在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!

卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载:http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf

简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。

2.卡尔曼滤波器的介绍
(Introduction to the Kalman Filter)

为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。

在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。

假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就是下一分钟的温度等于现在这一分钟的温度(假设我们用一分钟来做时间单位)。假设你对你的经验不是100%的相信,可能会有上下偏差几度。我们把这些偏差看成是高斯白噪声(White Gaussian Noise),也就是这些偏差跟前后时间是没有关系的而且符合高斯分配(Gaussian Distribution)。另外,我们在房间里放一个温度计,但是这个温度计也不准确的,测量值会比实际值偏差。我们也把这些偏差看成是高斯白噪声。

好了,现在对于某一分钟我们有两个有关于该房间的温度值:你根据经验的预测值(系统的预测值)和温度计的值(测量值)。下面我们要用这两个值结合他们各自的噪声来估算出房间的实际温度值。

假如我们要估算k时刻的是实际温度值。首先你要根据k-1时刻的温度值,来预测k时刻的温度。因为你相信温度是恒定的,所以你会得到k时刻的温度预测值是跟k-1时刻一样的,假设是23度,同时该值的高斯噪声的偏差是5度(5是这样得到的:如果k-1时刻估算出的最优温度值的偏差是3,你对自己预测的不确定度是4度,他们平方相加再开方,就是5)。然后,你从温度计那里得到了k时刻的温度值,假设是25度,同时该值的偏差是4度。

由于我们用于估算k时刻的实际温度有两个温度值,分别是23度和25度。究竟实际温度是多少呢?相信自己还是相信温度计呢?究竟相信谁多一点,我们可以用他们的covariance来判断。因为Kg^2=5^2/(5^2+4^2),所以Kg=0.78,我们可以估算出k时刻的实际温度值是:23+0.78*(25-23)=24.56度。可以看出,因为温度计的covariance比较小(比较相信温度计),所以估算出的最优温度值偏向温度计的值。

现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

就是这样,卡尔曼滤波器就不断的把covariance递归,从而估算出最优的温度值。他运行的很快,而且它只保留了上一时刻的covariance。上面的Kg,就是卡尔曼增益(Kalman Gain)。他可以随不同的时刻而改变他自己的值,是不是很神奇!

下面就要言归正传,讨论真正工程系统上的卡尔曼。

3. 卡尔曼滤波器算法
(The Kalman Filter Algorithm)

在这一部分,我们就来描述源于Dr Kalman 的卡尔曼滤波器。下面的描述,会涉及一些基本的概念知识,包括概率(Probability),随即变量(Random Variable),高斯或正态分配(Gaussian Distribution)还有State-space Model等等。但对于卡尔曼滤波器的详细证明,这里不能一一描述。

首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k) 
再加上系统的测量值:
Z(k)=H X(k)+V(k) 
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances来估算系统的最优化输出(类似上一节那个温度的例子)。

首先我们要利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:
X(k|k-1)=A X(k-1|k-1)+B U(k) ……….. (1)
式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于X(k|k-1)的covariance还没更新。我们用P表示covariance:
P(k|k-1)=A P(k-1|k-1) A’+Q ……… (2)
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1)) ……… (3)
其中Kg为卡尔曼增益(Kalman Gain):
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R) ……… (4)

到现在为止,我们已经得到了k状态下最优的估算值X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:
P(k|k)=(I-Kg(k) H)P(k|k-1) ……… (5)
其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。

卡尔曼滤波器的原理基本描述了,式子1,2,3,4和5就是他的5个基本公式。根据这5个公式,可以很容易的实现计算机的程序。

下面,我会用程序举一个实际运行的例子。。。

4. 简单例子
(A Simple Example)

这里我们结合第二第三节,举一个非常简单的例子来说明卡尔曼滤波器的工作过程。所举的例子是进一步描述第二节的例子,而且还会配以程序模拟结果。

根据第二节的描述,把房间看成一个系统,然后对这个系统建模。当然,我们见的模型不需要非常地精确。我们所知道的这个房间的温度是跟前一时刻的温度相同的,所以A=1。没有控制量,所以U(k)=0。因此得出:
X(k|k-1)=X(k-1|k-1) ……….. (6)
式子(2)可以改成:
P(k|k-1)=P(k-1|k-1) +Q ……… (7)

因为测量的值是温度计的,跟温度直接对应,所以H=1。式子3,4,5可以改成以下:
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1)) ……… (8)
Kg(k)= P(k|k-1) / (P(k|k-1) + R) ……… (9)
P(k|k)=(1-Kg(k))P(k|k-1) ……… (10)

现在我们模拟一组测量值作为输入。假设房间的真实温度为25度,我模拟了200个测量值,这些测量值的平均值为25度,但是加入了标准偏差为几度的高斯白噪声(在图中为蓝线)。

为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。他们的值不用太在意,随便给一个就可以了,因为随着卡尔曼的工作,X会逐渐的收敛。但是对于P,一般不要取0,因为这样可能会令卡尔曼完全相信你给定的X(0|0)是系统最优的,从而使算法不能收敛。我选了X(0|0)=1度,P(0|0)=10。

该系统的真实温度为25度,图中用黑线表示。图中红线是卡尔曼滤波器输出的最优化结果(该结果在算法中设置了Q=1e-6,R=1e-1)。

××××××××××××××××××

附matlab下面的kalman滤波程序:

clear
N=200;
w(1)=0;
w=randn(1,N)
x(1)=0;
a=1;
for k=2:N;
x(k)=a*x(k-1)+w(k-1);
end

V=randn(1,N);
q1=std(V);
Rvv=q1.^2;
q2=std(x);
Rxx=q2.^2; 
q3=std(w);
Rww=q3.^2;
c=0.2;
Y=c*x+V;

p(1)=0;
s(1)=0;
for t=2:N;
p1(t)=a.^2*p(t-1)+Rww;
b(t)=c*p1(t)/(c.^2*p1(t)+Rvv);
s(t)=a*s(t-1)+b(t)*(Y(t)-a*c*s(t-1));
p(t)=p1(t)-c*b(t)*p1(t);
end

t=1:N;
plot(t,s,'r',t,Y,'g',t,x,'b');

Kalman 过程详解:

(1)         预测:做出先验估计x[n|n-1]=A*x[n-1|n-1];

【对于一维的情况,A可以看成一个常数使用,经常取1,同时对于B经常取零(---可能有人会有疑问:取0没事吗,可以放心的告诉你,问题不大。反过来想想,这只是一个估计,可以在估计噪声方差得到修正)】

(2)         向前推算协方差:做出预测后的新的概率分布的方差(预测上次的最优估计为当前时刻的先验估计这个过程可以当成一个符合预测过程噪声分布的和另一个(上一次的最优估计可以看做高斯分布的)也符合高斯分布的相加。预测结果也是符合高斯噪声分布的,方差是两个相互独立的方差之和)。

【对于一维的情况,P[n|n-1]=P[n-1|n-1]+Q。 Q为预测方差,代表对预测的不信任程度,工程上根据实际调节以改善滤波器的性能:动态效果和去噪效果】

(3)         计算卡尔曼增益:

【对于一维的情况,K[n]=H*P[n|n-1]/{H^2*P[n|n-1]+R}。其中H是对观测的响应倍数,通常取1,R为测量的方差,工程上一般都可以直接获得】

(4)         更估计值:做出后验估计,修正后的估计值,更接近真实值。

【对于一维的情况,最优估计由下式给出:

x[n|n]=x[n|n-1]+K[n]*{z[n]-x[n|n-1]}。其中z[n]为观测值】

(5)         更新误差协方差:得到最优估计的概率分布的方差。

【对于一维的情况,新的误差协方差由下式给出:

P[n|n]=(1-K[n]*H)*P[n|n-1]】

// 一维滤波器信息结构体
typedef  struct{double filterValue;  //k-1时刻的滤波值,即是k-1时刻的值double kalmanGain;   //   Kalamn增益double A;   // x(n)=A*x(n-1)+u(n),u(n)~N(0,Q)double H;   // z(n)=H*x(n)+w(n),w(n)~N(0,R)double Q;   //预测过程噪声偏差的方差double R;   //测量噪声偏差,(系统搭建好以后,通过测量统计实验获得)double P;   //估计误差协方差
}  KalmanInfo;
/**
* @brief Init_KalmanInfo   初始化滤波器的初始值
* @param info  滤波器指针
* @param Q 预测噪声方差 由系统外部测定给定
* @param R 测量噪声方差 由系统外部测定给定
*/
void Init_KalmanInfo(KalmanInfo* info, double Q, double R)
{info->A = 1;  //标量卡尔曼info->H = 1;  //info->P = 10;  //后验状态估计值误差的方差的初始值(不要为0问题不大)info->Q = Q;    //预测(过程)噪声方差 影响收敛速率,可以根据实际需求给出info->R = R;    //测量(观测)噪声方差 可以通过实验手段获得info->filterValue = 0;// 测量的初始值
}
double KalmanFilter(KalmanInfo* kalmanInfo, double lastMeasurement)
{//预测下一时刻的值double predictValue = kalmanInfo->A* kalmanInfo->filterValue;   //x的先验估计由上一个时间点的后验估计值和输入信息给出,此处需要根据基站高度做一个修改//求协方差kalmanInfo->P = kalmanInfo->A*kalmanInfo->A*kalmanInfo->P + kalmanInfo->Q;  //计算先验均方差 p(n|n-1)=A^2*p(n-1|n-1)+qdouble preValue = kalmanInfo->filterValue;  //记录上次实际坐标的值//计算kalman增益kalmanInfo->kalmanGain = kalmanInfo->P*kalmanInfo->H / (kalmanInfo->P*kalmanInfo->H*kalmanInfo->H + kalmanInfo->R);  //Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)//修正结果,即计算滤波值kalmanInfo->filterValue = predictValue + (lastMeasurement - predictValue)*kalmanInfo->kalmanGain;  //利用残余的信息改善对x(t)的估计,给出后验估计,这个值也就是输出  X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1))//更新后验估计kalmanInfo->P = (1 - kalmanInfo->kalmanGain*kalmanInfo->H)*kalmanInfo->P;//计算后验均方差  P[n|n]=(1-K[n]*H)*P[n|n-1]return  kalmanInfo->filterValue;
}

卡尔曼算法详解(C++程序)相关推荐

  1. md5与des算法有何不同_Python算法详解:为什么说算法是程序的灵魂?

    算法是程序的灵魂,只有掌握了算法,才能轻松地驾驭程序开发.软件开发工作不是按部就班,而是选择一种最合理的算法去实现项目功能.算法能够引导开发者在面对一个项目功能时用什么思路去实现,有了这个思路后,编程 ...

  2. c4.5算法 程序语言,决策树之C4.5算法详解-Go语言中文社区

    决策树之C4.5算法详解 主要内容 C4.5算法简介 分裂属性的选择--信息增益率 连续型属性的离散化处理 剪枝--PEP(Pessimistic Error Pruning)剪枝法 缺失属性值的处理 ...

  3. 图论-最短路Dijkstra算法详解超详 有图解

    整体来看dij就是从起点开始扩散致整个图的过程,为什么说他稳定呢,是因为他每次迭代,都能得到至少一个结点的最短路.(不像SPFA,玄学复杂度) 但是他的缺点就是不能处理带负权值的边,和代码量稍稍复杂. ...

  4. C++中的STL算法详解

    1.STL算法详解 STL提供能在各种容器中通用的算法(大约有70种),如插入.删除.查找.排序等.算法就是函数模板,算法通过迭代器来操纵容器中的元素.许多算法操作的是容器上的一个区间(也可以是整个容 ...

  5. JVM之垃圾收集机制四种GC算法详解

    JVM之四种GC算法详解 目录: 什么是GC? GC算法之引用计数法 GC算法之复制算法(Copying) GC算法之标记清除(Mark-Sweep) GC算法之标记压缩(Mark-Compact) ...

  6. YOLOv5算法详解

    目录 1.需求解读 2.YOLOv5算法简介 3.YOLOv5算法详解 3.1 YOLOv5网络架构 3.2 YOLOv5实现细节详解 3.2.1 YOLOv5基础组件 3.2.2 输入端细节详解 3 ...

  7. 7大排序算法详解+java实现

    目录 0 概述 1 冒泡排序 2 选择排序 3 插入排序 4 希尔排序 5 快速排序 6 归并排序 7 基数排序 下载地址 7大排序算法详解文档及java代码实现(可直接运行)下载地址:https:/ ...

  8. C语言实现扫雷完整算法详解~(附完整代码~)

    扫雷是一个常见小游戏,那么如何用C语言实现扫雷呢?学习了二维数组之后,我们可将扫雷的网格区域存储为二维数组,从而使用C语言实现扫雷. 目录 1.算法基本思路 2.算法详解 1.初始化数组与打印数组 2 ...

  9. 蚂蚁算法python_Python编程实现蚁群算法详解

    简介 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由Marco Dorigo于1992年在他的博士论文中提出,其灵感 ...

最新文章

  1. assign 可以修饰对象吗
  2. 6.切勿对STL容器的线程安全性有不切实际的依赖
  3. Hexo Next主题进阶教程
  4. Linux版本的SVN客户端,linux 下安装 subversion(svn) 客户端
  5. 实验1c语言开发环境使用和数据类型、运算符和表达式
  6. C# 线程手册 第三章 使用线程 Monitor.TryEnter()
  7. jsp标签在JavaScript中使用时,可能会出现的一个问题。
  8. Linux系统间文件双向同步搭建Unison版
  9. 如何使用Python Flask编写Web服务
  10. docker 删除默认连接_database – 如何从已删除的Docker容器中恢复数据?如何将其重新连接到数据?...
  11. 9.Linux 高性能服务器编程 --- IO 复用
  12. php分页类怎么使用,PHP实现的分页类定义与用法示例
  13. 浏览器 本地html 图片不显示,浏览网页图片无法显示怎么回事 网页图片显示不出来的解决方法...
  14. CI和Smarty整合并且前后台加载不同配置文件使前台应用Smarty缓存后台不应用
  15. 我的美丽天使(My Fair Angel)入门经典教程(下载 安装 汉化 使用)
  16. js判断字符串是不是一个纯数字
  17. 华为OD面试【前】经验分享,包含面试准备的各个细节
  18. 光盘、软盘、硬盘、U盘、磁条卡、芯片卡和复合卡之间的区别与联系
  19. ARM-translation table walk
  20. 浙大计算机学院博士毕业论文要求,浙江大学博士论文编写规则.doc

热门文章

  1. vc和MFC的详细历史
  2. 防火墙—IPSec VPN(NAT 穿透-单侧 NAT)
  3. 燕山大学计算机科学与技术怎么样,燕山大学的计算机科学与技术专业在哪个学院...
  4. 一张图带走一套操作 分享最新网络营销学习路线图-千锋
  5. Android wifi sniffer log总结分析
  6. Android动态加载dex文件/jar包的纯原生代码实现(dex文件由服务端下发)
  7. 云栖大会上发布了哪些移动研发新利器?
  8. 锂电充电芯片_两节锂电充电IC_防反接充电芯片
  9. 苹果总部员工悼念乔布斯
  10. MYSQL/ORACLE多字段去重-根据某字段去重