在开关电源产品的研发过程中,EMC问题是工程师所必需克服的难题之一,也是不同功率的开关电源所共同具备的一个棘手问题。EMC又称为电磁兼容,而想要使设计的产品符合电磁兼容标准,就必须弄清楚开关电源的电磁干扰都是从哪里来的。

01

开关电路产生的电磁干扰

在开关电源的EMC设计中,首先需要避免的就是从电源的开关电路中所产生的电磁干扰问题,这也是开关电源的主要干扰源之一。开关电路在结构方面主要由开关管和高频变压器组成,因此它产生的du/dt具有较大幅度的脉冲,频带较宽且谐波丰富。电源电压中断会产生与初级线圈接通时一样的磁化冲击电流瞬变,这种瞬变是一种传导型电磁干扰,既会影响变压器的初级,同时还会使传导干扰返回配电系统,造成电网谐波电磁干扰,从而影响其他设备的安全和经济运行。

02

整流电路产生的电磁干扰

在开关电源的EMC设计中,另一个较大的电磁干扰源就是整流电路。在一些中小型电源的整流电路中,在输出整流二极管截止时都会有一个反向电流,它恢复到零点的时间与结电容等因素有关。高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化。

03

高频变压器产生的电磁干扰

高频变压器在开关电源的运行过程中也同样会不可避免的产生电磁干扰,在大型电源的产品测试过程中,这一干扰问题尤其常见。高频变压器的初级线圈、开关管和滤波电容构成的高频开关电流环路有时会产生较大的空间辐射,形成辐射干扰,对电源的EMC设计有较大影响。如果电容滤波容量不足或高频特性不好,电容上的高频阻抗会使高频电流以差模方式传导到交流电源中形成传导干扰。

04

分布电容引起的干扰

分布电容在开关电源的设计和EMC产品测试过程中,是一种非常不起眼的电磁干扰源。当开关电源工作在高频状态时,其分布电容所产生的干扰是非常大的,一方面,散热片与开关管集电极间的绝缘片接触面积较大,且绝缘片较薄。高频电流会通过分布电容流到散热片上,再流到机壳地,此时将会产生共模干扰。另一方面,脉冲变压器的初次级之间存在着分布电容,可将原边电压直接耦合到副边上,在副边作直流输出的两条电源线上产生共模干扰。

透析电源EMC

EMC的内容

●基本概念:

★EMC(电磁兼容性):Electromagnetic Compatibility

★EMI(电磁干扰):Electromagnetic Interference

★EMS(电磁抗扰性):Electromagnetic Susceptibility

★ESD(静电):Electrostatic Discharges

★RS(辐射抗干扰):Radiated Susceptibility

★EFT(电快速瞬变脉冲群):Electronic fast transients

★SURGE(雷击浪涌)

★CS(传导抗干扰):Conducted Susceptibility

●EMC =EMI +EMS

★EMI = Conduction( Harmonic) +Radiation

★EMI 三要素:下为系统级的,请大家想想PCB级的。

开关电源 EMI 探讨

●EMI 产生的根源:

★第一、开关电源的最大缺点是因切换动作(TURN-ON或TURN OFF)产生杂讯电压为其杂讯源。因切换动作的波形为方波,而方波含有很多高次谐波。( dv/dt)

★第二、由于开关电晶体的非线性及二极体的反向恢复特性,电流作快速的非线性变化引起杂讯。(di/dt)

●EMI的传播方式和途径:

★EMI干扰信号按其特性可分为共模信号(COMMON MODE)和差模信号(DIFFERENTIAL MODE)。

共模信号:干扰信号电流的在两条回路的导线上的电流方向相对大地是相同的信号,称为共模信号,见下左图;

差模信号:干扰信号电流的在两条回路的导线上的电流方向相对大地是相反的信号,称为差模信号,见下右图。

●常用低通滤波结构的划分

●电源输入滤波器的设计:

★共模差模分开设计(以π型为例)

★滤波器共模部分设计

★滤波器差模部分设计

●滤波器的安装:

●共模电感的绕制

共模扼流圈中的负载电流产生的磁场相互抵销,因此磁芯不会饱和。

●磁珠阻抗

注意:共模电感和磁珠 需要测量温升!!

拓扑EMI 分析举例

Flyback 架构EMI 分析

●Flyback架构的高频等效模型

●Noise 源:

大的di/dt和dv/dt 产生的地方,对Flyback架构来说,会产生这些变化的主要有:

★变压器TX1;

★MOSFET Q1 ;

★输出二极管D1;

★芯片的RC振荡;

★驱动信号线;

Q1 上 Vds 的波形

MOSFET 动作时产生的Noise :如 上图所示,主要来自三个方面:

①Mosfet开通、关断时,具有很宽的频谱含量,开关频率的谐波本身就是较强的干扰源。

②关断时的振荡 1产生较强的干扰。

③关断时的振荡 2产生较强的干扰。

开关管 Q1关断,副边二极管D1导通时(带载),原边的励磁电感被钳制,原边漏感Lep的能量通过Q1的寄生电容Cds进行放电,主放电回路为Lep—Cds—Rs—C1—Lep,此时产生振荡振荡的频率为:

在Lep上的振荡电压Vlep迭加在2Vc1上,致使Vds=2Vc1+Vlep 。振荡的强弱,将决定我们选取的管子的耐压值、电路的稳定性。

量测Lep=6.1uH, Q1为2611查规格书可得Coss=190pF(Coss近似等于Cds),而此充电板为两个管子并联,所以Cds=380pF 。由上式可求得f =3.3 MHz,和下图中的振荡频率吻合。

从图中可看出 此振荡是一衰减的振荡波,其初始的振荡峰值决定于振荡电路的Q值:Q值越大,峰值就越大。Q值小,则峰值小。为了减小峰值,可减小变压器的漏感Lep,加大Cds和电路的阻抗R。而加入Snubber电路是 极有效之方法。

振荡2发生在Mosfet Q1关断,副边二极管由通转向关断,原边励磁电感被释放(这时Cds被充至2Vc1),Cds和原边线圈的杂散电容Clp为并联状态,再和原边电感Lp(励磁电感和漏感之和)发生振荡。放电回路同振荡1。振荡频率为:

在Lp上的振荡电压Vlp迭加在Vc1上,致使Vds=Vc1+Vlp 。量测Lp=0.4mH;Q1为2611,查规格书可得Coss=190pF(Coss近似等于Cds),而此充电板为两个管子并联,所以Cds=380pF;Clp在200KHz时测得为Clp=1.6nF。由上式可求得:f =178.6KHz,和下图中190.5K吻合。

可实行的改善措施有两个:

★1、减小Noise的大小;

★2、切断或改善传播途径。

1.减小Noise 的大小:

首先考虑以下三个方面:

①Mosfet、Diode动作时,具有很宽的频谱含量,开关频率的谐波本身就是较强的干扰源。

措施:在满足所要求的效率、温升条件下,我们可尽量选开关较平缓的管子。而通过调节驱动电阻也可达到这一目的。

②Q1、D1 的振荡 1会产生较强的干扰。

措施:

*对寄生电容Cds、Cj 的处理:在Q1的ds极、二极管的两端各并上一小电容,来降低电路的Q 值,从而降低振荡的振幅A,同时能降低振荡频率f。需注意的是:此电容的能量1/2Cu2将全部消耗在Q1上,所以管子温升是个问题。解决的办法是使用RC snubber, 让能量 消耗在 R上。同时R能起到减小振幅的作用。

*对变压器的漏感Le的处理:

1、变压器采用 三明治 绕法,以减小漏感。

2、在变压器的绕组上加吸收电路。

3、减小Q1 D极到变压器的引线长度。(此引线电感和漏感相迭加)采取上述 措施降低振荡 1的影响之后得下图。

③:Q1 D1 上的振荡 2 会产生较强干扰。

分析方法和②相同,但此时 电感已变得很大了(主要为为励磁电感),因此漏感和引线电感对③的影响相对较小。

同样从上面的分析中,可看出Nosie 的传播途径主要是通过变压器的杂散电容Ctx;

Mosfet/Diode到散热片的杂散电容Cm/Cd;及散热片到地的杂散电容Ce等途径而耦合到LISN被取样电阻所俘获。

措施一:在Rs的地端和C2的地间接一个Y电容(472)。

原理分析:它的作用是双重的,一是为Mosfet动作产生且串到变压器副边的noise 电流(如I4),提供一个低阻抗的回路,减小到地的电流。二是为二次侧Diode产生的且串到变压器原边的noise 电流提供低阻抗回路,从而减小流过LISN的电流。

其效果如下图:红色为:未改善之前;蓝色为:采取措施之后

措施二:变压器加法拉第铜环:

变压器是Noise传播的主要通道之一,其中初级线圈和次级线圈间杂散电容Ctx是重要因素。而在变压器内部加法拉第铜环是减小Ctx 的有效的方法之一。

措施三:散热片接Rs的地端:

目的为了将 散热片-Ce—地-LISN这一支路 旁路掉,从而减小到地的电流。其效果如下图:可看出,在低频时较有效;在高频时, 效果不明显,这主要是因为在高频时,管脚直接对地的电容已有相当的作用。

红色为:散热片未接地;蓝色为:散热片接地

当综合上述所有措施后,EMI总效果对比如图所示:

红色为:未采取措施前;蓝色为:综合上述措施后

开关电源的EMC干扰不知道是怎么产生的?(开关电源EMC探析)相关推荐

  1. 技术科普丨解密无处不在的EMC干扰

    你有没有遇到过? 小时候,正看着电视,有人打开或关闭了日光灯,电视偶尔会闪现雪花: 正在电脑旁听音乐,旁边放着的手机来电话了,你会听到电脑音响发出滋滋的声音: 在抗战的电视剧中,出现收发电报的镜头,有 ...

  2. 【EMC基础篇①】噪声是什么?EMC是什么?噪声损害是电子社会的现代病

    [EMC基础篇①]噪声是什么?EMC是什么?噪声损害是电子社会的现代病 电脑的通信错误.手机通话突然断开--您有过类似的经验吗?我们周围充斥着噪声,它们会通过各种线路侵入电子设备,引发故障.那么,这些 ...

  3. 开关电源matlab仿真设计报告,MATLAB非隔离式开关电源仿真分析+源代码

    摘要  开关电源作为现代科技社会电子产品的重要组成部分得到了许多开发,具有体积小效率高的特点从而代替了传统线性稳压电源.在论文设计中使用MATLAB软件中的simulink模块可以实现对电力电子电路进 ...

  4. 开关电源中的磁性元件书籍_总结丨PFC开关电源的效率优化措施

    [新朋友]点击标题下蓝字"电源研发联盟"关注 [老朋友]点击右上角按钮,将本文分享到朋友圈 点击文末阅读原文,更多干货 猜您喜欢往期精选▼ 1. 设计笔记丨开关电源项目实战解析 ( ...

  5. uc3842开关电源电路图_详解6款简单的开关电源电路设计原理图

    简单的开关电源电路图(一) 调整C3和R5使振荡频率在30KHz-45KHz.输出电压需要稳压.输出电流可以达到500mA.有效功率8W.效率87%.其他没有要求就可以正常工作. 简单的开关电源电路图 ...

  6. EMC测试仪器_智芯文库 | 单片机系统EMC测试和故障排除

    对于从事单片机应用系统(软硬件)设计的工程技术人员来说,掌握一定的EMC测试技术是十分必要的. 一.关于EMC EMC:Electromagnetic Compatibility,即电磁兼容性.指设备 ...

  7. 双光耦开关电源电路图_剖析 “双断法”检修分立元件开关电源实例

    康佳小屏幕D型机开关电源全部是分立元件设计,元件多,电路复杂,保护功能全,而且没有辅助电源,为了降低功耗待机采用改变开关电源的振荡状态方式,即强振荡和弱振荡间歇转换,这样的设计虽然巧妙,但同时使电源电 ...

  8. emc整改措施及案例_我们推荐EMC整改效果_EMC整改方案相关

    由于产品前期没有进行EMC设计或者考虑不周,以及市场对产品的EMC要求越来越严格.企业在进行产品EMC认证的过程中往往会出现部分EMC项目无法通过,而且在短时间内需要寻找问题根源并解决问题.针对企业的 ...

  9. 开关电源反馈环路设计matlab,环路设计 - TL431在开关电源反馈回路中的应用

    图8LM5035芯片的COMP引脚及内部比较器 此时需要为TL431设置偏置电流,以保证在各种工作条件下都有足够大于1mA的电流流入TL431阴极.普遍的做法是在光耦的发光二极管旁边并一个阻值1k的电 ...

最新文章

  1. javascript 表单验证大全(一)
  2. 浅谈Web开发中的6种技术
  3. [Ajax]ajax学习与理解
  4. go实现数组切片洗牌函数Shuffle
  5. Dev TextEdit 输入提示
  6. scrapy简单爬取图片
  7. 到底是大数据还是“拍脑门”?
  8. pdf不能复制粘贴的解决方法
  9. 一篇文章带你认识什么是数学建模
  10. HIT软件构造LAB3
  11. sybase客户端SqlDbx中文乱码问题解决
  12. deepin系统维护(系统扩容)deepin live
  13. opencv lbp 草坪_框架还是语言? 离开我的草坪!
  14. 视觉C-部分技术文档
  15. Android开发之音乐播放器所遇到的问题
  16. spring之AOP切面不生效!!!!!原因在这
  17. 文本的检测、识别实战:使用 Tesseract 进行 OpenCV OCR 和文本识别
  18. 动态生成多条插入语句 存入文本文档中
  19. 历史课堂上的经典对白
  20. ZZ稻盛和夫:经营为何需要哲学

热门文章

  1. 数据挖掘实战:二手车交易价格预测
  2. 详解坐标变换矩阵 - 绕 x 轴旋转的旋转矩阵
  3. CRC-16/MODBUS x16+x15+x2+1校验计算 C++
  4. 0724 静态购物网页
  5. 如何将PlayStation 4恢复出厂设置
  6. numpy的学习,全是源码,勿喷
  7. 最强Verilog例化说明
  8. 初识CornerNet
  9. VxRail Cluster Expansion
  10. 屏幕录制:4Easysoft Screen Recorder Mac中文版