直接按上面的匹配,那是毫无意义的(自己当然可以完全匹配自己啦),所以这里要变一变。

因为上面已经讲过一部分了,先给出计算F的代码:

for (int i=1;i<m;i++)
{int j=F[i-1];while ((B[j+1]!=B[i])&&(j>=0))j=F[j];if (B[j+1]==B[i])F[i]=j+1;elseF[i]=-1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

首先可以确定的几点是:

1.F[0]=-1 (虽说这里应该是0,但为了方便判越界,同时为了方便判断第0位与第i位,程序中这里置为-1)
2.这是一个从前往后的线性推导,所以在计算F[i]时可以保证F[0]~F[i-1]都是已经计算出来的了
3.若以某一位结尾的子串不存在相同的前缀和后缀,这个位的F置为-1(这里置为-1的原因同第一条一样)

重要!:另外,为了在程序中表示方便,在接下来的说明中,F[i]=0表示最长相同前缀后缀长度为1,即真实的最长相同前缀后缀=F[i]+1。(重要的内容要放大)
为什么要这样设置呢,因为这时F[i]代表的就不仅仅与前后缀长度有关了,它还代表着这个前缀的最后一个字符在子串B中的位置。

所以,之前上面列出的F值要变一下(这里用’_’辅助对齐):

B=”a _b a a b _b a b a a b “
F= -1 -1 0 0 1 -1 0 1 2 3 4

那么,我们同样可以推出,求解F的思路是:看F[i-1]这个最长相同前缀后缀的后面是否可以接i,若可以,则直接接上,若不可以,下面再说。
举个例子:
还是以B=”abaabbabaab”为例,我们看到第2个。

B=”a b a a b b a b a a b”
F=-1 -1

此时这个a的前一个b的F值为-1,所以此时a不能接在b的后面(b的相同最长前缀后缀是0啊),此时,j=-1,所以我们判断B[j+1]与B[2],即B[0]与B[2]是否一样。一样,所以F[2]=j+1=0(代表前0~2字符的最长相同前缀后缀的前缀结束处是B[0],长度为0+1=1)。

再来看到第3个:

B=”a b a a b b a b a a b”
F=-1 -1 0

开始时,j=F[3-1]=0,我们发现B[j+1=1]!=B[i=3],所以j=F[j]=-1,此时B[j+1=0]==B[i=3],所以F[3]=j+1=0。

最后举个例子,看到第4个

B=”a b a a b b a b a a b”
F=-1 -1 0 0

j首先为F[4-1]=0,我们看到B[j+1=1]==B[i],所以F[i]=j+1=1。

后面的就请读者自己慢慢推导了。再强调一遍,我们这样求出来的F值是该最长相同前缀后缀中的前缀的结束字符的数组位置(从0开始编号),如果要求最长相同前缀后缀的长度,要输出F[i]+1。

代码

求解F数组:

for (int i=1;i<m;i++)
{int j=F[i-1];while ((B[j+1]!=B[i])&&(j>=0))j=F[j];if (B[j+1]==B[i])F[i]=j+1;elseF[i]=-1;
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

利用F数组寻找匹配,这里我们是每找到一个匹配就输出其开始的位置:

while (i<n)
{if (A[i]==B[j]){i++;j++;if (j==m){printf("%d\n",i-m+1);//注意,这里输出的位置是从1开始标号的,如果你要输出从0开始标号的位置,应该是是i-m.这份代码是我做一道题时写的,那道题要求输出的字符串位置从1开始标号.感谢@Draymonder指出了这个疏漏,更多内容请看评论区j=F[j-1]+1;}}else{if (j==0)i++;elsej=F[j-1]+1;}
}

转载于:https://my.oschina.net/Thinkeryjgfn/blog/3037457

KMP算法——很详细的讲解相关推荐

  1. 【KMP算法】详细讲解

    KMP算法 KMP主要应用在字符串匹配问题上 算法思想:当出现字符串不匹配时,可以记录一部分之前已经匹配的文本内容,利用这些信息避免从头再去做匹配,大大降低了时间复杂度,这也就是为什么这类问题我们选择 ...

  2. 串—KMP算法(详细)

    KMP算法的关键是利用匹配失败后的信息,尽量减少模式串与主串的匹配次数以达到快速匹配的目的.具体实现就是实现一个next()函数,函数本身包含了模式串的局部匹配信息.时间复杂度O(m+n). (1)分 ...

  3. KMP算法的详细解释及实现

    这是我自己学习算法时有关KMP的学习笔记,代码注释的十分的详细,分享给大家,希望对大家有所帮助 在介绍KMP算法之前, 先来介绍一下朴素模式匹配算法: 朴素模式匹配算法: 假设要从主串S=" ...

  4. 【CNN】很详细的讲解什么以及为什么是卷积(Convolution)!

    编辑:深度学习自然语言处理 1.对卷积的困惑 卷积这个概念,很早以前就学过,但是一直没有搞懂.教科书上通常会给出定义,给出很多性质,也会用实例和图形进行解释,但究竟为什么要这么设计,这么计算,背后的意 ...

  5. 史上比较难懂的KMP算法介绍

    书生来自秦朝南海郡,是一秃头学子. 取经之路漫漫,沉心学习方见始终. 目录 前言 一.串匹配简介及KMP引入 1.串匹配 2.暴力法串匹配 3.KMP算法相关引入 二.KMP核心思想 三.KMP算法 ...

  6. 为什么说在KMP算法中文本串中的每个字符都是需要进行比较操作的?

     KMP算法需要计算一个shift或者next表,这个表是一个部分匹配表,通过这个next表来计算当字符不匹配的时候移动的位数,这个移动位数的计算公式为 移动位数 = 已匹配的字符数 - 对应的n ...

  7. KMP算法之病毒检测

    什么是KMP算法? KMP算法是一种改进的字符串匹配算法,由D.E.Knuth,J.H.Morris和V.R.Pratt同时发现,因此人们称它为克努特--莫里斯--普拉特操作(简称KMP算法).KMP ...

  8. 我关于KMP算法的初步理解

    唔,时间过得好快,下学期都过了一半了,因为寒假玩去了,数据结构也没学完.后来看到KMP算法的时候,第一次一晚上就想一个问题,当然,总算是有些眉目了,下面是我对KMP算法的一些理解,当然还没有看完,但是 ...

  9. java实现kmp_java 实现KMP算法

    KMP算法是一种神奇的字符串匹配算法,在对 超长字符串 进行模板匹配的时候比暴力匹配法的效率会高不少.接下来我们从思路入手理解KMP算法. 在对字符串进行匹配的时候我们最容易想到的就是一个个匹配,类似 ...

最新文章

  1. 太热了,谈机房空调散散热
  2. iOS 深入解析之NSArray
  3. (JAVA)CollectionDemo1
  4. Shell——printf 命令
  5. ECS上搭建Docker(CentOS7)
  6. 将mbr的分区改为gpt分区
  7. JS-面向对象-继承
  8. python编程从入门到实战16章x轴刻度_PYTHON编程:从入门到实践之数据可视化
  9. php中include,require的文件包含问题,以及$_SERVER['PHP_SELF']和__FILE__的区别
  10. cv2 python 读取像素点_OpenCV+Python车牌字符分割和识别入门
  11. 学习Java软件开发,可以从事什么工作?
  12. DCDC和LDO原理和关键技术(学习笔记1-buck电路)
  13. OpenWRT 迅雷远程下载设置
  14. IOS App应用开发高仿百思不得姐项目实战
  15. 时间序列预测中使用类EMD方法时的信息泄露和计算量问题
  16. 数据科学的原理与技巧 四、数据清理
  17. python升级pip_python中pip升级
  18. Win10前面板插口耳机无声音,无Realtek控制器,前置耳机孔无法使用解决方案!
  19. Java —— 内存泄露排查
  20. 基于SSM的游戏账号受理平台

热门文章

  1. html picture属性,(六):picture元素
  2. 【detectron2】detectron2在ubuntu16.04系统下安装报错问题
  3. YJX基础44 __declspec(naked)
  4. 为了好好看球,学霸们用深度学习重建整个比赛3D全息图
  5. ---排列数字---
  6. 关于OpenCV的个人小心得
  7. 10 位 IT 界女性精英
  8. decltype的使用
  9. 华为又一黑科技:AR高精地图服务即将上线
  10. 微信小程序调用地图设置起点终点导航