点击蓝色“五分钟学算法”关注我哟

加个“星标”,天天中午 12:15,一起学算法

作者 | labuladong

来源 | labuladong

今天要聊一个很经典的算法问题,若干层楼,若干个鸡蛋,让你算出最少的尝试次数,找到鸡蛋恰好摔不碎的那层楼。

国内大厂以及谷歌脸书面试都经常考察这道题,只不过他们觉得扔鸡蛋太浪费,改成扔杯子,扔破碗什么的。

具体的问题等会再说,但是这道题的解法技巧很多,光动态规划就好几种效率不同的思路,最后还有一种极其高效数学解法。

秉承咱们号一贯的作风,拒绝奇技淫巧,拒绝过于诡异的技巧,因为这些技巧无法举一反三,学了不太划算。

下面就来用我们一直强调的动态规划通用思路来研究一下这道题。

一、解析题目

题目是这样:你面前有一栋从 1 到NN层的楼,然后给你K个鸡蛋(K至少为 1)。现在确定这栋楼存在楼层0 <= F <= N,在这层楼将鸡蛋扔下去,鸡蛋恰好没摔碎(高于F的楼层都会碎,低于F的楼层都不会碎)。现在问你,最坏情况下,你至少要扔几次鸡蛋,才能确定这个楼层F呢?

PS:F 可以为 0,比如说鸡蛋在 1 层都能摔碎,那么 F = 0。

也就是让你找摔不碎鸡蛋的最高楼层F,但什么叫「最坏情况」下「至少」要扔几次呢?我们分别举个例子就明白了。

比方说现在先不管鸡蛋个数的限制,有 7 层楼,你怎么去找鸡蛋恰好摔碎的那层楼?

最原始的方式就是线性扫描:我先在 1 楼扔一下,没碎,我再去 2 楼扔一下,没碎,我再去 3 楼……

以这种策略,最坏情况应该就是我试到第 7 层鸡蛋也没碎(F = 7),也就是我扔了 7 次鸡蛋。

现在你应该理解什么叫做「最坏情况」下了,鸡蛋破碎一定发生在搜索区间穷尽时,不会说你在第 1 层摔一下鸡蛋就碎了,这是你运气好,不是最坏情况。

现在再来理解一下什么叫「至少」要扔几次。依然不考虑鸡蛋个数限制,同样是 7 层楼,我们可以优化策略。

最好的策略是使用二分查找思路,我先去第(1 + 7) / 2 = 4层扔一下:

如果碎了说明F小于 4,我就去第(1 + 3) / 2 = 2层试……

如果没碎说明F大于等于 4,我就去第(5 + 7) / 2 = 6层试……

以这种策略,最坏情况应该是试到第 7 层鸡蛋还没碎(F = 7),或者鸡蛋一直碎到第 1 层(F = 0)。然而无论那种最坏情况,只需要试log7向上取整等于 3 次,比刚才的 7 次要少,这就是所谓的至少要扔几次。

PS:这有点像 Big O 表示法计算算法的复杂度。

实际上,如果不限制鸡蛋个数的话,二分思路显然可以得到最少尝试的次数,但问题是,现在给你了鸡蛋个数的限制K,直接使用二分思路就不行了

比如说只给你 1 个鸡蛋,7 层楼,你敢用二分吗?你直接去第 4 层扔一下,如果鸡蛋没碎还好,但如果碎了你就没有鸡蛋继续测试了,无法确定鸡蛋恰好摔不碎的楼层F了。这种情况下只能用线性扫描的方法,算法返回结果应该是 7。

有的读者也许会有这种想法:二分查找排除楼层的速度无疑是最快的,那干脆先用二分查找,等到只剩 1 个鸡蛋的时候再执行线性扫描,这样得到的结果是不是就是最少的扔鸡蛋次数呢?

很遗憾,并不是,比如说把楼层变高一些,100 层,给你 2 个鸡蛋,你在 50 层扔一下,碎了,那就只能线性扫描 1~49 层了,最坏情况下要扔 50 次。

如果不要「二分」,变成「五分」「十分」都会大幅减少最坏情况下的尝试次数。比方说第一个鸡蛋每隔十层楼扔,在哪里碎了第二个鸡蛋一个个线性扫描,总共不会超过 20 次。

最优解其实是 14 次。最优策略非常多,而且并没有什么规律可言。

说了这么多废话,就是确保大家理解了题目的意思,而且认识到这个题目确实复杂,就连我们手算都不容易,如何用算法解决呢?

二、思路分析

对动态规划问题,直接套我们以前多次强调的框架即可:这个问题有什么「状态」,有什么「选择」,然后穷举。

「状态」很明显,就是当前拥有的鸡蛋数K和需要测试的楼层数N。随着测试的进行,鸡蛋个数可能减少,楼层的搜索范围会减小,这就是状态的变化。

「选择」其实就是去选择哪层楼扔鸡蛋。回顾刚才的线性扫描和二分思路,二分查找每次选择到楼层区间的中间去扔鸡蛋,而线性扫描选择一层层向上测试。不同的选择会造成状态的转移。

现在明确了「状态」和「选择」,动态规划的基本思路就形成了:肯定是个二维的dp数组或者带有两个状态参数的dp函数来表示状态转移;外加一个 for 循环来遍历所有选择,择最优的选择更新结果 :

# 当前状态为 (K 个鸡蛋,N 层楼)
# 返回这个状态下的最优结果
def dp(K, N):int resfor 1 <= i <= N:res = min(res, 这次在第 i 层楼扔鸡蛋)return res

这段伪码还没有展示递归和状态转移,不过大致的算法框架已经完成了。

我们在第i层楼扔了鸡蛋之后,可能出现两种情况:鸡蛋碎了,鸡蛋没碎。注意,这时候状态转移就来了

如果鸡蛋碎了,那么鸡蛋的个数K应该减一,搜索的楼层区间应该从[1..N]变为[1..i-1]i-1层楼;

如果鸡蛋没碎,那么鸡蛋的个数K不变,搜索的楼层区间应该从 [1..N]变为[i+1..N]N-i层楼。

PS:细心的读者可能会问,在第i层楼扔鸡蛋如果没碎,楼层的搜索区间缩小至上面的楼层,是不是应该包含第i层楼呀?不必,因为已经包含了。开头说了 F 是可以等于 0 的,向上递归后,第i层楼其实就相当于第 0 层,可以被取到,所以说并没有错误。

因为我们要求的是最坏情况下扔鸡蛋的次数,所以鸡蛋在第i层楼碎没碎,取决于那种情况的结果更大

def dp(K, N):for 1 <= i <= N:# 最坏情况下的最少扔鸡蛋次数res = min(res, max( dp(K - 1, i - 1), # 碎dp(K, N - i)      # 没碎) + 1 # 在第 i 楼扔了一次)return res

递归的 base case 很容易理解:当楼层数N等于 0 时,显然不需要扔鸡蛋;当鸡蛋数K为 1 时,显然只能线性扫描所有楼层:

def dp(K, N):if K == 1: return Nif N == 0: return 0...

至此,其实这道题就解决了!只要添加一个备忘录消除重叠子问题即可:

def superEggDrop(K: int, N: int):memo = dict()def dp(K, N) -> int:# base caseif K == 1: return Nif N == 0: return 0# 避免重复计算if (K, N) in memo:return memo[(K, N)]res = float('INF')# 穷举所有可能的选择for i in range(1, N + 1):res = min(res, max(dp(K, N - i), dp(K - 1, i - 1)) + 1)# 记入备忘录memo[(K, N)] = resreturn resreturn dp(K, N)

这个算法的时间复杂度是多少呢?动态规划算法的时间复杂度就是子问题个数 × 函数本身的复杂度

函数本身的复杂度就是忽略递归部分的复杂度,这里dp函数中有一个 for 循环,所以函数本身的复杂度是 O(N)。

子问题个数也就是不同状态组合的总数,显然是两个状态的乘积,也就是 O(KN)。

所以算法的总时间复杂度是 O(K*N^2), 空间复杂度为子问题个数,即 O(KN)。

三、疑难解答

这个问题很复杂,但是算法代码却十分简洁,这就是动态规划的特性,穷举加备忘录/DP table 优化,真的没啥新意。

首先,有读者可能不理解代码中为什么用一个 for 循环遍历楼层[1..N],也许会把这个逻辑和之前探讨的线性扫描混为一谈。其实不是的,这只是在做一次「选择」

比方说你有 2 个鸡蛋,面对 10 层楼,你得拿一个鸡蛋去某一层楼扔对吧?那选择去哪一层楼扔呢?不知道,那就把这 10 层楼全试一遍。至于鸡蛋碎没碎,下次怎么选择不用你操心,有正确的状态转移,递归会算出每个选择的代价,我们取最优的那个就是最优解。

其实,这个问题还有更好的解法,比如修改代码中的 for 循环为二分搜索,可以将时间复杂度降为 O(K*N*logN);再改进动态规划解法可以进一步降为 O(KN);使用数学方法解决,时间复杂度达到最优 O(K*logN),空间复杂度达到 O(1)。

二分的解法也有点误导性,你很可能以为它跟我们之前讨论的二分思路扔鸡蛋有关系,实际上没有半毛钱关系。

能用二分搜索是因为状态转移方程的函数图像具有单调性,可以快速找到最小值。

-----------------------
公众号:五分钟学算法(ID:CXYxiaowu
博客:www.cxyxiaowu.com
知乎:程序员吴师兄
一个正在学习算法的人,致力于将算法讲清楚!
长按下图二维码关注,和你一起领悟算法的魅力

戳一下下方的小程序,24 小时一起学算法

经典动态规划:高楼扔鸡蛋相关推荐

  1. 高楼扔鸡蛋问题-经典动态规划

    文章目录 1. 高楼扔鸡蛋 2. 猜数字大小 1. 高楼扔鸡蛋 给你 k 枚相同的鸡蛋,并可以使用一栋从第 1 层到第 n 层共有 n 层楼的建筑. 已知存在楼层 f ,满足 0 <= f &l ...

  2. java动态规划鸡蛋问题_动态规划系列/高楼扔鸡蛋问题.md · lipengfei/fucking-algorithm - Gitee.com...

    # 经典动态规划问题:高楼扔鸡蛋 今天要聊一个很经典的算法问题,若干层楼,若干个鸡蛋,让你算出最少的尝试次数,找到鸡蛋恰好摔不碎的那层楼.国内大厂以及谷歌脸书面试都经常考察这道题,只不过他们觉得扔鸡蛋 ...

  3. 高楼扔鸡蛋问题 - 动态规划+反推演绎

    对于高楼扔鸡蛋问题,本文尝试反其道而行之:首先描述一个普适的高楼扔鸡蛋问题,然后利用动态规划法解决扔鸡蛋次数的问题,最后由获取次数的答案反推出扔鸡蛋的方法. 这种由次数答案反推出方法的演绎方式令人有点 ...

  4. 经典谷歌面试题:高楼扔鸡蛋

    经典谷歌面试题:高楼扔鸡蛋 存在某T层高楼,在该高楼中存在这样的一层,在该层之下的所有楼层扔鸡蛋,鸡蛋摔到地上都不会碎,还可以继续扔:在该层及该层之上的所有楼层,扔下鸡蛋都会摔碎. 目前手里有两个鸡蛋 ...

  5. 谷歌公司经典面试题扔鸡蛋的详细解读—动态规划(二)

    首先要说的是到底啥是动态规划? 那么,怎样找到状态转移方程式呢? 状态转移方程式有了,如何计算出这个方程式的结果呢? 代码如何实现? 如何优化呢? --------------– 上一篇博客中咦非常通 ...

  6. 高楼扔鸡蛋——动态规划问题

    今天算法课大伙做了一份课堂测验,是有关一维以及二维动态规划问题的,其中最后一天压轴的就是这道高楼扔鸡蛋问题. 在我得意洋洋以为能早早做完这份测验然后交卷的时候,我在这道题上摁是扣了半小时头皮,也没写出 ...

  7. Algorithm——高楼扔鸡蛋

    问题描述 高楼扔鸡蛋问题是一道经典的动态规划问题,题目如下: 给你 k 枚相同的鸡蛋,并可以使用一栋从第 1 层到第 n 层共有 n 层楼的建筑.已知存在楼层 f ,满足 0 <= f < ...

  8. 【LeetCode系列】高楼扔鸡蛋

    高楼扔鸡蛋 题目描述:面前有一栋楼从1到N共N层的楼,然后给你K个鸡蛋(K至少为1).现在确定这栋楼存在楼层0<=F<=N,在这层楼将鸡蛋扔下去,鸡蛋恰好没摔碎(高于F的楼层都会碎,低于F ...

  9. 谷歌公司经典面试题扔鸡蛋的详细解读(一)

    文章目录 题目:扔鸡蛋问题 方法一: 方法二: 方法三: 方法三进阶:假设法 总结: 首先说一下大概的题目 题目:扔鸡蛋问题 有2个鸡蛋,从100层楼上往下扔,以此来测试鸡蛋的硬度.比如鸡蛋在第9层没 ...

  10. 动态规划之扔鸡蛋(或手机)问题

    引入 有2个鸡蛋,从100层楼上往下扔,以此来测试鸡蛋的硬度.比如鸡蛋在第9层没有摔碎,在第10层摔碎了,那么鸡蛋不会摔碎的临界点就是9层. 问:如何用最少的尝试次数,测试出鸡蛋不会摔碎的临界点? 分 ...

最新文章

  1. c++ empty()函数
  2. 万分之二用百分之怎么表示_2020年元旦放假通知!周三放1天!不挪假连休,你打算怎么安排?...
  3. 332. 重新安排行程(回溯算法)
  4. PAT_B_1050_C++(20分)
  5. [密码学基础][每个信息安全博士生应该知道的52件事][Bristol Cryptography][第22篇]如何用蒙哥马利算法表示一个数字和多个相乘的数字
  6. JVM优化系列-JVM垃圾收集器介绍
  7. 程序员说的demo是什么意思_“黄龄说的什么意思”???
  8. MySQL下bin-log的三种模式(ROW、Statement、Mixed)
  9. Linux系统管理员命令:sudo
  10. Java中RMI远程调用demo
  11. (day 52 - 约舍夫环问题 ) 剑指 Offer 62. 圆圈中最后剩下的数字
  12. java快速生成接口文档方法总结
  13. 《DEEP GRADIENT COMPRESSION:REDUCING THE COMMUNICATION BANDWIDTH FOR DISTRIBUTED TRAINING》精读
  14. 利用rclone同步google storage cloud和aws s3存储
  15. “企业上云”计划出炉,三年内河北万家企业要上云!|中机智库
  16. java web分享ppt大纲 -- servlet容器简介
  17. 在Ubuntu18.04下 安装MPV视频播放器 的方法
  18. 游戏项目管理经验方法
  19. MOSFET的dV/dt失效
  20. 初识Quartz之Trigger组件

热门文章

  1. 美国访学J类签证费涨价15%|5月30日生效
  2. 适合中国程序员的保命教材—— 程序员羊皮卷 书评 7
  3. 【TensorFlow实战笔记】卷积神经网络CNN实战-cifar10数据集(tensorboard可视化)
  4. 大咖面对面 | Crypto C唐晗:元宇宙是加密艺术的最佳生存空间
  5. 51CTO稿酬标准2016版正式发布!
  6. python convert函数_Python pandas.DataFrame.tz_convert函数方法的使用
  7. Golang学习笔记之GORM基础使用(一)
  8. 用html表格形式制作个人信息,CSS写的简单个人信息登记表格示例
  9. mysql集群方案PXC_【Mysql】MySQL集群方案之PXC(percona xtradb cluster)
  10. 如何设计神经网络结构图,神经网络设计与实现